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An explicit rough path construction for continuous
paths with arbitrary Hölder exponent

Jérémie Unterberger

We construct in this article an explicit geometric rough path over arbitrary
d-dimensional paths with finite 1/α-variation for any α ∈ (0, 1). The method
is a rather straightforward extension of that used in a previous article [20] for
multi-dimensional fractional Brownian motion. It may be coined as ’Fourier
normal ordering’ since it consists in a regularization obtained after permut-
ing the order of integration in iterated integrals so that innermost integrals
have highest Fourier frequencies. In doing so, there appear non-trivial tree
combinatorics, which are best understood by using the Hopf algebra struc-
ture of decorated rooted trees. The new feature here (compared to [20]) is
the use of Besov norms to prove Hölder continuity.
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0 Introduction

Assume Γt = (Γt(1), . . . ,Γt(d)) is a smooth d-dimensional path, and V1, . . . , Vd :
R

d → R
d be smooth vector fields. Then (by the classical Cauchy-Lipschitz

theorem for instance) the differential equation driven by Γ

dy(t) =
d

∑

i=1

Vi(y(t))dΓi(t) (0.1)

admits a unique solution with initial condition y(0) = y0. The usual way to
prove this is by showing (by a functional fixed-point theorem) that iterated
integrals

yn → yn+1(t) := y0 +

∫ t

0

∑

i

Vi(yn(s))dΓi(s) (0.2)

converge when n → ∞.
Assume now that Γ is only α-Hölder continuous for some α ∈ (0, 1).

Then the Cauchy-Lipschitz theorem does not hold any more because one
first needs to give a meaning to the above integrals, and in particular to the
cornerstone iterated integrals

Γn(i1, . . . , in) :=

∫ t

s
dΓt1(i1)

∫ t1

s
dΓt2(i2) . . .

∫ tn−1

s
dΓtn(in). (0.3)

Let N = b1/αc, b1/αc=entire part of 1/α. Assume that Γ may be lifted
to a rough path Γ, namely, that there exist a functional (Γ1, . . . ,ΓN ) lying
above Γ, where Γ1

ts = (δΓ)ts := Γt − Γs are the two-point increments of
Γ, and each Γk = (Γk(i1, . . . , ik))1≤i1,...,ik≤d, k ≥ 2 is a substitute for the

iterated integrals
∫ t
s dΓt1(i1)

∫ t1
s dΓt2(i2) . . .

∫ tk−1

s dΓtk(ik) with the following
two properties:

(i) (Hölder continuity) each component of Γk, k = 1, . . . , N is kα-Hölder

continuous, that is to say, sups∈R

(

supt∈R

|Γk
ts(i1,...,ik)|
|t−s|kα

)

< ∞.

(ii) (multiplicativity) letting δΓk
tus := Γk

ts − Γk
tu − Γk

us, one requires

δΓk
tus(i1, . . . , ik) =

∑

k1+k2=k

Γk1
tu(i1, . . . , ik1)Γ

k2
us(ik1+1, . . . , ik). (0.4)

If furthermore the following property holds
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(iii) (geometricity)

Γn1
ts (i1, . . . , in1)Γ

n2
ts (j1, . . . , jn2) =

∑

k∈Sh(i,j)

Γn1+n2(k1, . . . , kn1+n2)

(0.5)
where Sh(i, j) is the subset of permutations of i1, . . . , in1 , j1, . . . , jn2

which do not change the orderings of (i1, . . . , in1) and (j1, . . . , jn2),

then Γ is called a geometric rough path.
The multiplicativity property implies in particular the following identity

for the twice iterated integral Ats :=
∫ t
s dΓx1(1)

∫ x1

s dΓx2(2) (which is a way
to measure the area generated by the first two components of Γ) :

Ats = Atu + Aus + (Bt(1) − Bu(1))(Bu(2) − Bs(2)) (0.6)

while the geometric property implies

∫ t

s
dBt1(1)

∫ t1

s
dBt2(2) +

∫ t

s
dBt2(2)

∫ t2

s
dBt1(1)

=

(∫ t

s
dBt1(1)

) (∫ t

s
dBt2(2)

)

= (Bt(1) − Bs(1))(Bt(2) − Bs(2)).

(0.7)

If properties (i), (ii) holds, then rough path theory (in the algebraic
formalism due to M. Gubinelli [6] which we shall use here) implies that eq.
(0.1) admits a unique (local) solution in a certain class of Γ-controlled paths
Q [6, 7, 14] that we shall not define explicitly here. Furthermore, if the
vector fields (Vi) are bounded together with their derivatives up to order N ,
then the so-called Itô-Lyons map Γ → yΓ – where yΓ is the solution of eq.
(0.1) – is continuous in the α-Hölder norms [5].

The above problem is particularly relevant when Γ is a random path; it
allows for the pathwise construction of stochastic integrals or of solutions of
stochastic differential equations driven by Γ. Rough paths are then usually

constructed by choosing some appropriate smooth approximation Γη, η
>→ 0

of Γ and proving that the rough path

(

Γ1,η
ts = Γη

t − Γη
s , . . . ,Γ

N,η
ts (i1, . . . , iN ) =

∫ t

s
dΓη

t1
(i1)

∫ t1

s
dΓη

t2
(i2) . . .

∫ tN−1

s
dΓη

tN
(iN )

)

(0.8)
converges a.s. for appropriate Hölder norms to a rough path Γ lying above
Γ (see [4, 18] in the case of fractional Brownian motion with Hurst index
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α > 1/4, and [1, 8] for a class of random paths on fractals, or references in
[12]).

A general construction of a rough path for deterministic paths has been
given – in the original formulation due to T. Lyons – in an article by T.
Lyons and N. Victoir [12]. The idea (see also [5]) is to see a rough path
over Γ as a Hölder section of the trivial G-principal bundle over R, where
G is a free rank-N nilpotent group (or Carnot group), while the underlying
path Γ is a section of the corresponding quotient principal G/K-bundle for
some normal subgroup K of G; so one is reduced to the problem of finding
Hölder-continuous sections gtK → gt. Obviously, there is no canonical way
to do this in general. This abstract, group-theoretic construction (which
uses the axiom of choice) is unfortunately not particularly appropriate for
concrete problems, such as the behaviour of solutions of stochastic differen-
tial equations for instance.

In a previous paper [20], we constructed an explicit rough path over a
d-dimensional fractional Brownian motion Bα = (Bα(1), . . . , Bα(d)) with
arbitrary Hurst index α ∈ (0, 1) – recall simply that the paths of Bα are a.s.
κ-Hölder for every κ < α. While writing the paper, we realized that our
method should be sufficiently general to apply to arbitrary α-Hölder paths.
Indeed, the only difference between [20] and the present paper is in the proof
of the Hölder estimates, which (in the previous paper) relies heavily on a
tool belonging exclusively to the Gaussian realm, namely, the equivalence of
Lp-norms due to the hypercontractivity property of the Ornstein-Uhlenbeck
process.

Let us explain briefly our method. Since Γ is α-Hölder, the sequence
(

||2|k|αD(φk)Γ||L∞ ||
)

k∈Z
is bounded, where D(φk) (a sequence of smooth,

compactly supported Fourier multipliers such that
∑

k∈Z
D(φk) ≡ 1) es-

sentially ’selects’ the frequency domain [2k, 2k+1) (k ≥ 1), (−2|k|+1,−2|k|]
(k ≤ −1). The supremum supk∈Z ||2|k|αD(φk)Γ||L∞ defines the norm of a
Besov space Bα

∞,∞ which is known to be equivalent to the α-Hölder norm.
Consider now the (formal) ’projected’ iterated integral

P{k}Γn
ts(i1, . . . , in) :=

∫ t

s
d (D(φk1)Γ(i1))x1

. . .

