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Abstract. Linear Relation Analysis [CH78,Hal79] is one of the first,
but still one of the most powerful, abstract interpretations working in
an infinite lattice. As such, it makes use of a widening operator to en-
force the convergence of fixpoint computations. While the approximation
due to widening can be arbitrarily refined by delaying the application of
widening, the analysis quickly becomes too expensive with the increase
of delay. Previous attempts at improving the precision of widening are
not completely satisfactory, since none of them is guaranteed to improve
the precision of the result, and they can nevertheless increase the cost
of the analysis. In this paper, we investigate an improvement of Linear
Relation Analysis consisting in computing, when possible, the exact (ab-
stract) effect of a loop. This technique is fully compatible with the use
of widening, and whenever it applies, it improves both the precision and
the performance of the analysis.

Linear Relation Analysis [CH78,Hal79] (LRA) is one of the very first applica-
tions of abstract interpretation [CC77], and aims at computing an upper approx-
imation of the reachable states of a numerical program, as a convex polyhedron
(or a set of such polyhedra). It was applied in various domains like compile-
time error detection [DRS01], program parallelization [IJT91], automatic verifi-
cation [HPR97,HHWT97] and formal proof [BBC+00,BBM97].

Like any approximate verification method, LRA is faced with the compromise
between precision and cost. Since its relatively high cost restricts its applicability,
any situation where the precision can be improved at low cost must be exploited.
One source of approximation in LRA is widening, the operator that ensures the
termination of iterative computations, by extrapolating an upper approximation
of their limit. When the approximation due to widening is the cause of the lack
of precision of the result of an analysis, a possible way to improve the precision
is to delay widening: instead of applying it at each iteration, one can start with
a number of steps without widening, thus providing a more precise basis for
subsequent extrapolations. Now, delaying widening is generally very expensive:
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not only does it increase the number of iterations, but, more importantly, it leads
to the construction of much more complex polyhedra (that would be simplified
otherwise thanks to widening). So, if we can find some cheap ways to improve
the precision of widening, we may not only improve the overall precision, but
also avoid the cost of delaying widening.

The next question then is “what is a better widening?”. The fact that one
single application of a widening operator gives smaller results [BHRZ03] does
not necessarily mean that its repeated application will involve a convergence
towards a more precise limit (an example can been seen in [SSM04]). Moreover,
the use of such a widening is likely to slow down the convergence, by increasing
the number of necessary iterations.

These remarks led us to look at situations where the widening can obviously
be improved — in the sense that a faster convergence towards a better limit can
be archived — at low cost with respect to the cost of usual polyhedra opera-
tors. For that, a source of inspiration are the so-called “acceleration techniques”
proposed by several authors [BW94,WB98,CJ98,FS00,BFLP03]. These works
consist in identifying categories of loops whose effect can be computed exactly.
Roughly speaking, the effect of a simple loop, guarded by a linear condition
on integer variables, and consisting of incrementations/decrementations of these
variables can be computed exactly as a Presburger formula. These methods have
the advantage of giving exact results. Now, because they are exact, they are re-
stricted to some classes of programs (e.g., “flat counter automata”, i.e., without
nested loops). Moreover, the exact computation with integer variables has a very
high complexity (generally double-exp). So the applicability of these methods is
somewhat limited.

In this paper, we investigate the use of acceleration methods in LRA, in
complement to widening . Of course, when the effect of a loop can be computed
exactly (and at low cost) there is no need to approximate it. Now, since we
want to integrate these results in LRA, only the exact abstract effect of the loop
is necessary, that is the convex hull of the reachable states during or after the
loop. This means that we won’t use expensive computations in Presburger arith-
metic. Moreover, we only look for an improvement of standard LRA: wherever
an acceleration is possible, its application will improve the results, but the result-
ing method will not be restricted to those programs where acceleration applies
everywhere.

To illustrate our goal better, let us consider a very simple example, the classi-
cal “leaking gas burner” [CHR91]: one wants to model and analyze the assump-
tion that, whenever the “gas burner” leaks, the leakage is fixed within 10 seconds,
and that the minimum interval between two leakages is 50 seconds. The standard
modelling of this system is by a linear hybrid automaton [ACH+95,HHWT97]
(see Fig. 1). The linear relation analysis of this hybrid automaton proceeds as
follows (the successive results are projected onto the variables t and `, which
represent, respectively, the global time elapsed and the global leaking time, the
variable u being a local variable used to count the time elapsed in each location):
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Fig. 1. Hybrid automaton of the gas burner
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Fig. 2. Analysis of the hybrid gas burner

At first step, the location “leaking” is reached with the single point {t =
` = 0}, and the “time elapse” operator1 gives the polyhedron {0 ≤ t = ` ≤ 10}
(©1 , Fig. 2.a). So, the location “not leaking” is reached with {0 ≤ t = ` ≤ 10},
and the “time elapse” operator provides {0 ≤ ` ≤ 10, t ≥ `} (©2 , Fig.2.b). At
step 2, the location “leaking” is reached back with {0 ≤ ` ≤ 10, t ≥ ` + 50}, (©3 ,
Fig. 2. 2.c) the convex hull with {t = ` = 0}, gives {0 ≤ ` ≤ 10, t ≥ 6`} (©4 ,
Fig. 2.c), the “time elapse” provides {0 ≤ ` ≤ 20, t ≥ `, t ≥ 6` − 50}, and the
(standard) widening provides {0 ≤ ` ≤ t, t ≥ 6` − 50} (©5 , Fig. 2.c), which is
also the solution for “not leaking” and terminates the iteration with an optimal
result: it is the convex hull of the reachable states in each location.

