
HAL Id: hal-00263891
https://hal.science/hal-00263891

Submitted on 12 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computation of a class of continued fraction constants
Loïck Lhote

To cite this version:
Loïck Lhote. Computation of a class of continued fraction constants. Proceeding of Alenex, 2004,
pp.199-210. �hal-00263891�

https://hal.science/hal-00263891
https://hal.archives-ouvertes.fr


Computation of a Class of Continued Fraction Constants

Löıck Lhote∗

Abstract

We describe a class of algorithms which compute in

polynomial– time important constants related to the Eu-

clidean Dynamical System. Our algorithms are based on a

method which has been previously introduced by Daudé Fla-

jolet and Vallée in [10] and further used in [13, 32]. However,

the authors did not prove the correctness of the algorithm

and did not provide any complexity bound. Here, we de-

scribe a general framework where the DFV–method leads to

a proven polynomial–time algorithm that computes ”spec-

tral constants” relative to a class of Dynamical Systems.

These constants are closely related to eigenvalues of the

transfer operator. Since it acts on an infinite–dimensional

space, exact spectral computations are almost always im-

possible, and are replaced by (proven) numerical approx-

imations. The transfer operator can be viewed as an in-

finite matrix M = (Mi,j)1≤i,j<∞ which is the limit (in

some precise sense) of the sequence of truncated matrices

Mn := (Mi,j)1≤i,j<n of order n where exact computations

are possible. Using results of [1], we prove that each isolated

eigenvalue λ ofM is a limit of a sequence λn ∈ SpMn, with

exponential speed. Then, coming back to the Euclidean Dy-

namical System, we compute (in polynomial time) three im-

portant constants which play a central rôle in the Euclidean

algorithm: (i) the Gauss-Kuzmin-Wirsing constant related

to the speed of convergence of the continued fraction algo-

rithm to its limit density; (ii) the Hensley constant which

occurs in the leading term of the variance of the number of

steps of the Euclid algorithm; (iii) the Hausdorff dimension

of the Cantor sets relative to constrained continued fraction

expansions.

1 Introduction

When mathematical constants do not admit a closed
form, it is of great importance to compute them. The
book of Finch [12] provides many instances of this
situation. Here, we consider a class of constants which
are of great interest in the algorithmics of Dynamical
Systems. Since they do not seem to admit a closed
form, we are interested in their computability: does
there exist an efficient algorithm that computes the first
d-digits of the constants? More precisely, we wish to
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prove that they are polynomial–time computable. We
recall that a constant is said to be polynomial-time
computable if its first d digits can be obtained with
O(dr) arithmetic operations. Here, we are interested
in the computability of “spectral” constants which are
closely related to the spectrum of transfer operators
associated to these Dynamical Systems.

1.1 The principles of the algorithm. Consider, in
the complex plane, a disk D with center x0. Consider
an operator G that acts on the space

A∞(D) := {f : D → C; f analytic on D and
continuous on D}.

Then, for f ∈ A∞(D), the Taylor expansions at x0 of f
and G[f ] exist and the operator G can be viewed as an
infinite matrix M := (Mi,j) with 0 ≤ i, j < ∞ and

Mi,j = the coefficient of (z − x0)i in G[(Z − x0)j ](z).

The truncated matrix Mn := (Mi,j)0≤i,j≤n is the
matrix of order n + 1 which describes the action of
a “truncated” operator on the space Pn formed with
polynomials of degree at most n. More precisely, the
truncated matrix Mn represents the truncated operator
πn ◦ G|Pn where πn is the projection on Pn which
associates to a function f its Taylor expansion of order
n at x0 i.e.

(1.1) πn[f ](z) =
n∑

k=0

f (k)(x0)
k!

(z − x0)k.

Note that the operator πn ◦G and the matrix Mn have
the same spectrum.
In the case of the Euclidean Dynamical System, Daudé,
Flajolet and Vallée introduced in [10] a method for
computing (a finite part of ) the spectrum of transfer
operators, which they further used in [13, 32]. Their
method, the so–called DFV–method, has three main
steps which we describe in an informal way (See Figure
1).

(i) Compute the truncated matrix Mn relative to
the operator G.

(ii) Compute the spectrum SpMn of matrix Mn,

i.e., the set of its eigenvalues, SpMn := {λ(i)
n : 0 ≤ i ≤

n}.



(iii) Relate the set SpMn with a (finite) part of
SpG.
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Figure 1: The DFV-method for computing eugenvalue
approximates.

In the case when the transfer operator has a unique
dominant eigenvalue λ, isolated from the remainder of
the spectrum, one can expect that it is the same for Mn,
with a dominant eigenvalue λn. Moreover, the authors
of [10] observed that the sequence λn seems to converge
to λ (when the truncation degree n tends to ∞), with
exponential speed. They conjectured the following:
There exist n0,K, θ such that, for any n ≥ n0, one has
|λn − λ| ≤ Kθn.

1.2 Our results. In this paper, we prove that the
conjecture is true in a very general framework, as soon
as the transfer operator is relative to a Dynamical
System which is strongly contracting (SCDS setting).
We also prove that the constant θ is closely related
to the contraction ratio of the Dynamical System. It
is then exactly computable, and we prove in this way
that any eigenvalue λ is polynomial–time computable
as soon as the truncated matrix Mn is computable in
polynomial–time (in n) (Theorem 1).
However, if we wish to obtain proven digits for λ, we
have to exhibit explicit values of K and n0. This does
not seem possible in the general SCDS setting but we
prove that it is the case when (i) we approximate the
dominant eigenvalue and (ii) the transfer operator is
normal on a convenient functional space.
The Euclidean Dynamical System belongs to the SCDS
class. It has been deeply studied by Mayer. Adapting
his results to our more general setting, we exhibit a class
of transfer operators which are normal on convenient
Hardy spaces. We then prove that a class of contin-
ued fraction constants is polynomial–time computable
(Theorem 2), and we are able to exhibit, for each con-
stant of the class, an efficient algorithm which computes
d proven digits in time O(d4). We apply our method to
three constants: The Gauss-Kusmin-Wirsing constant
γG, the Hensley constant γH , and the Hausdorff dimen-

sion of reals associated to constrained continued fraction
expansions (Theorem 3).

1.3 The Euclidean Dynamical System and its
transfer operators. Every real number x ∈]0, 1]
admits a continued fraction expansion of the form

(1.2) x =
1

m1 +
1

m2 +
1

m3 +
1

. . . +
1

mp + . . .