∫ xn−1

s
d (D(φkn)Γ(in))xn

for some k = (k1, . . . , kn) ∈ Z
n.

4



Assume first |k1| ≤ . . . |kn| (i.e. innermost integrals have highest Fourier
frequencies). Let

∫ x
be the formal integral defined (using the Fourier trans-

form F) by
∫ x

f(y)dy =
1√
2π

∫ +∞

−∞
(Ff)(ξ)dξ

∫ x

eiyξ dy :=
1√
2π

∫ +∞

−∞
(Ff)(ξ)

eixξ

iξ
dξ.

(0.9)
This is well-defined for instance if supp(Ff)∩ [−1, 1] = ∅ (in order to avoid
the singularity at the origin). Then P{k}Γn

ts(i1, . . . , in) decomposes a the
sum of an increment term

[δP{k}Γn(i1, . . . , in)(δ)]ts = [P{k}Γn(i1, . . . , in)(δ)]t−[P{k}Γn(i1, . . . , in)(δ)]s,
(0.10)

and of a boundary term, P{k}Γn
ts(i1, . . . , in)(∂), where

[P{k}Γn
t (i1, . . . , in)(δ)]t

:=

∫ t

d (D(φk1)Γ(i1))x1

∫ x1

d (D(φk2)Γ(i2))x2
. . .

∫ xn−1

d (D(φkn)Γ(in))xn

(0.11)

and

P{k}Γn
ts(i1, . . . , in)(∂) =

−
∑

n1+n2=n

(∫ t

s
d (D(φk1)Γ(i1))x1

. . .

∫ xn1−1

s
d

(

D(φkn1
)Γ(in1)

)

xn1

)

.

.

(∫ s

d
(

D(φkn1+1)Γ(in1+1)
)

xn1+1

∫ xn1+1

d
(

D(φkn1+2)Γ(in1+2)
)

xn1+2

. . .

∫ xn−1

d (D(φkn)Γ(in))xn

)

,

(0.12)

Note that for n = 2, the above decomposition reads
∫ t
s df1(x1)

∫ x1

s df2(x2) =
∫ t
s df1(x1)

∫ x1 df2(x2)−
∫ t
s df1(x1)

∫ s
df2(x2), which is trivially true, provided

∫ x
is a well-defined anti-derivative.

Integrals of the form
∫ t

df1(x1)
∫ x1 df2(x2) . . .

∫ xj−1 dfj(xj) (called: skele-
ton integrals of order j) appear both in the increment and the boundary
term, and may diverge when j ≥ 2 unless suitably regularized. Note that
the increment term (a skeleton integral) may be simply discarded for n ≥ 2
without disturbing the multiplicative property (ii) since its δ-increment van-
ishes because of the fundamental (and trivial) identity δ ◦ δ(f)tus = 0. Dis-
carding similarly all skeleton integrals of order j ≥ 2 leads (once the above
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computations have been extended to a general multi-index k, see below) to a
well-defined rough path over Γ with the desired Hölder continuity properties.

However, as in the previous article [20], we shall use here a more sophis-
ticated minimal regularization scheme. Namely, computations show that
skeleton integrals are well-defined provided there exists a uniform constant
C ∈ (0, 1) such that

|ξj + . . . + ξn| > C|ξn|, j = 1, . . . , n (0.13)

if ξi ∈ supp(φki), i = j, . . . , n (essentially because the partial sums ξj + . . .+
ξn appear in the denominator of the Fourier-transformed skeleton integrals).
So the idea is to discard only the k-components of the skeleton integrals for
which the inequality (0.13) fails 1.

Assume now that Fourier frequencies are not increasingly ordered, so that
|kσ(1)| ≤ . . . ≤ |kσ(n)| for some non-trivial permutation σ. Then the same
regularization procedure should be applied after rewriting Γn

ts(i1, . . . , in)
(using Fubini’s theorem) as a multiple integral over some finite union of
n-simplices,

∫ t
s dΓ(iε(1))x1

∫ t1
s1

dΓ(iε(2))x2 . . .
∫ tn−1

sn−1
dΓ(iε(n))xn (note that the

two operations do not commute). Then the correct generalization of the
above splitting of the iterated integral into increment/boundary terms is
best understood in terms of the co-product structure of the Hopf algebra
of decorated rooted trees, and requires some combinatorial work. Since the
combinatorics are exactly the same as in [20], we only recall the definitions
and main results and refer to [20] for details.

Let us state our main result. Throughout the paper α ∈ (0, 1) is some
fixed constant and N = b1/αc.

Main theorem.
Assume 1/α 6∈ N. Let Γ = (Γ(1), . . . ,Γ(d)) : R → R

d be a compactly
supported α-Hölder path such that supp(FΓ(j)) ∩ [−1, 1] = ∅, j = 1, . . . , d.
Then the functional (RΓ1, . . . ,RΓN ) defined in Lemma 2.13 and Corollary
2.14 is an α-Hölder (weak) geometric rough path lying over Γ in the sense
of properties (i),(ii),(iii) of the Introduction.

Note that the compact support assumption is essentially void (we simply
define the rough path over an arbitrary large compact interval). The support
hypothesis for FΓ is no real problem since

Γ̃ := Γ −F−1(1R\[−1,1] .FΓ) = F−1(1[−1,1] . FΓ) (0.14)

1Note in particular that no regularization is needed if F(Γ(i)), i = 1, . . . , d are sup-
ported in R+, which is the case of analytic fractional Brownian motion (see [14]).
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is a smooth (C∞) path. Hence it is straightforward (though a little disturb-
ing for explicit formulas) to deduce a rough path over Γ from a rough path
over Γ− Γ̃. Actually it is not clear even to the author if it is really necessary
to cut off the lowest Fourier modes of Γ (it is clearly useless if the rough path
may be defined by a limiting procedure through an ultra-violet cut-off – i.e.
by discarding highest Fourier modes –, for instance for the so-called analytic
approximation fractional Brownian motion with Hurst index α > 1/4, see
[20], §7.3); somehow the singularities should cancel when one sums up all
terms.

The above theorem extends to paths Γ with finite 1/α-variation. Namely
(see [12], [10] or also [5]), a simple change of variable Γ → Γφ := Γ ◦ φ−1

turns Γ into an α-Hölder path, with φ defined for instance as φ(t) :=
supn≥1 sup0=t0≤...≤tn=t

∑n−1
j=0 ||Γ(tj+1) − Γ(tj)||1/α. The construction of the

above Theorem (applied to Γφ) yields a family of paths with Hölder regulari-
ties α, 2α, . . . , Nα which may alternatively be seen as a GN -valued α-Hölder
path Γφ, where GN is the Carnot (free nilpotent) group of order N equipped
with any subadditive homogeneous norm. Then (as proved in [12], Lemma
8) Γ := Γφ ◦ φ has finite 1/α-variation, which is equivalent to saying that
Γn has finite 1/nα-variation for n = 1, . . . , N , and lies above Γ.

Corollary.
Let α ∈ (0, 1) and α′ < α. Then every α-Hölder path Γ may be lifted to a

(strong) α′-Hölder geometric rough path, namely, there exists a sequence of
canonical lifts Γ(n) of smooth paths Γ(n) converging to RΓ for the sequence
of α′-Hölder norms.