Now, let us consider a discrete version of the gas burner (Fig. 3). First,
since there is a loop around each location, we must apply widening in each of
them. Now, if we detail the computations, we get that for the L(eaking) location,
initially t = ` = 0, then t = ` = 1 (with no contribution back from N(otleaking)),
so the convex hull is {0 ≤ t = ` ≤ 1}, and widening provides {0 ≤ t = `}. This
is already a less precise result than in the continuous case. Further narrowing
does not improve the result. To obtain better results, we should delay widening
for at least 10 iterations (because of the constant 10 appearing in the problem).
Of course, delaying widening in such a way is expensive; moreover it is rather
ad hoc, and it would not work if the constant 10 was replaced by a symbolic
parameter, say δ.

This example shows that the analysis of hybrid automata can be much more
precise and efficient than the analysis of the corresponding discrete counter au-
tomata. The obvious reason is the availability of the “time elapse” operator,
which plays the role of a specialized exact widening operation. One goal of the
paper is to detect that the effect of the single loops in the counter automaton of

1 which computes the effect of letting the time pass in the location as long as the
location invariant is true.
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Fig. 3. Automaton of the gas burner
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Fig. 4. “Accelerated” automaton

Fig. 3 can be computed exactly, so that these loops can be subsumed by single
transitions, exactly as it is done by using the time elapse operator on hybrid
automata. In other words, instead of analyzing the automaton of Fig. 3, we will
apply the standard analysis to the automaton of Fig. 4, where τ⊗1 , τ⊗2 denote the
operations subsuming the effect of the two single loops in the initial automaton.
In this standard analysis, the two single loops will be accelerated, but widening
is still applied, e.g., in L, because of the remaining global loop.

The paper is organized as follows: after making our notations precise (Sec-
tion 1), we consider first, in Section 2, the trivial case of a single loop where
variables are just incremented with constants. Such a loop is called a transla-
tion loop. We can then formally define, in Section 3, the abstract acceleration
we want to compute, which is a convex and dense closure of the exact reachable
set. Then, in Section 4, we consider the case of several translation loops, and
in Section 5, we deal with combinations of translations and assignments of con-
stants. We conclude the paper with comparisons with related work, and some
perspectives.

1 Definitions and notations

Throughout the paper, n will denote the number of numerical variables, the
numerical states will be considered as elements of the affine space Qn 2.

Let us recall that a (closed convex) polyhedron in Qn can be seen either as
the set {x ∈ Qn | Ax ≤ B} of solutions of a system of linear constraints Ax ≤ B
— where A is an m× n matrix, for some m ≥ 0, and B is an m-vector — or as
the convex hull

{
∑
vi∈V

λivi +
∑
rj∈R

µjrj | λi, µj ∈ Q+,
∑

λi = 1}

of a system of generators — i.e., a finite set V ⊂ Qn of vertices, and a finite set
R ⊂ Qn of rays.

If Ax ≤ B is a system of constraints, we will often note simply {Ax ≤ B}
the polyhedron of its solutions. If P is a polyhedron and R ⊂ Qn is a finite set of
vectors, we will note P ↗ R the polyhedron {x +

∑
rj∈R µjrj | x ∈ P, µj ∈ Q+}

obtained by adding to P all vectors in R as new rays.
2 We consider Q for computational reasons



2 A simple case: single translation loops

We first consider the case of single loops, i.e., single paths in the program control-
flow graph looping back to a control point. We consider such a single path as
a guarded command g → a, where g is a condition on numerical variables,
and a is a transformation of numerical variables. As usual in LRA, we restrict3

ourselves to linear conditions (g(x) ⇔ Ax ≤ B) and linear transformations (say
x := Cx + D, where C is an n × n matrix, D is an n-vector). Let τ be the
corresponding function: τ(x) = if Ax ≤ B then Cx + D else x. We want to
build the corresponding polyhedra transformer, i.e., to be able to compute the
image P of a polyhedron P0 by an arbitrary number of applications of τ :

x ∈ P ⇔ ∃i ∈ N, ∃x0 ∈ P0, x = τ i(x0)

i.e., if we define the sequence (xk) by xk = Ckx0 +
∑k−1

j=0 CjD:
x ∈ P ⇔ ∃i ∈ N,∃x0 ∈ P0,∀j ∈ [0, i− 1], Axj ≤ B, and x = xi

In general, obtaining a general expression for Ck is too expensive, and the
quantification over i and j cannot be computed. So, let us look at some cases
where the computation is possible; in such cases, the loop will be said to be
accelerable:
– [Tiw04] considers the same kind of loops, and shows that their termination

is decidable. The method uses algebraic characterisation of the C matrix,
but does not provide any loop invariant.