,

where the mi form a sequence of positive integers.
Ordinary continued fraction (CF) expansions of real
numbers are the result of an iterative process which
constitutes the continuous counterpart of the standard
Euclidean division algorithm. They can be viewed as
trajectories of a specific Dynamical System relative to
the Gauss map T : [0, 1] → [0, 1] defined by

T (x) :=
1
x
− b 1

x
c, for x 6= 0, T (0) = 0 ,

(here, bxc is the integer part of x). The set G of the
inverse branches of T is

(1.3) G := {h : x 7→ 1
m + x

;m ≥ 1}.

The set of inverse branches of Tn is Gn and it is indexed
by the set Nn

∗
If f0 be an initial density on I, repeated applications
of the map T modify the density and the successive
densities f1, f2, . . . , fn, . . . describes the global evolution
of the system at time t = 0, 1, 2 . . . n, . . .. The operator
G such that f1 = G[f0] and more generally fn =
G[fn−1] = Gn[f0] for all n is called the density
transformer. It is defined as

G[f ](z) =
∑
h∈G

|h′(z)| f ◦ h(z)

=
∑
m≥1

1
(m + z)2

f

(
1

m + z

)
.(1.4)

It acts on A∞(D) (for a convenient disk A∞(D) , see
Section 3.1).
A perturbation of the density transformer, the transfer
operator Gs, defined as

Gs[f ](z) =
∑
h∈G

|h′(z)|s f ◦ h(z)

=
∑
m≥1

1
(m + z)2s

f

(
1

m + z

)
(1.5)



involves a new parameter s. It extends the density
transformer since G1 = G and plays a crucial rôle in
the analysis of rational trajectories. It acts on A∞(D)
as soon as <s > 1/2. Remark that its iterate Gn of
order n involves the set Gn of the inverse branches of
depth n,

(1.6) Gn
s [f ](z) =

∑
h∈Gn

|h′(z)|s f ◦ h(z).

The constrained transfer operator does not not involve
the whole set Gn of the inverse branches of some depth
n, but only a subset A ⊂ Gn for some n. It is defined
as

(1.7) Gs,A[f ](z) =
∑
h∈A

|h′(z)|s f ◦ h(z).

This is a powerful tool for studying the reals whose CF–
expansion only uses the set A?. It acts on A∞(DA)
(for a convenient disk DA, see Section 3.1) as soon as
<s > σA for some σA which depends on A (note that
σA = −∞ if A is finite).
In the following, if there exists n ≥ 1 for which
A = Gn, the index A will be omitted. Consider the
disk DA and the functional space A∞(DA); for real
s > σA, the operator Gs,A possesses a unique dominant
eigenvalue λA(s), positive, isolated from the remainder
of the spectrum by a spectral gap ρA(s). These two
quantities are essential for describing the action of Gs,A.
Since the transfer operator plays a fundamental rôle in
the analysis of the underlying Dynamical System, this
explains why the two quantities λA(s), ρA(s) intervene
in the description of our three algorithmic constants,
which we now describe.

1.4 Gauss–Kuz’min–Wirsing constant. Around
1800, Gauss [14] studied the evolution of the distribu-
tion of the iterates T k(x). In fact, he introduced an op-
erator closely related to the density transformer G and
he exhibited a density g(x) := (1/ log 2)(1 + x)−1 (now
known as Gauss’ density) which he proved to be invari-
ant under the action of T (i.e., G[g] = g). He conjec-
tured that it is a limit density; in other words, he asked
whether, for any initial density f , the sequence Gn[f ]
tends to g. One century later, Kuz’min [24] (1928)
and Lévy [26] (1929) proved this assertion. It was then
important to obtain the optimal speed of convergence
of Gn[f ] to g. Finally, Babenko [2] and Wirsing [36],
around 1975, completely solved the problem and showed
that the speed is exponential. The ratio equals the sub-
dominant eigenvalue ( which is unique and real) of the
density transformer G, and Wirsing proved that there
is a unique subdominant eigenvalue, real and negative.
This constant called Gauss-Kuz’min-Wirsing constant,

and denoted here bu γG, does not seem to be related to
other arithmetical constants [12]. It was computed in
[10] to about 30 decimal places by the DFV–method

γG ≈ −0.30396355092701333 . . .

Using similar methods, Sebah (unpublished) and Briggs
[4] (2003) improved the accuracy to respectively 100 and
385 digits. Since we show in this paper that the DFV–
method leads to a (proven) algorithm, we exhibit here
a polynomial–time algorithm to compute the Gauss-
Kuz’min-Wirsing constant.

1.5 Hensley’s constant. The Euclid Algorithm is
closely related to the Continued Fraction algorithm.
Indeed, if a0 = a1 m1 + a2 is a division performed by
the Euclid Algorithm, then the rationals x0 = a1/a0

and x1 = a2/a1 are related by T (x0) = x1, and the
execution of the Euclid algorithm on (a0, a1) is just
the trajectory T (a0/a1) of (a0/a1) under the action of
T . The complexity of the Euclid Algorithm (i.e., the
number P of divisions performed) was first studied in
the worst–case by Lamé [25] around 1850. A century
later (around 1970), Heilbronn [17] and Dixon [11]
determined the average number of steps. Finally, in
1994, Hensley [18], using the transfer operator Gs,
showed that the number of steps of the Euclid Algorithm
follows asymptotically a Gaussian law. Recently, Baladi
and Vallée [3], using deeper results on the transfer
operators, obtained an alternative proof of this result,
that is both more general and more concise. On the set
of pairs (u, v) with 0 ≤ u ≤ v ≤ N , the asymptotic
expressions for the mean and the variance involve the
first and second derivatives of the dominant eigenvalue
function λ(s) at s = 1:

EN [P ] ∼ −2
λ′(1)

log N,

VarN [P ] ∼ 2
λ
′′
(1)− λ

′
(1)2

λ′(1)3
log N.(1.8)

The first derivative λ′(1) equals the opposite of the en-
tropy of the Euclidean Dynamical System. Since the in-
variant density (the Gauss density) is explicit, the value
−λ′(1) admits a closed form, −λ′(1) = π2/(6 log 2). The
constant that appears in the dominant term of the vari-
ance is the so–called Hensley constant, denoted by γH .
It involves the second derivative λ′′(1) that does not
seem to be related to other arithmetical constants. The
Hensley constant was previously computed by the DFV–
method in [13],

γH ≈ 0.5160624 . . .