The canonical lift of a smooth path is simply the data of its iterated
integrals. The set of strong α-Hölder geometric rough paths is strictly in-
cluded in the set of weak α-Hölder geometric rough paths; on the other hand,
a weak α-Hölder geometric rough path may be seen as a strong α′-Hölder
geometric rough path if α′ < α. This accounts for the loss of regularity in
the Corollary (see [5] for a precise discussion). The proviso 1/α 6∈ N in the
statement of the main theorem is a priori needed because RΓN may not be
treated in the same way as the lower-order iterated integrals (although we
do not know if it is actually necessary). However, if 1/α ∈ N, all one has
to do is replace α by a slightly smaller parameter α′, so that the Corollary
holds even in this case.

Note that the present paper gives unfortunately no explicit way of ap-
proximating RΓ by smooth paths, i.e. of seeing it concretely as a strong
geometric rough path. We do not know how to answer this natural question
at present time.
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Notations. We shall denote by F the Fourier transform, F : L2(Rl) →
L2(Rl), f → F(f)(ξ) = 1

(2π)l/2

∫

Rl f(x)e−i〈x,ξ〉 dx. Throughout the article,

Γ : R → R
d is some α-Hölder path verifying the hypotheses of the main

theorem, i.e. Γ is compactly supported, and supp(FΓ) ∩ [−1, 1] = ∅. Also,
if a, b : X → R+ are functions on some set X such that a(x) ≤ Cb(x) for
every x ∈ X, we shall write a . b.

1 Hölder and Besov spaces

Definition 1.1 (Hölder norm) If f : R
l → R is α-Hölder continuous for

some α ∈ (0, 1), we let

||f ||Cα := ||f ||∞ + sup
x,y∈Rl

|f(x) − f(y)|
||x − y||α . (1.1)

The space Cα = Cα(Rl) of real-valued α-Hölder continuous functions, pro-
vided with the above norm || ||Cα, is a Banach space.

Proposition 1.2 Let l ≥ 1. There exists a family of C∞ functions φ0, (φ1,j)j=1,...,4l−2l :

R
l → [0, 1], satisfying the following conditions:

1. suppφ0 ⊂ [−2, 2] and φ0

∣

∣

[−1,1]
≡ 1.

2. Cut [−2, 2]l into 4l equal hypercubes of volume 1, and remove the 2l

hypercubes included in [−1, 1]l. Let K1, . . . , K4l−2l be an arbitrary
enumeration of the remaining hypercubes, and K̃j ⊃ Kj be the hy-
percube with the same center as Kj, but with edges twice longer. Then
suppφ1,j ⊂ K̃j, j = 1, . . . , 4l − 2l.

3. Let (φk,j)k≥2,j=1,...,4l−2l be the family of dyadic dilatations of (φ1,j),
namely,

φk,j(ξ1, . . . , ξl) := φ1,j(2
1−kξ1, . . . , 2

1−kξl). (1.2)

Then (φ0, (φk,j)k≥1,j=1,...,4l−2l) is a partition of unity subordinated to

the covering [−2, 2]l ∪
(

∪k≥1 ∪4l−2l

j=1 2k−1K̃j

)

, namely,

φ0 +
∑

k≥1

4l−2l
∑

j=1

φk,j ≡ 1. (1.3)
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Constructed in this almost canonical way, the family of Fourier multi-
pliers (φ0, (φk,j)) is immediately seen to be uniformly bounded for the norm
|| . ||S0 defined in Proposition 1.7 below.

If l = 1, letting K1 = [1, 2] and K2 = [−2,−1], we shall write φ1, resp.
φ−1, instead of φ1,1, resp. φ1,2, and define φk(ξ) = φsgn(k)(2

1−|k|ξ), so that
∑

k∈Z
φk ≡ 1 and

suppφ0 ⊂ [−2, 2], suppφk ⊂ [2k−1, 5.2k−1], suppφ−k ⊂ [−5.2k−1,−2k−1] (k ≥ 1).
(1.4)

In this particular case, such a family is easily constructed from an arbitrary
even, smooth function φ0 : R → [0, 1] with the correct support by setting
φk(ξ) = 1R+(ξ).(φ0(2

−kξ) − φ0(2
1−kξ)) and φ−k(ξ) = 1R−(ξ).(φ0(2

−kξ) −
φ0(2

1−kξ)) for every k ≥ 1 (see [17], §1.3.3).
In order to avoid setting apart the one-dimensional case, we let I := Z if

l = 1, and I = {0} ∪ {(k, j) | k ≥ 1, 1 ≤ j ≤ 4l − 2l} if l ≥ 2. Also, if l ≥ 2,
we define |κ| = k ≥ 1 if κ = (k, j) with k ≥ 1.

Definition 1.3 Let `∞(L∞) be the space of sequences (fκ)κ∈I of a.s. bounded
functions fκ ∈ L∞(Rl) such that

||fκ||`∞(L∞) := sup
κ∈I

||fκ||∞ < ∞. (1.5)

Let S ′(Rl, R) be the dual of the Schwartz space of rapidly decreasing
functions on R

l. As well-known, it includes the space of infinitely differen-
tiable slowly growing functions.

Definition 1.4 Let Bα
∞,∞(Rl) := {f ∈ S ′(Rl, R) | ||f ||Bα

∞,∞
< ∞} where

||f ||Bα
∞,∞

:= ||2α|κ|D(φκ)f ||`∞(L∞)

= sup
κ∈I

2α|κ|||D(φκ)f ||∞. (1.6)

Proposition 1.5 (see [16], §2.2.9)
For every α ∈ (0, 1), Bα

∞,∞(Rl) = Cα(Rl), and the two norms || ||Cα and
|| ||Bα

∞,∞
are equivalent.

We shall sometimes call || ||Bα
∞,∞

the Hölder-Besov norm.

Definition 1.6 (Fourier multipliers) Let m : R
l → R be an infinitely

differentiable slowly growing function. Then

D(m) : S ′(Rl) → S ′(Rl), φ → F−1(m.(Fφ)) (1.7)

defines a continuous operator.

9



In other words, m is a Fourier multiplier of S ′(Rd). Let us particularize
to Fourier multipliers of the Besov space Bα

∞,∞:

Proposition 1.7 (Fourier multipliers) (see [16], §2.1.3, p.30)
Let α ∈ (0, 1) and m : R

l → R be an infinitely differentiable function
such that

||m||S0 := sup
|j|≤l+5

sup
ξ∈Rl

|(1 + ||ξ||)|j|m(j)(ξ)| < ∞ (1.8)

where j = (j1, . . . , jl), |j| = j1 + . . . + jl and m(j) := ∂j1
ξ1

. . . ∂jl
ξl

m. Then
there exists a constant C (depending only on α) such that, for every f ∈
Bα

∞,∞(Rl),
||D(m)f ||Bα

∞,∞
≤ C||m||S0 ||f ||Bα

∞,∞
. (1.9)

The space S0 contains the space of translation-invariant pseudo-differential
symbols of order 0 (see for instance [2], Definition 1.1, or [15]).

2 Combinatorial structures

2.1 From iterated integrals to trees

It was noted already long time ago [3] that iterated integrals could be en-
coded by trees. The correspondence between trees and itegrated integrals
goes simply as follows.

Definition 2.1 A decorated rooted tree (to be drawn growing up) is a finite
tree with a distinguished vertex called root and edges oriented downwards
(i.e. directed towards the root), such that every vertex wears an integer
label.

If T is a decorated rooted tree, we let V (T) be the set of its vertices
(including the root), and ` : V (T) → N be its vertex labeling.

More generally, a decorated rooted forest is a finite set of decorated rooted
trees. If T = {T1, . . . , Tl} is a forest, then we shall write T as the formal
commutative product T1 . . . Tl.

Definition 2.2 Let T be a decorated rooted tree.