– In [FL02], the linear functions λx.Cx+D such that the cardinal of {Ck, k ∈
N} is finite is pointed out to be a class that is accelerable. But the upper-
bound that is given is too large, and as far as we know, the complexity of
the problem of finding whether a monoid generated by a (set of) matrix is
finite or not is an open problem (it is known to be decidable [Hal97]).

– The case where C2 = C is interesting, since it covers the loops which incre-
ment or decrement variables by constants, and/or set variables to constants.

– The simplest case is when C = Id, i.e., when all variables are incremented or
decremented by constants. We call such loops translation loops and we first
consider this simple case.

In the case of a translation loop, we get simply xk = x0 + kD and
x ∈ P ⇔ ∃i ∈ N,∃x0 ∈ P0,∀j ∈ [0, i− 1], A(x0 + jD) ≤ B, and x = x0 + iD

By convexity, the condition ∀j ∈ [0, i−1], A(x0 + jD) ≤ B reduces to Ax0 ≤
B ∧ A(x−D) ≤ B. Adding an arbitrary positive number of D is just adding D
as a ray. Finally, we get:

P =
(
(P0 ∩ {Ax ≤ B}) ↗ {D}

)
∩ {A(x−D) ≤ B}

Remark 1. In the last expression, we have lost the points of the initial polyhedron
P0 that don’t satisfy g. In the rest of the paper, without loss of generality, we
assume that the initial polyhedron verifies the guard of the transition. If it is
not the case, we first compute the intersection with the guard, and after all our
computations, we make a convex hull with the initial polyhedron.
3 Other cases are over-approximated.



Example: This allows us to compute the effect of the two simple loops in the
gas burner example (Fig. 3). Starting from P

(0)
L = {t = ` = 0}, we first apply

τ⊗1 as in Fig. 4 and get P ′(0)
L = {0 ≤ t = ` ≤ 10}. Then, in location N , we have

P
(0)
N = {0 ≤ t = ` ≤ 10} which is accelerated into P ′(0)

N = {0 ≤ ` ≤ 10, ` ≤ t},
and the transition back to L gives Q = {0 ≤ ` ≤ 10, ` + 50 ≤ t}, so4

P
(1)
L = P

(0)
L ∇

(
P

(0)
L tQ

)
= {t = ` = 0}∇{0 ≤ ` ≤ 10, 6l ≤ t} = {0 ≤ 6` ≤ t}

Applying again τ⊗1 , we get P ′(1)
N = {0≤ `≤ t, 6`≤ t−50} which is the correct

limit .

3 Abstract acceleration

We are now able to make our objective more precise: we want to precisely char-
acterize, when possible, the effect of a loop on a polyhedron. Of course, with
respect to the exact effect of the loop, we will have to take a convex hull. More-
over, we are faced with a problem of arithmetic, since the effect of a loop is
obtained by applying k times its body where k is an integer. To avoid the com-
plexity of exact arithmetic, we will perform, as usual, a dense approximation.
To summarize, in the case of a simple translation loop, instead of computing the
exact effect of the loop:

τ∗(P0) = {x | ∃i ∈ N,∃x0 ∈ P0, g(x0) ∧ g(x−D), x = x0 + iD} ∪ P0

we compute its abstract acceleration:

τ⊗(P0) =
⊔
{x | ∃i ∈ Q+,∃x0 ∈ P0, g(x0) ∧ g(x−D), x = x0 + iD} t P0

We now are able to prove the following proposition :

Proposition 1. Let τ : Ax ≤ B → x := Cx + D. Then

τ⊗(P0 ∩Ax ≤ B) =
(
(P0 ∩ {Ax ≤ B}) ↗ {D}

)
∩ {A(x−D) ≤ B}

Sketch of Proof : Let P =
“
(P0 ∩ {Ax ≤ B}) ↗ {D}

”
∩ {A(x−D) ≤ B}. Then

x ∈ P ⇔
“
∃i ∈ Q+,∃x0 ∈

`
P0 ∩ {Ax ≤ B}

´
, x = x0 + iD and A(x−D) ≤ B

”
⇔ x ∈ τ⊗(P0)

�
It is also useful to define the rational iteration of a translation loop :

Definition 1. Let i ∈ Q+, then we note :

τ i(P0) = {x|∃x0 ∈ P0, x = x0 + iD ∧ g(x0) ∧ g(x−D)}
4 t,∇ respectively denote the convex hull and widening operators.



4 Two translation loops

In the presence of several translation loops, the situation becomes more complex.
For instance, the control graph is not necessarily flat, and exact acceleration
techniques no longer apply.

In order to separate the difficulties, we will first assume, at least conceptually,
that the control graph is partitioned according to the combination of guards: in
a given location, either both guards are satisfied, or only one or the other is
satisfied. Once this partitioning is performed, we are left with the problem of
accelerating the loops as long as both guards are satisfied.