This paper provides a proven approximation for the
Hensley constant.



1.6 Hausdorff dimension and constrained CF–
expansions. Consider some integer n and a subset A
of Nn

∗ . Denote by RA the Cantor set of reals in I whose
continued fraction expansion is restricted to A,

RA := {x ∈ I ;x = [q1, q2, . . . , qk, . . .],∀k ≥ 0,

(qkn+1, qkn+2, qkn+n) ∈ A}.

As soon as A is different from Nn
∗ , the Cantor set RA has

zero Lebesgue measure, and the Hausdorff dimension
provides a precise description of it. In particular,
the probability that a rational with numerator and
denominator less than N belongs to RA is Θ(N2sA−2),
so that the expected time to obtain a rational A–
constrained with numerator and denominator less than
N is Θ(N2−2sA). When A is finite, the reals of RA
are interesting since they are all badly approximable by
rationals [31].
If, furthermore, the set A contains more than one
element, the Hausdorff dimension of RA, denoted by
sA, is a real number of ]0, 1[, and is proven to be the
unique real s ∈]0, 1[ for which the dominant eigenvalue
function λA(s) of the transfer operator Gs,A equals 1.
This is why the Hausdorff dimension belongs to the class
of spectral constants.
The Hausdorff dimension of the set RA relative to
A := {1, 2} has been intensively studied. In 1941,
Good [15] showed that 0.5194 ≤ s{1,2} ≤ 0.5433 and
in 1982, Bumby [5][6] improved these estimates and
obtains s{1,2} = 0.5313 ± 10−4. In 1996, Hensley [19]
provided a polynomial–time algorithm in the case of a
finite set A and obtained the following estimation

s{1,2} ≈ 0.5312805062772051416.

Finally, in 1999, Jenkinson and Pollicott [22] designed
a powerful algorithm which computes s{1,2} up to 25
digits. Note that it is not a polynomial–time algorithm.
The DFV–method has been applied (heuristically) to
the case of a general set A and seemed to be efficient
[32]. We propose a proven polynomial–time algorithm
based on the DFV–heuristics for any subset A1 ×A2 ×
. . . × An of Gn. In the particular case when A ⊂ G, it
gives rise to proven numerical values of sA, and it seems
to run faster than Hensley’s algorithm.

2 Polynomial time algorithms for Strictly
Contracting Dynamical Systems.

As explained in Section 1, we wish to prove the DFV–
method. The following definition is natural in this
context.

Definition 1. [Operator with good truncations.] Let
D be a disk of center x0, and consider an operator G

that acts on A∞(D). Consider the projection πn defined
in (1.1) and the truncated operator Gn := πn ◦ G.
The operator G has good truncations if the following
is true: there is θ < 1 such that, for any simple isolated
eigenvalue λ of the operator G, there exist a constant
K > 0, an integer n0, and a sequence λn ∈ SpGn, for
which, for any n ≥ n0, one has:

|λ− λn| ≤ Kθn.

The constant θ is called the truncature ratio.
If moreover the triple [θ, K, n0] is computable, then the
truncations are said to be computable.

We are interested in constants that arise in spectral
objects relative to complete Dynamical System. A
complete Dynamical System is a pair (I, T ) formed with
an interval I and a map T : I → I which is piecewise
surjective and of class C2. We denote by G the set of
the inverse branches of T ; then, Gk is the set of the
inverse branches of T k. It is known that contraction
properties of the inverse branches are essential to obtain
“good” properties on the Dynamical System. Usually,
what is needed is the existence of a disk D which is
strictly mapped inside itself by all the inverse branches
h ∈ G of the system [i.e., h(D) ⊂ D]. Here, we have to
strengthen this hypothesis. This motivates the following
definition.

Definition 2. [Strongly contracting dynamical sys-
tem.] A complete Dynamical System of the interval
I is said to be strongly contracting (SCDS in short)
when the set G of the inverse branches fulfills the supple-
mentary condition : For any subset A ⊂ G, there exist
x0 ∈ I and two open disks of same center x0, the large
disk DL, and the small disk DS , with DS ( DL and
I ⊂ DL, such that any h ∈ A is an element of A∞(DL)
which strictly maps DL inside DS [i.e., h(DL) ⊂ DS ].
Remark that (x0, RS , RL) depend on A. The largest
possible ratio RS/RL between the radii RS and RL of
the two disks is called the A–contraction ratio.

A strongly contracting system is said to be extra–
contracting (XSCDS in short) if, for any A ⊂ G, there
exist an integer k > 1 and another disk DXL (the extra–
large disk) cocentric with DS , with DL ⊂ DXL, such
that that any h ∈ Ak is an element of A∞(DXL) which
strictly maps DXL inside DS [i.e., h(DXL) ⊂ DS ].

We shall prove in the following that many Dynamical
Systems relative to Euclidean algorithms belong to the
SCDS–setting, and even in the XSCDS–setting.

Definition 3. [Transfer operator] Let (I, T ) be
of SCDS–type. Consider an integer n ≥ 1, a subset
A ⊂ Gn, a real σA ≥ 0, a sequence (αh)h∈A of functions



of A∞(DL) positive on DL∩R, such that, for any s with
<s > σA, the quantity

δ(s,A) :=
∑
h∈A

sup
x∈DL

|αh(x)|<(s) < ∞.

Then, the relation

Gs,A[f ] =
∑
h∈A

αs
h f ◦ h.

defines, for <s > σA, an operator Gs,A : A∞(DS) →
A∞(DL) whose norm ‖Gs,A‖DS ,DL

is at most δ(s,A).
Such an operator is called a transfer operator with
constraint A.
If moreover the system (I, T ) is of XSCDS–type, with
an integer k > 1, the operator Gk

s,A maps A∞(DS) into
A∞(DXL).