• Letting v, w ∈ V (T), we say that v connects directly to w, and write
v → w or equivalently w = v−, if (v, w) is an edge oriented downwards
from v to w.
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• If v1 → v2 → . . . → vm, then we shall write v1 ³ vm, and say that v1

connects to vm. By definition, all vertices (except the root) connect to
the root. (Note that v− exists and is unique except if v is the root).

• Let (v0, . . . , v|V (T)|−1) be an ordering of V (T). Assume that (vi ³ vj) ⇒
(i > j) (in particular, v0 is the root). Then we shall say that the or-
dering is compatible with the tree partial ordering defined by ³.

Definition 2.3 Let Γ = (Γ(1), . . . ,Γ(d)) be a d-dimensional smooth path,
and T a decorated rooted tree such that ` : V (T) → {1, . . . , d}. Then IT(Γ) :
R

2 → R is the iterated integral defined as

[IT(Γ)]ts :=

∫ t

s
dΓx0(`(v0))

∫ x
v−1

s
dΓx1(`(v1)) . . .

∫ x
v−
|V (T)|−1

s
dΓxv|V (T)|−1

(`(v|V (T)|−1))

(2.1)
where (v0, . . . , v|V (T)|−1) is any ordering of V (T) compatible with the tree
partial ordering.

In particular, if T is a trunk tree with n vertices (see Fig. 1) – so that
the tree ordering is total – we shall write

IT(Γ) = I`
n(Γ), (2.2)

where

[I`
n(Γ)]ts :=

∫ t

s
dΓx0(`(0))

∫ x0

s
dΓx1(`(1)) . . .

∫ xn−2

s
dΓxn−1(`(n− 1)). (2.3)

0

1

n−1

Figure 1: Trunk tree.

The above definition extends by multilinearity to the following

Definition 2.4 1. Let T be a tree and f((xv)v∈T) =
∑

k=(kv)v∈V (T)

∏

v∈V (T) fv
kv

(xv)

be a (converging) sum of smooth functions over some set of multiple

11



indices. Then (disregarding the labels)

[IT(f)]ts =
∑

k

∫ t

s
fv0

kv0
(xv0)dxv0

∫ x
v−1

s
fv1

kv1
(xv1)dxv1 . . .

∫ x
v−
|V (T)|−1

s
f

v|V (T)|−1

kv|V (T)|−1
(xv|V (T)|−1

).

(2.4)
The definition extends straightforwardly to forests.

2. Let T = T1.T2 be a forest. Then

[IT(f)]ts = [IT1 ]ts . [IT2 ]ts(f), (2.5)

where by definition

[IT1 ]ts . [IT2 ]ts(f) =
∑

k

[

IT1

(

⊗v∈V (T1)f
v
kv

)]

ts

[

IT2

(

⊗v∈V (T2)f
v
kv

)]

ts
.

(2.6)

The above correspondence extends by (multi)linearity to the algebra of
decorated rooted trees that we now define.

Definition 2.5 (i) Let T be the free commutative algebra over Z gener-
ated by decorated rooted trees. If T1, T2, . . . Tl are (decorated rooted)
trees, then the product T1 . . . Tl is the forest with connected components
T1, . . . , Tl.

(ii) Let T
′ =

∑L
l=1 mlTl ∈ T , where ml ∈ Z and each Tl = Tl,1 . . . Tl,L(l)

is a forest with labels in the set {1, . . . , d}, and Γ be a smooth d-
dimensional path as above. Then

[IT′(Γ)]ts :=
L

∑

l=1

mlITl,1
(Γ) . . . ITl,L

(Γ). (2.7)

Consider now a permutation σ : {0, . . . , n−1} → {0, . . . , n−1}. Applying
Fubini’s theorem yields

I`
n(Γ) =

∫ t

s
dΓx0(`(0))

∫ x0

s
dΓx1(`(1)) . . .

∫ xn−2

s
dΓxn−1(`(n − 1))

=

∫ t0

s0

dΓxσ(0)
(`(σ(0)))

∫ t1

s1

dΓxσ(1)
(`(σ(1))) . . .

∫ tn−1

sn−1

dΓxσ(n−1)
(`(σ(n − 1))),

(2.8)
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with s0 = s, t0 = t and sj ∈ {s}∪{xσ(i), i < j}, tj ∈ {t}∪{xσ(i), i < j} (j ≥
1). Now decompose

∫ tj
sj

dΓxσ(j)
(`(σ(j))) into

(

∫ tj
s −

∫ sj

s

)

dΓxσ(j)
(`(σ(j))) if

sj 6= s, tj 6= t, and
∫ t
sj

dΓxσ(j)
(`(σ(j))) into

(

∫ t
s −

∫ sj

s

)

dΓxσ(j)
(`(σ(j))) if

sj 6= s. Then I`
n(Γ) has been rewritten as a sum of terms of the form

±
∫ τ0

s
dΓx0(`(σ(0)))

∫ τ1

s
dΓx1(`(σ(1))) . . .

∫ τn−1

s
dΓxn−1(`(σ(n−1))), (2.9)

where τ0 = t and τj ∈ {t} ∪ {xi, i < j}, j = 1, . . . , n− 1. Note the renaming
of variables and vertices from eq. (2.8) to eq. (2.9). Encoding each of
these expressions by the forest T with set of vertices V (T) = {0, . . . , n− 1},
label function ` ◦ σ, roots {j = 0, . . . , n − 1 | τj = t}, and oriented edges
{(j, j−) | j = 1, . . . , n − 1, τj 6= t, τj = xj−}, yields

I`
n(Γ) = ITσ(Γ) (2.10)

for some T
σ ∈ T called permutation graph associated to σ. One may

also write:
ITσ(Γ) = ITσ (⊗v∈TσΓ(`(σ(v)))) . (2.11)

Note that (letting T
σ = ±T

σ
1 ± . . .±T

σ
Jσ

) each forest T
σ
j (and also all its

tree components, of course) is by construction provided with a total ordering
compatible with its tree structure.

Example 2.6 Let σ =

(

0 1 2
1 2 0

)

. Then

∫ t

s
dΓx0(`(0))

∫ t1

s
dΓx1(`(1))

∫ t2

s
dΓx2(`(2)) =

−
∫ t

s
dΓx1(`(1))

∫ x1

s
dΓx2(`(2))

∫ x1

s
dΓx0(`(0))

+

∫ t

s
dΓx1(`(1))

∫ x1

s
dΓx2(`(2)) .

∫ t

s
dΓx0(`(0)). (2.12)

Hence T
σ = −T

σ
1 + T

σ
2 is the sum of a tree and of a forest with two compo-

nents (see Fig. 4).

Let us now rewrite these iterated integrals by using Fourier transform.

Definition 2.7 (formal integral) Let f : R → R be a smooth, compactly
supported function such that supp(Ff) ∩ [−1, 1] = ∅. Then the formal inte-

gral
∫ t

f = −
∫

t f of f is defined as 1√
2π

∫ +∞
−∞ (Ff)(ξ) eixξ

iξ dξ.
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Definition 2.8 (skeleton integrals) Let T be a tree with ` : T → {1, . . . , d}
and Γ be a d-dimensional smooth path such that supp(FΓ(j)) ∩ [−1, 1] = ∅
for every j = 1, . . . , d. Let (v0, . . . , v|V (T)|−1) be any ordering of V (T) com-
patible with the tree partial ordering. Then the skeleton integral of Γ along
T is by definition

[SkIT(Γ)]s = −
∫

s
dΓxv0

(`(v0))

∫ x
v−1 dΓx1(`(v1)) . . .

∫ x
v−
|V (T)|−1 dΓxv|V (T)|−1

(`(v|V (T)|−1)).