Let us note τ⊗1,2(P0) the image of an initial polyhedron P0 by two translation
loops τi : gi → x := x + Di, (i = 1, 2) as long as g1 ∧ g2 is satisfied. It is made
of all the points x that can be reached from P0 ∩ g1 ∩ g2 by successive rational
applications of τ1 and τ2 and staying in g1 ∩ g2 :

x ∈ τ⊗1,2(P0) iff ∃x0 ∈ P0 ∩ g1 ∩ g2,
∃x1, x2 . . . , x` ∈ g1 ∩ g2,∃x′1, x′2 . . . , x′` ∈ g1 ∩ g2,
∃i1, i2, . . . , i`, i′1, i′2, . . . , i′` ∈ Q+,

such that x = x′`, and xj = τ
ij

1 (x′j−1), x
′
j = τ

i′j
2 (xj), j = 1..`

The following proposition gives a way of computing τ⊗1,2(P0):

Proposition 2. Let τi be gi → x := x + Di, (i = 1, 2) then,

– if ∃x0 ∈ P0 ∩ g1 ∩ g2, ∃ε > 0 such that either x0 + εD1 ∈ g1 ∩ g2 or
x0 + εD2 ∈ g1 ∩ g2 (i.e., there is at least one point in P0 where at least one
transition can be “rationally” applied and stay in g1 ∩ g2), then

τ⊗1,2(P0) = ((P0 ∩ g1 ∩ g2) ↗ {D1, D2}) ∩ g1 ∩ g2

– otherwise, τ⊗1,2(P0) = P0 ∩ g1 ∩ g2

Remark 2. The first condition on P0 ∩ g1 ∩ g2 comes from the fact that the
rational application of τ1 or τ2 must be initialised. This condition can easily
been checked by a simplex method.

Of course, we don’t really partition the control graph, which would involve a
combinational explosion in the presence of several loops. But, if we use the com-
bined acceleration computed as in Proposition 2, we compute the (approximate)
solution of P = P0tτ⊗1,2(P )tτ⊗1 (P )tτ⊗2 (P ) using widening if necessary. It often
happens that P0tτ⊗1,2(P0)tτ⊗1 (τ⊗1,2(P0))tτ⊗2 (τ⊗1,2(P0)) is a (post-) fixpoint, and
that widening does not have to be used. Of course, this is one strategy among
others, but it gives good experimental results. We could also compute for ex-
ample the set P0 t τ⊗1,2(P0) t τ⊗2

(
τ⊗1 (P0)

)
t τ⊗1

(
τ⊗2 (P0)

)
, or other combinations

(like, e.g., in Fast [BFLP03]).



i := j := 0;
while (1) i <= 100 do

if ... then i:=i+2; j:=j+1;
else i:=i+4;

end
(2)

Fig. 5. The program

τ1 τ2

1

i ≥ 101

i ≤ 100 →
i := i + 4

i ≤ 100 →
i := i + 2

j := j + 1

2

i := 0

j := 0

Fig. 6. The associated CFG

Example As a very simple application, we can now deal with the old basic
example of [Hal79] without using any widening:

In the “program” of Fig 5, we abstract the “if-then-else” statement by the
non-deterministic choice of two simple loops around the control point number 1,
getting the control graph of figure 6. Applying our result (the two transition can
be applied) , we first compute τ⊗1,2({i = j = 0}) = {(0, 0)} ↗ {(2, 1), (4, 0)}∩{i ≤
100} = {0 ≤ 2j ≤ i ≤ 100}. Then we compute :

– τ⊗1 (τ⊗1,2(P0)) = {2j ≥ 2, 2j ≤ i, i ≤ 102}
– τ⊗2 (τ⊗1,2(P0)) = {2j ≥ 0, 2j < i ≤ 104}
– The convex hull of the three polyhedra, {0 ≤ 2j ≤ i, i ≤ 104, i + 2j ≤ 204}.

This last set is stable by the application of τ1 or τ2, so the convergence is reached
and we can propagate the obtained result to location 2, where we get: {0 ≤ 2j ≤
i, 101 ≤ i ≤ 104, i + 2j ≤ 204}.

5 Combining translation and reset

The next case that we will consider is the combination of translation loops
with loops where some variables are set to constants. Without loss of generality,
we assume that these variables are simply reset to 0. This situation and the
corresponding notations are represented in Fig. 7: we assume x = (y, z); in the
first loop, all the variables are translated, while in the second one, only the
variables y are translated and the variables z are set to 0. We will consider
simple cases first.

gr →g1 →
τ1 τr

x := x + D1 y := y + Dr; z := 0

Fig. 7. Transition and reset loops

x0

D1

d1

z

g1

Fig. 8. Complete reset



5.1 Complete reset

A first simple case is when the second loop performs only resetting, i.e., when
Dr = 0. Let us note d1 = D1 ↓ [z = 0] the projection of D1 on the subspace
z = 0. We assume also that gr = true. Then, the evolution of variables from
a point x0 can be represented in the plane (D1, d1) as in Fig. 8 (in this figure,
x0 ↗ {D1} intersects g1, but otherwise, the same expression is still valid). In
this case, we obviously have:

Proposition 3. If τ1 : g1 → x := x + D1 and τ2 : true → z := 0 then:

(τ1 + τr)⊗(P0) = P0 ↗ {D1, d1} ∩ g1(x−D1)

Sketch of Proof : First let us remark that τ∗r = τr (τr is only a projection).