Our first result is as follows:

Theorem 1. [A transfer operator has good trunca-
tions.] In the SCDS–setting, a transfer operator Gs,A :
A∞(DS) → A∞(DL) satisfies the following:
(ii) It is compact, and its spectrum is formed with
isolated eigenvalues of finite multiplicity, except perhaps
at 0.
(ii) for any real s, with s > σA, the operator Gs,A has a
unique dominant eigenvalue λA(s) simple, positive and
isolated from the other eigenvalues by a spectral gap.
(iii) for any real s, with s > σA, the operator Gs,A
has good truncations. The truncature ratio θ satisfies
θ ≤ RS/RL where RS and RL are the radii of the
optimal pair of disks (DS , DL) relative to A.
(iv) In the XSCDS–setting, the truncature ratio satis-
fies θ ≤ RS/RXL where RS and RXL are the radii of
the optimal pair of disks (DS , DXL) relative to A,

Now, we prove Theorem 1 and provide explicit constants
for K, n0 and θ. The first two assertions are easily
adapted from the works of Mayer [30], and we then
focus on the the proof of the third assertion, which is
mainly based on two results. We first a well-known
result of functional analysis, which says: “When two
operators are close with respect to the norm, their
spectrums are close too”. The second result shows
that the strongly contraction property entails that the
truncated operators converge in norm to the transfer
operator.

2.1 Functional analysis. Denote by (B, ‖ ‖) a
complex Banach space and by G an operator which acts
on B. Denote by SpG the spectrum of G. Consider
a fixed eigenvalue λ and a circle C = C(λ, r) (with
center λ and radius r > 0) that isolates λ from the
remainder of the spectrum. This means that r satisfies

r < d(λ, SpG\{λ}). The constants αC(G) and βC(G),
defined by

(2.1) αC(G) := sup
z∈C

‖ (G− zI)−1 ‖ ,

(2.2)

βC(G) := max
{

1
2αC(G)

,
1

2rα2
C(G)

,
1

8r2α3
C(G)

}
,

play a central rôle in the paper. They first intervene in
the following result, which is fundamental here.
Lemma 1. Let G and G̃ be two operators on the
Banach space (B, ‖ ‖). Suppose that λ is a simple and
isolated eigenvalue of G, with an eigenfunction φ, and
consider an isolating circle C = C(λ, r). Then, if G and

G̃ satisfy ‖G− G̃‖ ≤ βC(G), then the operator G̃ has

a unique simple isolated eigenvalue λ̃ in C that satisfies

|λ̃− λ| ≤ 2r · αC(G) · ‖G̃[φ]−G[φ]‖
‖φ‖

≤ 2r · αC(G) · ‖G̃−G‖.(2.3)

The condition ‖G − G̃‖ ≤ βC(G) implies, via the
definition of βC(G), three conditions, with a precise goal
for each of them. The first condition ensures that the
circle C is also included in the resolvant set of G̃. The
second condition implies that λ̃ is the unique eigenvalue
of G̃ in C. Finally, with the last condition, it is possible
to relate the two spectral spaces related to λ and λ̃.
This proposition will be also useful for computing the
Hensley constant (in Section 4.2).

2.2 Convergence of truncated operators in the
SCDS–setting. Consider any operator G : A∞(DS) →
A∞(DL). We recall that the non-zero eigenvalues of
the operator πn ◦G and the matrix Mn are the same.
Then, according to the previous Lemma, it is sufficient
to obtain the convergence of πn ◦ G to G (in norm).
This is the aim of the following lemma, which requires
the strong contracting property. A proof restricted to
the framework of Continued Fractions can also be found
in [20] with slightly different functional spaces.
Lemma 2. Consider an operator G : A∞(DS) →
A∞(DL) with norm ‖G‖DS ,DL

. Then, one has:

‖πn ◦G−G‖DS
≤ ‖G‖DS ,DL

RL

RL −RS

(
RS

RL

)n+1

.

Suppose furthermore that there exists some disk DXL,
with DL ⊂ DXL, and some k–th iterate of G which
maps A∞(DS) into A∞(DXL). Then, for any eigen-
function φ of G,

‖πn[φ]− [φ]‖DS

‖φ‖DS

≤ ‖φ‖DXL

‖φ‖DS

· RXL

RXL −RS

(
RS

RXL

)n+1

.



Proof. For f ∈ A∞(DS), the i–th coefficient ai of
Taylor expansion of g := G[f ] at x0 satisfies, with the
Cauchy formula, the inequality aiR

i
L ≤ ‖g‖DL

, and the
Strongly Contracting Property entails

‖πn[g]− g‖DS
≤ ‖g‖DL

∑
i>n

(
RS

RL

)i

=
RL

RL −RS

(
RS

RL

)n+1

.(2.4)

Then, the definition of ‖G‖DS ,DL
provides the first

result. For the second, note that any eigenfunction
φ belongs to A∞(DXL), and apply relation (2.4) with
RXL instead of RL.

2.3 The pair [θ, K, n0]. We now return to the
transfer operator Gs,A and we consider a simple isolated
eigenvalue λ of Gs,A together with an isolating circle
C = C(λ, r). We recall that ‖Gs,A‖DS ,DL

is at most
δ(s,A). Consider first the SCDS–setting. Denote by
n0 the smallest integer n for which

(2.5) δ(s,A)
RL

RL −RS

(
RS

RL

)n+1

≤ βC(Gs,A).

According to the two previous lemmas, for all n ≥ n0,
the truncated operator πn ◦Gs,A (and then the matrix
Ms,A,n) admits a unique eigenvalue λn in the interior
of C that satisfies |λn − λ| ≤ Kθn where K and θ are
given by

K = 2r · αC(Gs,A) · δ(s,A) · RS

(RL −RS)
and

(2.6) θ =
RS

RL
.

In the case of the XSCDS–setting, the integer n0 is the
same as previously; however, the constants K and θ can
be chosen as

K = 2r · αC(Gs,A) · ‖φ‖DXL

‖φ‖DS

· RS

(RXL −RS)
and

(2.7) θ =
RS

RXL
.

This ends the proof of Theorem 1. �

2.4 Instances of the SCDS setting and applica-
tions of Theorem 1. The work [34] introduces a class
of Euclidean algorithms that is called the Fast Class.
We mainly consider here three algorithms of this class :
the standard algorithm S (already described in Section

1.3), the centered algorithm C and the odd algorithm
O. All these algorithms give rise to a Dynamical Sys-
tem (I, T ), where T is always of the form

T (x) :=
∣∣∣∣ 1x − V

(
1
x

)∣∣∣∣ ,
with VS(u) is the integer part to u, VC(u) is the nearest
integer to u, and VO(u) is the odd integer nearest to
u. The intervals IS and IO are equal to [0, 1], while
the interval IC equals [0, 1/2]. The set of the inverse
branches is GS = G already described in (1.3), and, in
the two other cases,

GC := {x 7→ 1
m + εx

; ε = ±1, (m, ε) ≥ (2,+1)},

GO := {x 7→ 1
m + εx

; ε = ±1,m odd, (m, ε) ≥ (1,+1)},

(here, the order ≥ is relative to the lexicographic order.)
In each of the three cases, it is proved in [34] that there
exists a disk D, with I ⊂ D, which is strictly mapped
inside itself by all the inverse branches h ∈ G of the
system [i.e., h(D) ⊂ D]. In fact, in each case, these
systems are of SCDS type and the pair (x0, RS , RL)
can be chosen as follows:

S : (1, 1, 3/2), C : (1/4, 5/12, 3/4), O : (1, 1, 3/2),

so that θS = θO = 2/3 and θC = 5/9.