(2.13)

Lemma 2.9 The following formula holds:

[SkIT(Γ)]s = i−|V (T)|
∫

. . .

∫

∏

v∈V (T)

dξv . eis
P

v∈V (T) ξv

∏

v∈V (T) F(Γ′(`(v)))(ξv)
∏

v∈V (T)(ξv +
∑

w³v ξw)
.

(2.14)

Proof. We use induction on |V (T)|. After stripping the root of T

(denoted by 0) there remains a forest T
′ = T

′
1 . . . T′

J , whose roots are the
vertices directly connected to 0. Assume

[SkIT
′
j
(Γ)]x0 =

∫

. . .

∫

∏

v∈V (T′
j)

dξv . e
ix0

P

v∈V (T
′
j
) ξv

Fj((ξv)v∈T
′
j
). (2.15)

Note that

F





J
∏

j=1

SkIT
′
j
(Γ)



 (ξ) =

∫

P

v∈V (T)\{0} ξv=ξ

∏

v∈V (T)\{0}
dξv

J
∏

j=1

Fj((ξv)v∈V (T′
j)

).

(2.16)
Then

[SkIT(Γ)]s =

∫ s

dΓx0(`(0))
J

∏

j=1

[SkIT
′
j
(Γ)]x0

=

∫ +∞

−∞

dξ

iξ
eisξF



Γ′(`(0))
J

∏

j=1

SkIT
′
j
(Γ)



 (ξ)

=

∫ +∞

−∞
dξ0F(Γ′(`(0)))(ξ0)e

isξ0 .

∫ +∞

−∞

dξ

iξ
eis(ξ−ξ0)

∫

P

v∈V (T)\{0} ξv=ξ−ξ0

dξv

J
∏

j=1

Fj((ξv)v∈V (T′
j)

)

(2.17)
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hence the result. 2

Skeleton integrals are the fundamental objects from which regularized
rough paths will be constructed in the next sections.

2.2 Coproduct structure and increment-boundary decompo-

sition

Consider for an example the trunk tree T
Idn with vertices n− 1 → n− 2 →

. . . → 0 and labels ` : {0, . . . , n−1} → {1, . . . , d}, and the associated iterated
integral (assuming Γ = (Γ(1), . . . ,Γ(d)) is a smooth path)

[I`
n(Γ)]ts = [ITIdn (Γ)]ts =

∫ t

s
dΓx0(`(0)) . . .

∫ xn−2

s
dΓxn−1(`(n − 1)). (2.18)

Cutting T
Idn at some vertex v ∈ {1, . . . , n − 1} produces two trees,

LvT
Idn (left or rather bottom part of T

Idn) and RvT
Idn (right or top part),

with respective vertex subsets {0, . . . , v− 1} and {v, . . . , n− 1}. One should
actually see the couple (LvT

Idn , RvT
Idn) as LvT

Idn ⊗ RvT
Idn sitting in the

tensor product algebra T ⊗ T . Then multiplicative property (ii) in the
Introduction reads

[δITIdn (Γ)]tus =
∑

v∈V (TIdn )\{0}
[LvT

Idn(Γ)]tu[RvT
Idn(Γ)]us. (2.19)

On the other hand, rewrite [ITIdn (Γ)]ts (see eq. (0.11) and (0.12)) as the
sum of the increment term

[δITIdn (Γ)(δ)]ts =
∫ t

dΓx0(`(0))
∫ x0 dΓx1(`(1)) . . .

∫ xn−2 dΓxn−1(`(n − 1))

−
∫ s

dΓx0(`(0))
∫ x0 dΓx1(`(1)) . . .

∫ xn−2 dΓxn−1(`(n − 1))

(2.20)

and of the boundary term

[ITIdn (Γ(∂)]ts = −
∑

n1+n2=n

∫ t

s
dΓx0(`(0)) . . .

∫ xn1−1

s
dΓxn1

(`(n1)) .

.

∫ s

dΓxn1+1(`(n1 + 1))

∫ xn1+1

dΓxn1+2(`(n1 + 2)) . . .

∫ xn−2

dΓxn−1(`(n − 1)).

(2.21)
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The above decomposition is fairly obvious for n = 2 (see Introduction)
and obtained by easy induction for general n. Thus (using tree notation this
time)

[ITIdn (Γ)]ts = [δSkITIdn ]ts −
∑

v∈V (TIdn )\{0}
[ILvTIdn (Γ)]ts . [SkIRvTIdn (Γ)]s.

(2.22)

The above considerations extend to arbitrary trees (or also forests) as
follows (see also subsection 2.3).

Definition 2.10 (admissible cuts) 1. Let T be a tree, with set of ver-
tices V (T) and root denoted by 0. If v = (v1, . . . , vJ), J ≥ 1 is
any totally disconnected subset of V (T) \ {0}, i.e. vi 6³ vj for all
i, j = 1, . . . , J , then we shall say that v is an admissible cut of T, and
write v |= V (T). We let RvT be the sub-forest (or sub-tree if J = 1)
obtained by keeping only the vertices above v, i.e. V (RvT) = v∪{w ∈
V (T) : ∃j = 1, . . . , J, w ³ vj}, and LvT be the sub-tree obtained by
keeping all other vertices.

2. Let T = T1 . . . Tl be a forest, together with its decomposition into trees.
Then an admissible cut of T is a disjoint union v1 ∪ . . .∪ vl, vi ⊂ Ti,
where vi is either ∅, {0i} (root of Ti) or an admissible cut of Ti. By
definition, we let LvT = Lv1T1 . . . Lvl

Tl, RvT = Rv1T1 . . . Rvl
Tl (if

vi = ∅, resp. {0i}, then (LviTi, RviTi) := (Ti, ∅), resp. (∅, Ti)).

We exclude by convention the two trivial cuts ∅ ∪ . . . ∪ ∅ and {01} ∪
. . . ∪ {0l}.

See Fig. 2 and 3. Defining the co-product operation T → T ⊗ T ,
T → ∅ ⊗ T + T ⊗ ∅ +

∑

v|=V (T) LvT ⊗ RvT (where ∅ stands for the empty
tree, which is the unity of the algebra) yields a coalgebra structure on T
which makes it (once the antipode – which we do not need here – is defined)
a Hopf algebra.

2.3 Definition of the regularized integrals

The regularization procedure is essentially an iteration of Fourier ’projection’
operators such as the following one. In the sequel, all trees are implicitly
assumed to be equipped with a total ordering compatible with their tree
orderings.
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0

vu
vd

w

w’

Figure 2: Admissible cut.

0

w

w’

Figure 3: Non-admissible cut.

Definition 2.11 (P-projections) Let U ⊂ Z
T := {(kv)v∈V (T)}. Then

PU : (Bα
∞,∞)⊗T → (Bα

∞,∞)⊗T is the bounded linear operator defined on
monomials by

PU
(

⊗v∈V (T)fv

)

:=
∑

k=(kv)v∈V (T)∈U

1

|Σk|
. ⊗v∈V (T) D(φkv)fv, (2.23)

where Σk is the set of permutations σ : V (T) → V (T) such that |kσ(v)| = |kv|
for every v ∈ V (T).