– ⊆ : If x ∈ (τ1 + τr)
∗(x0) (the exact computation), then there has been a succession

of τ1 and τr, that can be summarized by the following chain (the ij are in N) :

x0

„
y0

0

«
→τ

i1
1 x0 + i1D1 →τr

„
y0 + i1d1

0

«
→τ

i2
1 x0 + (i1 + i2)D1

→τr

„
y0 + (i1 + i2)d1

0

«
→ . . .

So if the chain ends with a τr, then there exists I1 ∈ N such that x = x0 + I1d1

and g1(x−D1) (it comes from the fact we have g1(x0 + (I1− 1)D1)). If the chains
ends with an iteration of τ1, then x = x0 + I1d1 + I2D1, with g(x −D1). As the
abstract acceleration is the relaxation of the exact computation, we are done.

– ⊇ : If x = x0 + I1d1 + I2D1 and g1(x − D1), then we can obtain the point x

by applying the following “rational” chain : x = τ I2
1

“`
τr(τ1(x0))

´I1
”
. Indeed, any

application of τ1 followed by an application of τr from an initial point x0 = (y0, 0)
leads to the point (y0 + d1, 0), which allows us to define the rational alternation
of τr and τ1 as if it were an application of a single translation of vector d1. So
applying I1 times (possibly 0) this alternation, we obtain the point (y0 + I1d1, 0).
Then we end by applying τ I2

2 . �
This simple case generalizes naturally:
– for Dr 6= 0, if Dr belongs to the plane (D1, d1)
– for gr 6= true if {x0} ↗ {D1} ∩ g1 intersects gr.

Remark 3. Notice that we can easily produce reachable domains that cannot
be described by Presburger formulas, as shown by the figures 9 and 10 (where
the exact set is ∃k ≥ 0,

(
2k−1 − 1 ≤ x ≤ 2k − 1 ∧ z ≥ 0 ∧ x ≥ 2z − 1

)
), which

means that standard exact acceleration techniques cannot work. In this case, the
previous proposition leads to the abstract acceleration : {x ≥ z ≥ 0, x ≥ 2z−1}.

5.2 Partial reset

Now, we consider the case when Dr 6= 0 does not belong to the plane (D1, d1)
(i.e., there are variables which are incremented in the second loop, while being
unchanged by the first loop). As before, we assume that gr = true, but we also



τ1 τr

z := 0x := x + 1
z := z + 1

true →

x := 0
z := 0

x ≥ 2z →

Fig. 9. The CFG

0
x

z

1 3 7

Fig. 10. The corresponding behaviour

assume that g1 is of the form z ≤ K, i.e., is parallel to the hyperplane z = 0 (see
Remark 5 about this restriction). Moreover, we consider an initial polyhedron
P0 included in the hyperplane z = 0. Now, the variables can evolve from a point
x0 as shown on Fig. 11.

D1

g1

z

y

Dr
x0

Fig. 11. Partial reset

From x0, τ1 can be applied at most, say, kmax times, where kmax is the
minimum over all reset variables zi of the expressions bKzi/D1zi

+ 1c, which we
denote kmax = bK/D1z + 1c5. At any time meanwhile, τr can occur, resetting z
and translating the result according to Dr in the plane {z = 0}. So, after some
applications of τ1 followed by one application of τr, we have x = x0 + kd1 + Dr,
where d1 = D1 ↓ [z = 0] as before, and 0 ≤ k ≤ kmax. Then from any such x, the
same transformation can occur. One can easily show that the resulting domain
is given by the following proposition:

Proposition 4. Let τ1 be of the form (z ≤ K) → x := x + D1 and τr be
true → y := y + Dry; z := 0. Let P0 ⊂ {z = 0}. Let uz = (0, . . . , 0, 1, . . . 1) where
we have 1s for the z components, and 0 elsewhere. Let d1 = D1 ↓ [z = 0] and

Dr =
(

Dry

0

)
. Then:

– if D1 · uz < 0 then (τ1 + τr)⊗(P0) = P0 ↗ {D1, d1, Dr}
– else, let kmax = bK/D1z + 1c, we have:

(τ1 + τr)⊗(P0) = P0 ↗ {D1, Dr, kmaxd1 + Dr} ∩ g1(x−D1)

5 Notice that, here, we precisely take arithmetic into account, since it can be done at
reasonable cost.



Remark 4. The scalar product D1 · uz characterizes whether or not P0 ↗ {D1}
intersects g1.

Sketch of Proof : Without loss of generality, we can assume that each time we apply
τ i

r or τ i
1, we have i > 0.