For each of the three algorithms, Theorem 1 proves
that the “spectral constants” are polynomial-time com-
putable. Then, all the eigenvalues λ(s) can be computed
in polynomial–time. The case s = 1 is trivial since
λ(1) = 1, but, the case s = 2 is of great interest, since
λ(2) plays an important role in lattice reduction algo-
rithms [10] and comparison algorithms using the con-
tinued fraction expansion [35]. Finding an estimate for
λ(2) actually motivated the DFV method. The entropy
−λ′(1) is explicit for the three algorithms, but the as-
sociated Hensley’s constant is proven to be polynomial–
time computable (with Theorem 1 and methods of 4.2).
All the previously described constants are related to the
spectrum of the classical transfer operator, i.e.,

Gs[f ] :=
∑
h∈G

|h′|s · f ◦ h.

Moreover, the actual analysis of Euclidean Algorithms
deals with various “costs”. The cost of an execution
is the sum of the cost c relative to each step of the
algorithm and involves a cost c which depends only on
the digit produced at each step. Then the analysis of
this cost introduces a more general transfer operator,

Gs,w[f ] =
∑
h∈G̃

exp[w c(h)] |h′|s f ◦ h.



More precisely, (see [3]), if the cost c is of “moderate
growth”, the variance of the total cost of an execution
can be expressed with the derivatives (of order 1 or 2) of
the dominant eigenvalue λs,w of Gs,w. If the cost is of
“large growth”, then the Hausdorff dimension relative
to this cost also involves the dominant eigenvalue λs,w

([7]). And the DFV–method can be proven to apply,
with exponential rate of convergence.
The list of these possible applications of Theorem 1
is not exhaustive. We now focus on the standard
Euclidean dynamical system, where it is possible to
provide estimates for the pair [K, n0].

3 Proven Computation of the constants in the
Euclidean case

We come back now to the Euclidean Dynamical System
and its (usual) transfer operators Gs,A relative to αh =
|h′|. The formulae (2.5) (2.6) which define θ, n0 and K
involve two kinds of constants. The constants RS , RL

(and RXL), are closely related to the definition of the
operators and are often easy to compute. This entails
that the rate θ is in general easy to compute.
Then, we have to find an isolating circle C(λ, r), which
needs an estimate of λ and a lower bound for the
spectral gap around λ. We prove in Lemmas 3 and
4 that it is possible, at least when λ = λA(s) is the
dominant eigenvalue,
If we use the XSCDS–setting, we wish to obtain an
estimate of the eigenfunction φ relative to λ.

On the other hand, even when C = C(λ, r) is well-
defined, a lower bound for the constant βC(G), given
in (2.2) is not easy to compute. It involves, via the
definition of αC(G) in (2.1) an upper bound for the
norm of an inverse operator. Such an upper bound is in
general hard to compute. However, when G is normal,
an explicit an expression for αC(G) are known,

(3.1) αC(G) =
1

d(C,SpG)

(we recall that G is normal when it commutes with
its dual G?) But the normality is a rare phenomenon,
which is difficult to prove. Here, it is not true that
the transfer operator Gs,A is normal on spaces A∞(D);
however, there exists another functional space (a Hardy
space, denoted by Hs,A, which depends on (s,A) where
Gs,A is normal (note that this normality phenomenon
does not seem to hold for the two other Dynamical
Systems C,O). Even if the two spaces, the Hardy space
and the space A∞(D) are different, the associated norms
can be compared, and this provides an upper bound for
αC(Gs,A), and a lower bound for βC(G). Finally, the
results of this Section lead to the second main result of
the paper.

Theorem 2. The (standard) Euclidean Dynamical
System is a system of XSCDS–type. For anyA ⊂ G, the
triple [K, n0, θ] used for approximating the dominant
eigenvalue λA(s) can be estimated, and there exists an
effective algorithm that computes λA(s) in polynomial–
time.

The remainder of the Section is devoted to proving
Theorem 2.

3.1 Disks DS, DL, DXL and truncature ratio.
We recall that we deal with the Euclidean system, where
the set of inverse branches G is defined in (1.3). Here,
we consider a subset A of G and A denotes the set of
indices of A. We denote by mA the minimum of A.
Then the disks DS , DL can be chosen as

x0 :=
1

mA
, RS =

1
mA

, RL =
1

mA
+

mA

2
,

RS

RL
=

2
2 + m2

A
.

Furthermore, the operator G2
s,A maps A∞(DS) into the

set of functions which are analytic in the half plane
{<(z) > −mA}. We then can choose for the disk DXL

any disk of center x0 and radius

RXL =
1

mA
+ mA − ε, (with ε > 0), so that

RS

RXL
=

1
1 + m2

A − εmA
.

3.2 Estimate for the dominant eigenvalue λA(s)
of Gs,A. We use the following classical result previously
used in [10]:
Let G be an operator which acts on the space of
analytic functions on an interval [a, b]. Furthermore,
the operator G is positive (i.e., G[f ] > 0 if f > 0) and
has a unique dominant eigenvalue λ isolated from the
remainder of the spectrum by a spectral gap. Suppose
that there exist two strictly positive constants c1 and c2

and a function f which is strictly positive and analytic
on [a, b] and satisfies c1 f(x) ≤ Gs,A[f ](x) ≤ c2f(x), for
any x ∈ [a, b]. Then, the dominant eigenvalue λ satisfies
c1 ≤ λ ≤ c2.