In particular, we shall denote by P+ the operator PU defined by

U = Z
T

+ := {(kv)v∈V (T) | (v < w) ⇒ |kv| ≤ |kw|}. (2.24)

In particular, one has the essential decomposition formula:

Lemma 2.12 Let σ : {0, . . . , n − 1} → {0, . . . , n − 1} range over all per-
mutations, and decompose the permutation graphs T

σ as a sum of forests,
T

σ =
∑Jσ

j=1 εσ,jT
σ
j , with εσ,j ∈ {±1}. Then:

I`
n(Γ) =

∑

σ

Jσ
∑

j=1

εσ,jIT
σ
j

(

P+
(

⊗v∈V (Tσ
j )Γ(`(σ(v)))

))

. (2.25)
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0

1 2

21

010

21

0 2

Figure 4: Example 2.6. From left to right: T
σ

1
, Tσ

2
; L{1}T

σ

1
⊗ R{1}T

σ

1
; L{1,2}T

σ

1
⊗

R{1,2}T
σ

1

Proof. Trivial (note that every multi-index k is counted exactly once
thanks to the symmetry factor 1

|Σk |). 2

The ’projection’ operators PU are uniformly bounded by Proposition
1.7. Replacing φk with 1[±2k,±2k+1], one would really obtain projections, but
unfortunately, smooth Fourier multipliers are required to define the Besov
space Bα

∞,∞. One could actually use characteristic functions of intervals
(which simplifies a little bit the proofs) by working in Bα

p,∞ for p large (see
Lizorkin representations in [16], §2.2.4) but at the price of losing some Hölder
regularity, namely, α → α − 1/p, see [16], §2.4.1 (1).

By multilinearity, one may split the function

(x0, . . . , xn−1) → (Γ(i0) ⊗ . . .Γ(in−1)) (x0, . . . , xn−1) = Γx0(i0) . . .Γxn−1(in−1)

into
∑

k=(k0,...,kn−1)∈Zn P{k} (Γ(i0) ⊗ . . .Γ(in−1)) .
Formula (2.22) above generalizes to the following recursive definition of

regularized iterated integrals:

Lemma 2.13 (regularization) Let T = T1 . . . Tl be a well-labeled forest,
together with its tree decomposition. Let also k ∈ Z

T such that (v < w) ⇒
(|kv| ≤ |kw|). Define by induction the regularized integral

[

RIT(P{k}(⊗v∈V (T)Γ(iv))
]

ts
(abbreviated in the lemma as [RIT]ts) by

l
∏

j=1







[

δRSkITj

]

ts
−

∑

v|=V (Tj)

[

RILvTj

]

ts

[

RSkIRvTj

]

s







(

P{k}(⊗v∈V (T)Γ(iv)
)

(2.26)

where (letting k
∣

∣

T′ = (kv)v∈V (T′) and fT′ := SkIT′(P{k
∣

∣

T′
}
(⊗v∈V (T′)Γ(iv))))

RfT′ = fT′ or 0 depending on the value of the multi-index k
∣

∣

T′, and in par-
ticular, RfT′ = fT′ is T

′ is a tree with one vertex only.
Then [RIT]ts satisfies the following tree multiplicative property:
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[δRIT]tus =
∑

v|=V (T)

[RILvT]tu . [RIRvT]us . (2.27)

We shall call [RITj (δ)]ts :=
[

δRSkITj

]

ts
, resp.

[RITj (∂)]ts := −∑

v|=V (Tj)

[

RILvTj

]

ts

[

RSkIRvTj

]

s
the increment, resp. bound-

ary term associated to the tree Tj.

Proof. See [20], Lemma 6.14. 2

By multilinearity, the above regularization lemma also holds of course
for RITP+(⊗v∈V (T)Γ(iv)).

Corollary 2.14 The rough path RΓn(`(1), . . . , `(n)), defined (see Lemma
2.12 for notations) as the sum

RΓn(`(1), . . . , `(n)) =
∑

σ

Jσ
∑

j=1

εσ,jRIT
σ
j

(

P+
(

⊗v∈V (Tσ
j )Γ(`(σ(v)))

))

(2.28)
over all permutations σ, satisfies the multiplicative property (ii) in the In-
troduction.

Proof. Consequence of Lemma 2.12, Lemma 2.13 and [20] Lemma 6.15
which relates the above tree multiplicative property to the usual one (see
property (ii) in the Introduction) by combinatorial arguments. The con-
dition RfT′ = fT′ implies in the end the equality RΓ1 = Γ1 (so we have
constructed a rough path lying above Γ).

Proposition 2.15 (see [20], lemma 7.2)
The rough path RΓ satisfies the geometric property (iii) in the Introduc-

tion.

Note that a regularization procedure R is exactly determined by the
choice for each tree T of a subset Z

T
reg of Z

T
+ := {(kv)v∈V (T) | (v < w) ⇒

|kv| ≤ |kw|}, such that Z
T
reg = Z if |V (T)| = 1. Let us now give an appropri-

ate choice for Z
T
reg. Once again, all trees below are implicitly supposed to be

equipped with a total ordering compatible with the tree partial ordering as
in Definition 2.2. Ultimately, when reconstructing the rough path RΓ (see
Corollary 2.14), the total ordering on trees coming from the decomposition
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of T
σ will be induced from the total ordering on the permutation graph T

σ

(see subsection 2.1).
We shall need to introduce a little more terminology concerning tree

structures (see Fig. 5).

Definition 2.16 Let T be a tree.

(i) A vertex v is a leaf if no vertex connects to v. The set of leaves above
(i.e. connecting to) v ∈ V (T) is denoted by Leaf(v).

(ii) Vertices at which 2 or more branches join are called nodes.

(iii) The set Br(v1 ³ v2) of vertices from a leaf or a node v1 to a node
v2 (or to the root) is called a branch if it does not contain any other
node. By convention, Br(v1 ³ v2) includes v1 and excludes v2.

(iv) A node n is called an uppermost node if no other node is connected to
n.

0

1

2

3 4 6

5

Figure 5: 3,4,6 are leaves; 1, 2 and 5 are nodes, 2 and 5 are uppermost; branches
are e.g. Br(2 ³ 1) = {2} or Br(6 ³ 1) = {6, 5}; Leaf(2) = {3, 4}; wmax(2) = 4.

Definition 2.17 Let T be a tree. If v ∈ V (T), we let wmax(v) := max{w ∈
V (T) | w ³ v}, or simply wmax(v) = v if v is a leaf.

Definition 2.18 Let Z
T
reg be the set of V (T)-uples k = (kv)v∈V (T) ∈ Z

T

such that the following conditions are satisfied:

(i) if v < w, then |kv| ≤ |kw|;

(ii) if v ∈ V (T) and w ∈ Leaf(v), kw.kv < 0, then |kv| ≤ |kw| − log2 10 −
log2 |V (T)|;

(iii) if n ∈ V (T) is a node, then each vertex w ∈ {wmax(v) | v → n} such
that kw.kwmax(n) < 0 satisfies: |kw| ≤ |kwmax(n)|− log2 10− log2 |V (T)|.
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Lemma 2.19 Let ξ = (ξv)v∈T such that ξv ∈ supp(φkv) for some k =
(kv)v∈V (T) ∈ Z

T
reg. Then, for every v ∈ V ,

|V (T)| . |ξwmax(v)
| ≥ |ξv +

∑

w³v

ξw| >
1

2
|ξwmax(v)|. (2.29)

Proof.
The left inequality is trivial. As for the right one, assume first that v

is on a terminal branch, i.e. Leaf(v) = {wmax(v)} is a singleton. Then
Definition 2.18 (ii) implies the following: for every vertex v′ on the branch
between wmax(v) and v, i.e. v′ ∈ Br(wmax(v) ³ v) ∪ {v},

– either ξv′ is of the same sign as ξwmax(v);

– or |ξv′ | ≤ |ξwmax(v)|
2|V (T)| since |ξv′ | ∈ (2|kv′ |−1, 5.2|kv′ |−1) (and similarly for

|ξwmax(v)|) by the remarks following Proposition 1.2.