– In the first case, P0 ↗ {D1} does not intersect g1. It means that the guard g1 is
always satisfied :

x0 →τ
i1
1 →τ

i′1
r x0 + i1d1 + i′1Dr →τ

i2
1 →τ

i′2
r x0 + (i1 + i2)d1 + (i′1 + i′2)Dr → . . .

Then if the chain ends with some τr, x = x0 + Id1 + I ′Dr (in particular, z = 0).
If the chain ends with some τ1, we obtain x = x0 + Id1 + I ′Dr + I”D1, with no
bound for I, I ′, I”.

– In the second case, the number of iteration of τ1 following one (or more) ap-
plication(s) of τr is at most kmax. We write a similar chain, except that we
have the property ∀j, 0 ≤ ij ≤ kmax. If the chains ends with τ+

r , we obtain
x = x0 + (i1 + i2 + . . . + in)d1 + (i′1 + . . . + i′n)Dr. Let I = i1 + i2 + . . . + in.
Taking the Euclidean division of I by kmax, we get I = qkmax + r with r ≤ kmax

and q ≤ n. Then x = x0 +(q.kmax+ r1)d1 +(q + r2)Dr with r1, r2 ≥ 0, and finally
x = x0 + q(kmaxd1 + Dr) + r1d1 + r2Dr, which is the good form. x also satisfied
g1(x−D1) because all the plane {z = 0} satisfy g1, and −D1 moves away x from
the guard g1.
If the chains ends with τ∗1 , we add some in+1D1, but we must satisfy g1 before the
last but one application, hence g1(x−D1).

These arguments justify the left-to-the right inclusions. The proof of the two other

inclusions are very similar to the proof of Proposition 4. �

t := d := s := 0 ;
while true do
1: if second then

t := t+1 ; s:= 0 ;
else if meter and s<=3 then

d := d+1 ; s := s+1 ;
end

Example: we consider a very simple reac-
tive program [HPR97], supposed to model
a speedometer under the assumption that
the speed is less than 4 meters/second: the
speedometer perceives either an elapsed sec-
ond from some clock, in which case the time t
is incremented while the instantaneous speed
s (which counts the number of meters occur-
ring during each second) is reset to 0, or a
“meter” sensor, in which case both the distance d and the instantaneous speed
s are incremented; this “meter” event can only occur when s ≤ 3, because of the
assumption on the speed.

With the notations of Fig. 7, we have x = (t, d, s), y = (t, d), z = (s), uz =
(0, 0, 1), g1 = (s ≤ 3), D1 = (0, 1, 1), Dr = (1, 0, 0), and x0 = (0, 0, 0). We have
uz ·D1 = 1 ≥ 0 hence we compute kmax = 4 and d1 = (0, 1, 0), so kmaxd1 +Dr =
(1, 4, 0), and finally:

(τ1 + τr)⊗(x0) = (0, 0, 0) ↗ {(0, 1, 1), (1, 0, 0), (1, 4, 0)} ∩ {s ≤ 4}
= {t ≥ 0, 0 ≤ s ≤ 4, 0 ≤ d ≤ 4t + s)}

so we get at once the precise result, which is not easy to obtain with widening
(in [HPR97], we needed 3 iterations, and a “limited widening”).



Remark 5. If the guard is not of the form z ≤ K, the behaviour can be non linear.
In the following example, one border of the reachable domain is a parabola:

τ1 τr

z := 0
y := y + 1

x := x + 1
z := z + 1
y := y + 1

true →

(x, y, z) := (0, 0, 0)

x ≥ 2z →

Fig. 12. The CFG

Y

x0

Z

Dr

g1

Fig. 13. The corresponding behaviour

5.3 Weakening the assumptions

The previously considered case may appear quite specific. However, we can easily
suppress or alleviate some of our assumptions:

– If P0 is not included in {z = 0}, first compute P ′
0 = τr(τ⊗1 (P0)), which is

included in {z = 0} (since it results from an application of τr).
– We can extend Proposition 4 in order to take into account a guard of the

form z ./ Kr (./∈ {≤,=,≥}) for the second loop, using Proposition 5 below.
– Finally, Section 5.4 will give an example of using these results to combine a

reset loop with more than one translation loop.

Proposition 5. Let τ1, τr be respectively of the form:

τ1 : (z ≤ K1) → x := x + D1 and τr : (z ./ Kr) → y := y + Dr; z := 0

where ./ ∈ {≤,=,≥}. Assume P0 ⊂ {z = 0} and K1 > 0 and D1 · uz > 0. Let
us note kmax1 = bK1/D1z + 1c, d1 = D1 ↓ [z = 0], and kmaxr = bKr/D1z + 1c.
Then:

– if ./ is “≤” then
• if Kr < 0 then (τr never applies)