Denote by mA the minimum of A and by MA its supre-
mum (possibly infinite if A is infinite). By convention,
if MA = ∞, we put hMA = 0. Each LFT hMA ◦ hmA or
hmA ◦ hMA is called an extremal LFT; it has a unique
positive fixed point, denoted by aA or bA. Then the
disk DA with diameter [aA, bA] is the smallest disk
which is mapped into itself by all the elements of A.
The application of the previous result with the opera-
tor Gs,A and the functions f = 1 for the upper bound



and f = 1/(1 + βx)2s for the upper bound provides the
estimate for the dominant eigenvalue λA(s), as a func-
tion of the Hurwitz zeta function ζA restricted to A,

(3.2) ζA(s, x) :=
∑
m∈A

1
(m + x)s

Lemma 3. Fix the real β = (−mA +
√

m2
A + 4)/2.

The dominant eigenvalue λA(s) admits the following
estimates, which involve the Hurwitz zeta function
ζA(s) restricted to A [defined in (3.2)]

(3.3) ζA(2s, β) ≤ λA(s) ≤ ζA(2s, 0)

Since the the function x → (1 + βx)2sζA(2s, β + x) is
increasing, the previous estimates can be improved to

(1 + βaA)ζA(2s, β + aA) ≤ λA(s) ≤ ζA(2s, aA),

where aA is the fixed point described in the previously.

3.3 Estimate for the spectral gap. In this second
step, we determine a lower bound the for spectral gap
ρA(s) between the eigenvalue λA(s) and the remainder
of the spectrum. For this purpose, we use the trace
of transfer operators. Grothendieck introduced the
so–called nuclear operators (of order 0) and proves
that they possess a trace that can be viewed as a
generalisation of the usual (matrix) trace. Our transfer
operator is nuclear (of order 0) and its trace equals
the sum of all the eigenvalues. In particular, TrG2 is
just the sum of all the squares of the eigenvalues of
G. This entails a relation between TrG2, the dominant
eigenvalue λA(s) and one of its subdominant eigenvalue
µA(s),

µ2
A(s) ≤ Tr G2

s,A − λ2
A(s)(3.4)

ρA(s) ≥ λA(s)−
(
Tr G2

s,A − λ2
A(s)

)1/2
.

The operator G2
s,A is the sum of operators of the form

L[f ] = |h′|s · f ◦ h for h ∈ A2. When h is indexed by
the pair (i, j), the spectrum of L is exactly a geometric
progression of the form {τ−2s−2n

i,j : n ≥ 0} with

τi,j =
1
2
(ij + (i2j2 + 4ij)1/2 + 2).

Finally, thanks to the additivity of the trace, the trace
of G2

s,A satisfies

(3.5) Tr G2
s,A =

∑
i,j∈A

τ−2s
i,j

1− τ−2
i,j

But we can show by simple calculations that,

Tr G2
s,A − ζA(2s, β)2 < ζA(2s, β)2,

with β as in the lemma 3. Now, using the relations (3.4,
3.5) yields the following result:

Lemma 4. The spectral gap satisfies

ρA(s) ≥ 2rA(s) with

2rA(s) := ζA(2s, β)−
(
Tr G2

s,A − ζA(2s, β)2
)1/2

,

and β = (1/2)(mA − (m2
A + 4)1/2).

Remark that the previous estimates can be improved
using the improved estimates of λA(s).
Wirsing [36] has shown that γG satisfies 0.3020 ≤ |γG| ≤
3043. Since the dominant eigenvalue of G1 is 1, using
the trace one gets |γG|− |µ| ≥ 0.18959 where µ is one of
the sub-subdominant eigenvalues of G1. This improves
the previous estimate for the spectral gap around γG

which was |γG| − |µ| ≥ 0.031.

3.4 Normality on Hardy spaces. As already said,
the constant αC(Gs,A) has a closed form (3.1) as soon
as Gs,A is normal. The transfer operator is not normal
on A∞(DS) but it is normal on another space called a
Hardy space [21] and denoted Hs,A. For ρ ∈ R, denote
by Pρ the half-plane Pρ = {z ∈ C; <(z) > ρ}. The
Hardy space Hs,A is formed with the functions f which
are analytic on P−mA/2 and bounded on all the half-
planes Pρ (with ρ > −mA/2) and admit the following
integral representation:

f(z) =
∫ +∞

0

ts−
1
2 e−tz φ(t) dνA(t),

with

dνA(t) =
∑
n∈A

e−nt dt and φ ∈ L2(νA).

With the associated norm

‖f‖2<s,A> =
∫ +∞

0

|φ(t)|2dνA(t),

the space Hs,A is a Banach space.

There exist close relations between Hs,A and A∞(DS).
For A = G, Babenko [2] and Mayer [28] proved that the
behaviour of Gs is comparable on Hs,A on A∞(DL).
Their methods cannot be easily generalized in the case
when A 6= G. Then, in this case, we provide here
a different method which makes a great use of the
generalized Laguerre polynomials.



Lemma 5. For any complex s with <(s) >
max(σA, 0),
(i) the transfer operator Gs,A : Hs,A → Hs,A is
isomorphic to an integral operator; it is normal and self-
adjoint for real values of s. Thus, for real values of s,
the spectrum of Gs,A is real.
(ii) the spectrum of Gs,A on Hs,A and the spectrum of
Gs,A on A∞(DS) are the same.
(iii) Let D be an intermediary disk of center x0 and
radius R with RS < R < RL and f a function of
A∞(D). For any subset A of G, the function Gs,A[f ]
belongs to Hs,A.
(iv) Define, for any R (with RS < R < RL), three
constants κ1, κ2, κ3 (which depend on x0, s,A, R),
(3.6)
κ1 = ζA(2s, x0−R), κ2 = Γ(2s) · ζA(2s, 2(x0−R)),

(3.7)

κ3 =
∑
j≥0

(
RS

R

)j
(

j!
Γ(2s + j)

(γjRS)2s

γ2s
j − 1

+
ζA(2s, 0)
Γ(2s)2

)1/2

with γj = ex0/(j+1).
Then, the following is true:

‖Gs,A[f ]‖D ≤ κ1 · ‖f‖DS
for f ∈ A∞(D)(3.8)

‖f‖D ≤ κ2 · ‖f‖<s,A> for f ∈ Hs,A,(3.9)
‖Gs,A[f ]‖<s,A> ≤ κ3 · ‖f‖D for f ∈ A∞(D).(3.10)

Before proving Lemma 5, we explain how it provides an
estimate for αC(Gs,A). Consider the isolating circle C
of center λA(s) and radius rA(s) described in Lemma4,
and consider a point z ∈ C. The two inclusions

Gs,A[A∞(DS)] ⊂ A∞(D) and
Gs,A[A∞(D)] ⊂ Hs,A,

together with the relation

z(Gs,A − zI)−1 = (Gs,A − zI)−1Gs,A − I

entail the following
(3.11)
|z| ‖(Gs,A − zI)−1‖DS

≤ κ1 · ‖(Gs,A − zI)−1‖D + 1,

(3.12)
|z| ‖(Gs,A−zI)−1‖D ≤ κ2 ·κ3 ·‖(Gs,A−zI)−1‖<s,A>+1.