Hence |ξv+
∑

w³v ξw| = |∑v′∈Br(wmax(v)³v)∪{v} ξv′ | >
(

1 − 1
2
|{w:w³v}|

|V (T)|

)

|ξwmax(v)|.

Consider now what happens at a node n. Let n+ := {v ∈ V (T) | v → n}.
Assume (by induction on the number of vertices) that, for all v ∈ n+,

(1 + |{w : w ³ v}|) |ξwmax(v)| ≥ |ξv+
∑

w³v

ξw| >

(

1 − 1

2

|{w : w ³ v}|
|V (T)|

)

. |ξwmax(v)|.

(2.30)

By Definition 2.18 (iii), either ξwmax(v).ξwmax(n) > 0 or |ξwmax(v)| ≤
|ξwmax(n)|

2|V (T)| .

Then (letting w0 be the element of n+ such that wmax(v0) = wmax(n))

(1 + |{w : w ³ n}|) |ξwmax(n)| ≥ |ξn +
∑

w³n

ξw| =

∣

∣

∣

∣

∣

∣

ξn +
∑

v∈n+

(ξv +
∑

w³v

ξw)

∣

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

ξv0 +
∑

w³v0

ξw

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∑

v∈n+\{v0}
(ξv +

∑

w³v

ξw)

∣

∣

∣

∣

∣

∣

− |ξn|

>

(

1 − 1

2

|{w : w ³ n}|
|V (T)|

)

. |ξwmax(n)|. (2.31)

2

3 Hölder estimates

We shall now prove that the rough path RΓn(`(0), . . . , `(n − 1)) satisfies
the required Hölder properties by (1) decomposing RΓn(`(0), . . . , `(n − 1))
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into the sum over all permutations of RIT
σ
j
P+

(

⊗v∈V (Tσ
j )Γ(`(σ(v)))

)

as in

Lemma 2.12, and (2) show Hölder regularity with correct exponent of all
tree integrals appearing in the recursive definition of Lemma 2.13.

If T = T
σ
j is one of the forests – or one of the tree components of those

forests – appearing in the decomposition of the permutation graph T
σ, we

shall write T ⊂ T
σ. The total ordering of T is inherited from that of T

σ (see
subsection 2.1).

3.1 Estimate for the increment term

Lemma 3.1 (Hölder estimate of the increment term) Let T ⊂ T
σ be

a tree. Then

||RSkIT

(

P+(⊗v∈V (T)Γ(`(σ(v)))
)

||C|V (T)|α < ∞. (3.1)

Proof. We shall start the computations by adapting the proof of a
theorem in [16], §2.6.1 bounding the Hölder-Besov norm of the product of
two Hölder functions. We use the shorthand

RSkIT = RSkIT

(

P+(⊗v∈V (T)Γ(`(σ(v)))
)

. (3.2)

By Lemma 2.9,

RSkIT(x) =
∑

k=(kv)v∈V (T)∈ZT
reg

∫

Q

v∈V (T) supp(φkv )

∏

v∈V (T)

dξv .

. eix
P

v∈V (T) ξv

∏

v∈V (T) F (D(φkv)Γ
′(`(σ(v)))) (ξv)

∏

v∈V (T)(ξv +
∑

w³v ξw)
.

(3.3)

Write, for ξ = (ξv)v∈V (T),

Θ(ξ) =
∏

v∈V (T)

ξv

ξv +
∑

w³v ξw
(3.4)

and

Θ1(k) =
∏

v∈V (T)

2|kv |

2|kwmax(v)|
. (3.5)
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Let finally

Θk(ξ) :=
∏

v∈V (T)

φ̃kv(ξv) .
Θ(ξ)

Θ1(k)
, (3.6)

where (φ̃k)k∈Z : R → [0, 1] is a family of C∞ functions with uniformly
bounded || . ||S0-norm such that φ̃k

∣

∣

supp(φk)
≡ 1 (so φkφ̃k = φk) and suppφ̃k

is a little larger than suppφk, say,

supp(φ̃k) ⊂ [2k−2, 10.2k−1], supp(φ̃−k) ⊂ [−10.2k−1,−2k−2] (k ≥ 1)
(3.7)

(the functions (φ̃k)k∈Z, just as for the (φk)k∈Z, may be constructed simply
out of a single function φ̃0 with adequate support, see remarks following
Proposition 1.2). By Lemma 2.19, ||Θk||S0 is uniformly bounded in k.

Let k ∈ Z. Apply the operator D(φk) to eq. (3.3): then, letting φ∗
k(ξ) :=

φk(
∑

v∈V (T) ξv),

D(φk)RSkIT(x) =





∑

k∈ZT
reg

Θ1(k)D(Θk)D(φ∗
k) .

∏

v∈V (T)

D(φkv)Γ(`(σ(v)))



 (x),

(3.8)
where x = (xv)v∈V (T) = (x, . . . , x) is a vector with |V (T)| identical

components.
Let vmax := sup{v | v ∈ V (T)}. Note that D(φ∗

k) . D(⊗v∈V (T)φkv)
vanishes except if





∑

v∈V (T)

supp(φkv)



 ∩ supp(φk) 6= ∅, (3.9)

which implies by Lemma 2.19

|kvmax − k| = O(log2 |V (T)|) (3.10)

(namely, denoting by 0 the root of T, |V (T)| . |ξkvmax
| ≥ |∑v∈V (T) ξkv | =

|ξk0 +
∑

w³0 ξkw | > 1
2 |ξkvmax

| if ξv ∈ supp(φkv) for every v).

Since Θk, φ∗
k ∈ S0(R|V (T)|), one gets by Proposition 1.7

||D(φk)RSkIT||∞ .
∑

k∈ZT
reg ,kvmax=k

Θ1(k)
∏

v∈V (T)

||D(φkv)Γ(`(σ(v)))||∞.

(3.11)
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Since Γ is in Cα, one obtains:

||D(φk)RSkIT||∞ .
∑

k∈ZT
reg ,kvmax=k

Θ1(k)
∏

v∈V (T)

2−|kv |α

.
∑

k∈ZT
reg ,kvmax=k

∏

v∈V (T)

2|kv |(1−α)−|kwmax(v)|. (3.12)

In other words, loosely speaking, each vertex v ∈ V (T) contributes a
factor 2|kv |(1−α)−|kwmax(v)| to ||RSkIT||∞. If v is a leaf, then this factor is
simply 2−|kv |α.

Consider an uppermost node n, i.e. a node to which no other node is
connected, together with the set of leaves {w1 < . . . < wJ} above n. Let
pj = |V (Br(wj ³ n))|. On the branch number j,

∏

v∈Br(wj³n)\{wj}

∑

|kv |≤|kwj |
2|kv |(1−α)−|kwj | . 2−|kwj |αpj (3.13)

and (summing over kw1 , . . . , kwJ−1 and over kn)

2−|kwJ
|αpJ

∑

|kwJ−1
|≤|kwJ

|
2−|kwJ−1

|αpJ−1



. . .





∑

|kw1 |≤|kw2 |
2−|kw1 |αp1





∑

|kn|≤|kw1 |
2|kn|(1−α)−|kwJ

|







 . . .





. 2−|kwJ
|αW (n), (3.14)

where W (n) = p1 + . . . + pJ + 1 = |{v : v ³ n}| + 1 is the weight of n.
One may then consider the reduced tree Tn obtained by shrinking all

vertices above n (including n) to one vertex with weight W (n) and perform
the same operations on Tn. Repeat this inductively until T is shrunk to one
point. In the end, one gets ||D(φk)RSkIT||∞ . 2−|k|α|V (T)|, hence RSkIT ∈
C|V (T)|α.