(τ1 + τr)⊗(P0) = P0 ↗ {D1} ∩ g1(x−D1)
• if Kr > K1 then

(τ1 + τr)⊗(P0) = P0 ↗ {D1, Dr, Dr + kmax1d1} ∩ g1(x−D1)
• if K1 ≥ Kr > 0 then

(τ1 + τr)⊗(P0) = P0 ↗ {D1, Dr, Dr + kmaxrd1} ∩ g1(x−D1)
– if ./ is “=” then

• if K1 ≥ Kr > 0 and ∃k,Kr = kD1z then

(τ1 + τr)⊗(P0) = P0 ↗ {D1, Dr + kd1} ∩ g1(x−D1)
• else (τr never applies)

(τ1 + τr)⊗(P0) = P0 ↗ {D1} ∩ g1(x−D1)



– if ./ is “≥” then
• if Kr > K1 and Kr >0 then (τr never applies)

(τ1 + τr)⊗(P0) = P0 ↗ {D1} ∩ g1(x−D1)

• if K1 ≥ Kr ≥ 0, then

(τ1 + τr)⊗(P0) = P0 ↗ {D1, Dr + kmax1d1, Dr + kmaxrd1} ∩ g1(x−D1)

• if Kr < 0 then

(τ1 + τr)⊗(P0) = P0 ↗ {D1, Dr, Dr + kmax1d1} ∩ g1(x−D1)

Remark 6. If D1 · uz < 0 under the same assumptions as in Proposition 5, g1 is
always true, and we easily get: (τ1 + τr)⊗(P0) = P0 ↗ {D1, d1, Dr}

Sketch of Proof : The demonstration is mostly like the preceding one, except that we

take the second guard into account. In particular, if the second guard is of the form

z = K2, then we must check whether or not the real set {x + iD1, i ∈ N} intersects g2.

�

Remark 7. Because g1 = x ≤ K1 and P0 ⊂ {z = 0}, the successive images of
any point x0 ∈ P0 are {x0 + kD1 | 0 ≤ k ≤ kmax} with kmax independent of x0.
Let us consider the ray Dr + kmaxd1 of Proposition 4. If we had an algorithm
to compute directly tτ∗1 (x0) (the polyhedron representing the convex hull of the
exact computation of all x0 + kD1, with 0 ≤ k ≤ kmax1), the Proposition 4
ensures that we can use the following algorithm to compute Dr + kmaxd1 (in
this case, the two algorithms are equivalent):
1. Select one point x0 ∈ P0.
2. Compute the segment S = [x0, x

M
0 ] = tτ∗1 (x0) (exact computation).

3. Compute Dr + kmaxd1 = τr(xM
0 )− x0.

Now, in Proposition 5, if we want to compute the rays Dr + kmax1d1 and Dr +
kmaxrd1 (when necessary), we must obtain (if they exist) the “real” points of
the set S ∩ gr (i.e., the points that are reachable with τ1 in i steps where i ∈ N).
Notice that we get an algorithm that does not care about the relative values
of K1 and Kr. Notice also that the extremal points of S ∩ gr can sometimes
be computed directly if all the D1zi

belong to {−1, 0, 1}, because the successive
images of x0 are points with integer coordinates. We will apply this remark in
the example below.

5.4 An example with more translation loops and resets

We saw in the previous paragraph that the key property of τ1 (the unique trans-
lation loop) is that the number of its iterations when z = 0 is bounded by a
constant kmax1. Let us now consider the case of two translation loops τ1 and τ2

combined with a reset loop τr : z ≤ Kr → y := y + Dr, z := 0.
If we had a similar bound property for (τ1 + τ2), we could have a similar

expression for (τ1 + τ2 + τr)⊗. It is the case if both of the two guards g1 and
g2 only constrain variables in z. This condition guarantees that all points in
{z = 0} have “parallel futures”.



Yet another gas burner example: We consider a modified version of the gas
burner example, where it is only assumed that, in each consecutive 60-second
interval, the cumulated leaking time is at most 10 seconds. A new variable v
must be introduced to count the cumulated leaking time since the last time u
has been reset to zero (see Fig 14). Now, we adapt the algorithm of the previous
section :

(u, t, `, v) := (0, 0, 0, 0)

τr

u ≤ 59 →
(u, t, `, v) := (u, t, `, v) + (1, 1, 0, 0)

u = 60 → u := 0, v := 0

τ1 τ2(u, t, `, v) := (u, t, `, v) + (1, 1, 1, 1)
u ≤ 59, v ≤ 9 →

Fig. 14. A more complex version of the gas burner

– Step 1 At the beginning, the polyhedron associated with the control point
is P (0) = {u = t = ` = v = 0}.We first compute (τ1 + τ2)⊗(P (0)),
applying the strategy given in Section 4 : τ⊗12(P

(0)) = (0, 0, 0, 0) ↗
{(1, 1, 1, 1); (1, 1, 0, 0)}∩{u ≤ 59; v ≤ 9} = {0 ≤ ` = v ≤ 10; ` ≤ u = t ≤ 59};
τ⊗1

(
τ⊗12(P

(0))
)

= {` ≤ t, u = t ≤ 60, 0 ≤ v = ` ≤ 10}; τ⊗2
(
τ⊗12(P

(0))
)