Now, Gs,A is normal on Hs,A, so that

‖(Gs,A − zI)−1‖<s,A> =
1

d(z, SpGs,A)

. Finally, with the formulae (3.11) and (3.12), the
inequality

‖(Gs,A − zI)−1‖∞,DS
≤ 1
|z|2

(
κ1 · κ2 · κ3

rA
+ 1
)

+
1
|z|

,

holds. Now, the estimate of λA(s) (given in Lemma 3)
yields that any z ∈ C satisfies

|z| ≥ ζA(2s, b)− rA(s) > 0

and an upper bound of αC(Gs,A) follows. Finally, we
obtain:

Lemma 6. Denote by rA(s) the lower bound of Lemma
4. For any intermediary radius R, with RS < R < RL

and s > max(0, σA), there exist constants κi defined in
Lemma 5 (which depend on x0, R, s,A), for which
(3.13)

αC(Gs,A) ≤ κ1 · κ2 · κ3 + rA(s)[1− rA(s) + ζA(2s, bA)]
rA(s)[ζA(2s, bA)− rA(s)]2

,

Proof of Lemma 5. For (i) and (ii), we refer to
the work of Jenkinson, Gonzalez and Urbański [21],
and we mainly deal with (iii) and (iv). The strong
contraction condition implies the inequality (3.8). The
inequality (3.9) is a direct application of the Cauchy-
Schwartz inequality with the identity

Γ(s)ζA(s, z) =
∫ ∞

0

ts−1 e−zt dνA(t).

The proof of inequality (3.10) is more involved and we
only explain here its main steps. First Hensley [20] has
shown that, for all j ≥ 0, the function Gs,A[(X − x0)j ]
is an element of Hs,A whose integral representation
is closely related to generalised Laguerre polynomials
L

(2s−1)
j . The Laguerre polynomials (L(p)

j ) form an
orthogonal basis for the weight tpe−t on ]0,∞[ and they
verify the formula

L
(p)
j (x) =

Γ(p + 1 + j)
j!

∑
k=0

j(−1)k

(
j

k

)
xk

Γ(p + 1 + k)
.

The function Gs,A[(X − x0)j ] then satisfy

Gs,A[(X − x0)j ](z) =∫ ∞

0

ts−1/2e−tz

[
(−x0)jj!
Γ(2s + j)

ts−1/2L2s−1
j

(
t

x0

)]
dνA(t)

We deduce that the norm is given by

‖Gs,A[(X − x0)j ]‖2<s,A> =[
(−x0)jj!
Γ(2s + j)

]2 ∫ ∞

0

t2s−1L2s−1
j (t)dνA(x0t).



But the Laguerre polynomials are positive and decreas-
ing on [0, 2s/(j + 1)]. Using these properties with some
relations of orthogonality and splitting the integrand∫∞
0

into
∫ 2s/(j+1)

0
+
∫∞
2s/(j+1)

, we prove the inequality

∀j ≥ 1, ‖Gs,A[(X − x0)j ]‖<s,A> ≤ Kj with

Kj+1

Kj
→ RS .

Now, the i–th coefficient ci of the Taylor expansion of
f ∈ A∞(D) at x0 satisfies Rj |cj | ≤ ‖f‖D and finally

‖Gs,A[f ]‖<s,A> ≤ κ3 · ‖f‖D with κ3 =
∑
j≥0

Kj

Rj

Note that the previous series converges exponentially
fast.

Finally, the constants K and n0 defined in (2.5) and(2.6)
involve the isolating circle C whose center λA(s) and
radius rA(s) together with αC(Gs,A). Since all these
quantities are computable, this proves Theorem 2.

4 Application of the DFV-Mehtod to three
constants

This section applies the previous results and provides
(in polynomial–time, via the DFV-Method) proven nu-
merical values for three continued fraction constants:
the Gauss-Kuz’min-Wirsing constant, the Hensley con-
stant and the Hausdorff dimension of the Cantor sets
RA with A ⊂ G.

In the second step of the DFV–method, we deal with
computations on the matrix Ms,A,n. First, we have to
build the matrix; second we have to find the roots of
det(Ms,A,n − zIn). Then we conclude:
For any subset A ⊂ G, building matrix Ms,A,n needs
O(n3) multiplications and additions on reals and 2n+1
computations of ζA(s) functions; Computing SpMs,A,n

needs at most O(n4) arithmetical operations (with a
bad method).

In this section, we shall prove the last result of the
paper:

Theorem 3. For the three following constants –
the Gauss-Kuz’min-Wirsing constants, the Henley con-
stants, the Hausdorff dimension relative to constraints
A ⊂ G– it is possible to provide d proven digits in
polynomial–time in d.

4.1 Algorithm for the Gauss-Kuz’min-Wirsing
constant. The Gauss-Kuz’min-Wirsing constant γG is
the unique subdominant eigenvalue of G1. It is real.

It is possible to estimate a circle C that isolates γG

together with the associated constant αC(G1). Thus,
the DFV-method provides proven numerical values for
γG. Only one computation of matrix is needed, and the
complexity of γG is of order four. Numerical results are
summarized up in Figure 4.1.

4.2 Algorithm for the Hensley constant.
The Hensley constant (see 1.8) involves the first two
derivatives of λ(s) at s = 1. Since the first derivative
λ′(1) has a closed form λ′(1) = −π2/(6 log 2), it remains
to compute the second derivative λ′′(1). Consider an
interval Ih of the form Ih := [1− h, 1 + h] and suppose
that an estimate λ̃ of λ satisfies

max
(
|λ(1 + h)− λ̃(1 + h)|, |λ(1− h)− λ̃(1− h)|

)
≤ h2ε

3
.