2

Remark. Note that the above proof breaks down for the non-regularized
quantitities, since the function Θ may be much larger than the expression
Θ1 (it is not even bounded, actually). For instance, the Lévy area of frac-
tional Brownian motion diverges below the barrier α = 1/4, see [4], [18],
[19]. The proof in [20] (using Fourier series instead of Fourier integrals)
is easily rewritten in terms of Besov norms since the estimates for random
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Fourier series in section 2, essentially taken from [9], are also of Besov type,
see [20], Lemma 2.1, eq. (2.4) for instance). For well-behaved paths Γ with
very regular, polynomially decreasing Fourier components, the unregular-
ized integrals are probably well-defined at least for α > 1/2 (but this is
uninteresting of course since Young’s integral converges), otherwise the case
is not even clear.

3.2 Estimate for the boundary term

Lemma 3.2 (Hölder regularity of the boundary term) Let T ⊂ T
σ

be a tree. Then the regularized boundary term RIT

(

P+(⊗v∈V (T)Γ(`(σ(v)))
)

(∂)
is |V (T)|α-Hölder.

Proof.
Once again we use the shorthand

RIT(∂) := RIT

(

P+(⊗v∈V (T)Γ(`(σ(v)))
)

(∂). (3.15)

Apply repeatedly Lemma 2.13 to T: in the end, [RIT(∂)]ts appears as a sum
of ’skeleton-type’ terms of the form (see Fig. 6)

Ats := [δRSkILT]ts .

[RSkIRv1T
]s[RSkIRv2◦Lv1 (T)]s . . . [RSkIRvl

◦Lvl−1
◦...◦Lv1 (T)]s,

(3.16)

where v1 = (v1,1 < . . . < v1,J1) |= V (T), v2 |= V (Lv1T), . . ., vl =
(vl,1, . . . , vl,Jl

) |= V (Lvl−1
◦ . . . ◦ Lv1(T)) and LT := Lvl

◦ . . . ◦ Lv1(T).

First step.

Let U [k] ⊂ ∏J1
j=1 Z

Rv1,j T

reg such that k = (kv1,1 , . . . , kv1,J1
) (with |kv1,1 | ≤

. . . ≤ |kv1,J1
|) is fixed. Then (see proof of Lemma 3.1) each vertex v con-

tributes a factor 2|kv |(1−α)−|kwmax (v)| ≤ 2−|kv |α, hence

||PU [k]RSkIRv1T||∞ .
∏

v∈v1



2−|kv |α
∑

|kw|≥|kv |,w∈RvT\{v}
2−|kw|α





.
∏

v∈v1

2−|kv |α|V (RvT)|. (3.17)

Second step.
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More generally, let Bs[k] be the expression obtained by P-projecting
[RSkIRv1T

]s[RSkIRv2◦Lv1 (T)]s . . . [RSkIRvl
◦Lvl−1

◦...◦Lv1 (T)]s onto the sum of

terms with fixed value of the indices k = (kvl,1
, . . . , kvl,Jl

). Then

||Bs[k]||∞ .
∏

v∈vl

2−|kv |α|V (RvT)| (3.18)

(proof by induction on l).

Third step.
We define

As(x) := [RSkILT]x . [RSkIRv1T
]s[RSkIRv2◦Lv1 (T)]s . . . [RSkIRvl

◦Lvl−1
◦...◦Lv1 (T)]s

(3.19)
(see eq. (3.16)), so that Ats = As(t) − As(s), and show that sups∈R ||x →
As(x)||Bα

∞,∞
< ∞.

Let V (LT) = {w1 < . . . < wmax}. Fix s ∈ R and K ∈ Z. By definition,

(D(φK)Ax) (s) = D(φK)
∑

k=(kvl,1
,...,kvl,Jl

)

∑

((kw)w∈V (LT))∈Sk

∫

Q

v∈V (LT) supp(φkv )

∏

v∈V (LT)

dξv .

(3.20)

. eix
P

v∈V (LT) ξv

∏

w∈V (LT) F (D(φkw)Γ′(`(σ(w)))) (ξw)
∏

w∈V (LT)(ξw +
∑

w′³w,w′∈V (LT) ξw′)
Bs[k]

(3.21)

where indices in Sk satisfy in particular the following conditions:

(i) |ξw +
∑

w′³w,w′∈V (LT) ξw′ | > 1
2 max{|ξw′ | : w′ ³ w, w′ ∈ V (LT)};

(ii)
(

∑

w∈V (LT) supp(φkw)
)

∩ (supp(φK)) 6= ∅ (see eq. (3.9));

(iii) for every w ∈ V (LT), |kw| ≤ |kwmax |; and

(iv) for every w ∈ V (LT), |kw| ≤ |kv| for every v ∈ R(w) := {v =
vl,1, . . . , vl,Jl

| v → w} (note that R(w) may be empty). See Fig.
6.

Note that |kwmax −K| = O(log2 |V (LT)|) by (ii) (see eq. (3.10)). Hence
conditions (ii) and (iii) above are more or less equivalent to fixing kwmax ' K
and letting (kw)w∈V (LT)\{wmax} range over some subset of [−|K|, |K|]× . . .×
[−|K|, |K|].
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1

2

4

v2,1

v1,1
v2,2

Figure 6: Here V (LT) = {0, 1, 2, 4}, R(0) = R(4) = ∅, R(1) = {v2,1}, R(2) =
{v2,2}.

If w ∈ LT, split R(w) into R(w)> ∪ R(w)<, where R(w)≷ := {v ∈
R(w) | v ≷ wmax}. Summing over indices corresponding to vertices in or
above RT> := {v = vl,1, . . . , vl,Jl

| v > wmax} = ∪w∈LTR(w)>, one gets by
eq. (3.18) a quantity bounded up to a constant by

∏

v∈RT>

∑

|kv |≥|K|
2−|kv |α|V (RvT)| . 2

−|K|α P

v∈RT>
|V (RvT)|

. (3.22)

Let w ∈ LT \ {wmax} such that R(w)< 6= ∅ (note that R(wmax)< = ∅).
Let R(w)< = {vi1 < . . . < vij} . Then (summing over (kv), v in or above
R(w)<)

2−|kw|α
∞

∑

|kvi1
|=|kw|

∞
∑

|kvi2
|=|kvi1

|
. . .

∞
∑

|kvij
|=|kvij−1

|

2
−|kvi1

α|V (Rvi1
T)|

. . . 2
−|kvij

|α|V (Rvij
T)|

. 2
−|kw|α(1+

P

v∈R(w)<
|V (RvT)|)

.

(3.23)

In other words, each vertex w ∈ LT ’behaves’ as if it had a weight
1 +

∑

v∈R(w)<
|V (RvT)|. Hence (by the same method as in the proof of

Lemma 3.1), letting RT< := ∪w∈LTR(w)<,

||D(φK)As||∞ . 2
−|K|α(|V (LT)|+P

v∈RT<
|V (RvT)|)

. 2
−|K|α P

v∈RT>
|V (RvT)|

= 2−|K|α|V (T)|.
(3.24)

The above tree estimates easily yield the nα-Hölder estimates for

RIT
σ
j

(

P+
(

⊗v∈V (Tσ
j )Γ(`(σ(v)))

))

(see Lemma 2.12) if T
σ
j = T

σ
j,1 . . . Tσ

j,J

is a forest with several components, since [RIT
σ
j
]ts is a P-projection of

[RIT
σ
j,1

]ts . . . [RIT
σ
j,J

]ts (the total ordering of T
σ
j being stronger than its par-

tial ordering induced by the total ordering of its tree components).
2
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