=
τ⊗1

(
τ⊗12(P

(0))
)
, so finally we get the exact set (τ1 + τ2)⊗(P (0)) = {` ≤ t, u =

t ≤ 60, 0 ≤ v = ` ≤ 10}.
– Then, we intersect this last set with gr = {u = 60}6, and we get the ex-

tremal points (60, 60, 10, 10) and (60, 60, 0, 0), thus r1 = τr(60, 60, 10, 10) −
(0, 0, 0, 0) = (0, 60, 10, 0) and r2 = (0, 60, 0, 0), Then, P (1) = (τ1 +
τ2)⊗(P (0)) ↗ {(0, 60, 10, 0), (0, 60, 0, 0)} ∩ {u ≤ 60; v ≤ 10} = {v ≤ `, u ≤
60, 0 ≤ v ≤ 10, v ≤ u, u + 6` ≤ t + 6v}.

– Step 2 We compute P (2) = (τ1+τ2)⊗(P (1) with the same method, replacing
P (0) by P (1). We quickly remark that (τ1 + τ2)⊗(P (2)) ⊆ P (2), τ⊗1 (P (2)) ⊆
P (2), τ⊗2 (P (2)) ⊆ P2, hence we get the invariant:7 {v ≤ `, u ≤ 60, 0 ≤ v ≤
10, v ≤ u, u + 6` ≤ t + 6v}, whose projection on {t, `} gives {0 ≤ ` ≤ t, 6` ≤
t + 50}.

6 Related work and conclusion

This work is a new attempt at decreasing the imprecision due to the widening in
Linear Relation Analysis. The initial widening operator of [CH78] was promptly
improved in [Hal79], which proposed the operator often called “standard widen-
ing”. More recently, [BHRZ03] proposed several ways of improving the standard
widening, in the sense that the result of a single application of the new operators

6 Here it is not necessary to bother about arithmetic, because our actions are just
incrementations, see Remark 7.

7 We are sure that we have the exact one because we have no loss of precision due to
arithmetic



is guaranteed to be smaller than the one computed with the standard widening.
Although these new operators seem to be really better in practice — in the sense
that, in many cases they provide more precise limits without significant loss of
performance —, there are counterexamples (like the speedometer of Section 5.2)
showing that it is not always the case. [GR06] is a nice attempt to improve the
precision by carefully alternating increasing widened sequences and descending
(possibly narrowed) sequences. The approach has more general applications than
Linear Relation Analysis, but could be combined with ours for LRA.

Instead of improving widening, we tried to complement it with some kind
of acceleration, whenever possible. The essential difference between accelera-
tion and widening is that widening is only based on the successive results of
the abstract semantics of the program (i.e., xn and f(xn) are used to compute
xn+1 = xn∇f(xn)), while acceleration looks at the function f itself to build
f∗. Among the techniques that take the abstract function into account, one can
mention the “widening with thresholds” [BCC+03] or “widening upto” [HPR97],
where the conditions involving a loop exit are used to limit the extrapolation.

Of course, we were strongly inspired by exact acceleration tech-
niques [BW94,WB98,CJ98,FS00,BFLP03]. However, we don’t want to pay the
price of exact computations, and we want to obtain general analysis techniques.
So, we use only an abstract acceleration, keeping the polyhedral approxima-
tion, and we still combine it with usual widening, to preserve the generality of
the method. In [SW04], a class of programs is identified for which the abstract
solution of the abstract semantics in the lattice of intervals can be computed
exactly, without widening. Our goals are similar, but in the richer and more
complex lattice of polyhedra. The closest approach to ours is probably the one
applied in PIPS [IJT91,Iri05]. First, in this work, the abstract function is nat-
urally taken into account, because PIPS applies a modular relational analysis
— i.e., it computes the relation between initial and final values of variables of
a program fragment. Then, a kind of abstract acceleration is applied, based on
discrete differentiation and integration. However, this technique is not combined
with widening, which is not used in PIPS.

When our abstract acceleration applies alone, it is guaranteed to provide
better results than widening — in fact, it provides the best possible results in
term of polyhedra. Used in combination with widening, it generally improves
the precision of the analysis — we don’t have any counterexample so far — be-
cause it precisely foresees some future behaviors. In spite of apparently strong
hypotheses, the abstract acceleration applies quite often in programs with coun-
ters, and our first experiments show significant improvements, both in precision
and in performance.

A very first implementation of our technique is available. The detection of
accelerable loops is not very elaborate, for the time being: the strongly connected
subcomponents (SCSC) of the control graph are identified using Bourdoncle’s
classical extension [Bou92] of Tarjan algorithm [Tar72]. Then the SCSC are
considered bottom-up (starting from the deepest ones): in each of them the
paths looping around the input node are checked w.r.t. our acceleration criteria,



and possibly replaced by meta-transitions [Boi99]. Of course, since the number
of such paths can be large, we are not obliged to consider all of them.

Future work include of course further experiments of the proposed techniques,
which are also likely to be extended towards more general cases. In particular,
loops which may exchange values between variables could be considered.
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