Then Taylor’s formulae entail the estimate∣∣∣∣∣λ′′
(1)− λ̃(1− h) + λ̃(1 + h)− 2

h2

∣∣∣∣∣ ≤ 2ε

3
+

h2

24
sup
Ih

|λ(4)|

It then suffices to know an upper bound for the fourth
derivative λ(4) on the interval Ih. The application
s → Gs is analytic and the derivative G′

s satisfies
‖G′

s‖DS
≤ 8 for s ≥ 0.9. Then, ‖Gs−G1‖DS

≤ 8|s−1|.
We apply Lemma 3: the circle C of center 1 and radius
r1 := (1−γG)/2 is an isolating circle for λ = 1. Then, if
s satisfies |s− 1| < r2 with r2 = βC(G)/8, the operator
Gs admits a unique simple isolated eigenvalue λ(s) in
C which satisfies |λ(s)−1| ≤ r with r := 16 r1 r2 αC(G)
as soon as |s − 1| ≤ r2. Since the application s → Gs

is analytic, the function s → λ(s) is analytic too. The
Cauchy formula, applied in the disk of center 1 and
radius r1 yields the upper bound

sup
[1−h,1+h]

|λ(4)| ≤ 4!
1 + r

(r1 − h)4
.

Then, γH is computable as soon as the two estimates
for λ(1 + h) and λ(1− h) are known (asymptotically to
within twice the required precision). This thus needs
two computations of the step 2 of the DFV–method.

Tabular 4.2 summarizes some numerical results.

4.3 Algorithm for the Hausdorff dimension.
The algorithm uses a classical dichotomy principle and
computes a sequence of intervals of length 2−k which
contain the Hausdorff dimension sA. Consider the
interval [uk−1, vk−1] obtained after (k − 1) steps (it is
of length 2−(k−1)and contains sA. Denote by wk the



digits time proven value
10 11s -0.3036630028
20 1m46 -0.30366300289873265859
30 9m54 -0.303663002898732658597448121901
40 34m710 -0.3036630028987326585974481219015562331108
50 1h41 -0.30366300289873265859744812190155623311087735225365

Figure 2: Gauss-Kuz’min-Wirsing constant

digits time proven value
5 2m30s 0.51606
10 7m30s 0.5160624089
15 41mn 0.516062408899991
20 2h33mn 0.51606240889999180681

Figure 3: Hensley constant

middle point of the interval [uk−1, vk−1] and compute
an estimate λ̃ of λA(wk) within 2−(k+1). Now, there
are three possible cases:

(i) If λ̃ − 1 − 2−(k+1) ≥ 0 then sA ≥ wk and
[uk, vk] := [wk, vk−1].

(ii) If λ̃ − 1 + 2−(k+1) ≤ 0 then sA ≤ wk and
[uk, vk] := [uk−1, wk]

(iii) Else, [uk, vk] := [wk − 2−(k+1), wk + 2−(k+1)]
This algorithm is just a classical binary splitting. The
proof that sA belongs to [uk, vk] is based on the strict
decrease of λ together with the inequality |λA(s) −
λA(s+h)| ≥ h. There are at most O(d) iterations, each
of them of cubic complexity (in d). Thus, the complexity
of the algorithm is asymptotically O(d5). Numerical
results are given in Figure 4.3 for the Cantor set R{1,2}.

5 Conclusion

We proved here that the DFV-method gives rise to an
algorithm that computes any isolated simple eigenvalue
of a transfer operator, in polynomial–time, provided
that two conditions are fulfilled: (i) the operator has
good truncations and (ii) the matrices Mn are easy to
compute.
However, if we are interested in actual proven numerical
values, we need evaluating the parameters that inter-
vene in the design of the algorithm. These parameters
are in general difficult to compute, but we solve this
difficulty for the transfer operators relative to the Stan-
dard Euclidean Algorithm.
The DFV-method can also be used to compute the
Hausdorff dimension of the Cantor sets RA with A of
the form A = A1 × A2 × . . . × An, Ai ∈ H. However,
the computation of the matrix is more involved since its

coefficients deal with more complicated zeta–functions.
Finally, the authors of [10] and Sebah used the DFV-
method with x0 = 1/2. This particular choice do
not enter our framework since no disk of center 1/2
is strictly mapped into itself. We can use any disk
DL of center 1/2 + δ with radius 1/2 + 2δ diameter
[−δ, 1 + 3δ] with δ > 0. This leads to truncature ratio
RS/RXL which tends to 1/3 − ε as δ tends to zero,
which is the convergence rate actually observed by the
authors. However, our method of Section 3.4 does not
seem to apply there, and we do not know how to obtain
an estimate for the pair [K, n0] in this setting.
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[10] H. Daudé, P. Flajolet, B. Vallée. An Average-
Case Analysis of the Gaussian Algorithm for Lattice
Reduction, Combinatorics, Probability and Computing
(1997) 6, pp 1-34

[11] J. G. Dixon. The number of steps in the Euclidean
algorithm, J. Number Theory, 2 (1970), 414-422



digits time proven value of s{1,2}
5 2m 0.53128
10 8m 0.5312805062
15 25m 0.531280506277205
20 1h 0.53128050627720514162
30 4h26 0.531280506277205141624468647368
40 14h11 0.5312805062772051416244686473684717854930
45 23h10 0.531280506277205141624468647368471785493059109

Figure 4: Hausdorff dimension of R{1,2}

[12] S. Finch. Mathematical Constants. Cambridge Uni-
versity Press (2003)

[13] Ph. Flajolet and B. Vallée. Continued Fractions,
Comparison Algorithms, and Fine Structure Con-
stants, in Constructive, Experimental et Non-Linear
Analysis, Michel Thera, Editor, Proceedings of Cana-
dian Mathematical Society, Vol 27 (2000), pages 53-82

[14] C. F. Gauss. Recherches Arithmétiques, 1807, printed
by Blanchard, Paris, 1953

[15] I. J. Good. The fractional dimension of continued
fractions, Proc. Camb. Phil. Soc. 37 (1941), 199-228.

[16] A. Grothendieck. Produits tensoriels topologiques et
espaces nuclaires, Mem. Am. Math. Soc. 16 (1955)

[17] H. Heilbronn. On the average length of a class of
continued fractions, Number Theory and Analysis,
P. Turan, ed., Plenum, New York, 1969, pp. 87-96

[18] D. Hensley. The number of steps in the Euclidean
algorithm, J. Number Theory, 49(2) 142-182

[19] D. Hensley. A polynomial time algorithm for the
Hausdorff dimension of a continued fraction Cantor set,
J. Number Theory, 58(1)(1996), 9-45

[20] D. Hensley. Continued Fractions, World Scientific,
book to appear

[21] O. Jenkinson, L.F. Gonzalez, M. Urbański. On
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