¨. O. Y?lmaz and S. Rickard, Blind Separation of Speech Mixtures via Time-Frequency Masking, IEEE Transactions on Signal Processing, vol.52, issue.7, pp.1830-1847, 2004.
DOI : 10.1109/TSP.2004.828896

H. Sawada, S. Araki, R. Mukai, S. Makino, R. Saab et al., Grouping Separated Frequency Components by Estimating Propagation Model Parameters in Frequency-Domain Blind Source Separation, Proc. IEEE Int. Symposium on Signal Processing and Information Technology (ISSPIT), pp.1592-1604, 2006.
DOI : 10.1109/TASL.2007.899218

S. Winter, W. Kellermann, H. Sawada, and S. Makino, MAP-Based Underdetermined Blind Source Separation of Convolutive Mixtures by Hierarchical Clustering and -Norm Minimization, EURASIP Journal on Advances in Signal Processing, vol.2007, issue.1, p.24717, 2007.
DOI : 10.1109/TSP.2003.822284

E. Vincent, S. Araki, and P. Bofill, The 2008 Signal Separation Evaluation Campaign: A Community-Based Approach to Large-Scale Evaluation, Proc. 8th Int. Conf. on Independent Component Analysis and Signal Separation, pp.734-741, 2009.
DOI : 10.1109/TASL.2007.899176

URL : https://hal.archives-ouvertes.fr/inria-00544168

W. Kellermann and H. Buchner, Wideband algorithms versus narrowband algorithms for adaptive filtering in the DFT domain, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003
DOI : 10.1109/ACSSC.2003.1292194

M. Kowalski and B. Torrésani, Sparsity and persistence: mixed norms provide simple signal models with dependent coefficients, Signal, Image and Video Processing, pp.251-264, 2008.
DOI : 10.1007/s11760-008-0076-1

URL : https://hal.archives-ouvertes.fr/hal-00206245

M. Kowalski, Sparse regression using mixed norms, Applied and Computational Harmonic Analysis, vol.27, issue.3, pp.303-324, 2009.
DOI : 10.1016/j.acha.2009.05.006

URL : https://hal.archives-ouvertes.fr/hal-00202904

M. Kowalski, E. Vincent, and R. Gribonval, Under-determined source separation via mixed-norm regularized minimization, Proc. European Signal Processing Conference (Eusipco), 2008.
URL : https://hal.archives-ouvertes.fr/hal-00347089

E. Vincent, R. Gribonval, and M. D. Plumbley, Oracle estimators for the benchmarking of source separation algorithms, Signal Processing, vol.87, issue.8, pp.1933-1950, 2007.
DOI : 10.1016/j.sigpro.2007.01.016

URL : https://hal.archives-ouvertes.fr/inria-00545156

A. A¨?ssaa¨?ssa-el-bey, K. Abed-meraim, and Y. Grenier, Blind Separation of Underdetermined Convolutive Mixtures Using Their Time–Frequency Representation, IEEE Transactions on Audio, Speech, and Language Processing, vol.15, issue.5, pp.1540-1550, 2007.
DOI : 10.1109/TASL.2007.898455

H. Kiers, Towards a standardized notation and terminology in multiway analysis, Journal of Chemometrics, vol.56, issue.3, pp.105-122, 2000.
DOI : 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I

J. Rosca, C. Borss, and R. Balan, Generalized sparse signal mixing model and application to noisy blind source separation, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.877-880, 2004.
DOI : 10.1109/ICASSP.2004.1326685

S. Chen, D. Donoho, and M. Saunders, Atomic Decomposition by Basis Pursuit, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.33-61, 1998.
DOI : 10.1137/S1064827596304010

B. Rao and K. Kreutz-delgado, An affine scaling methodology for best basis selection, IEEE Transactions on Signal Processing, vol.47, issue.1, pp.187-200, 1999.
DOI : 10.1109/78.738251

E. Vincent, Complex Nonconvex l p Norm Minimization for Underdetermined Source Separation, Proc. Int. Conf. on Independent Component Analysis and Blind Source Separation (ICA), pp.430-437, 2007.
DOI : 10.1007/978-3-540-74494-8_54

M. Togami, T. Sumiyoshi, and A. Amano, Sound source separation of overcomplete convolutive mixture using generalized sparseness, Proc. Int. Workshop on Acoustic Echo and Noise Control (IWAENC), 2006.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society Serie B, vol.58, issue.1, pp.267-288, 1996.

P. Weiss, Fast algorithms for convex optimization. applications to image reconstruction and change detection, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00349452

I. Daubechies, M. Defrise, and C. D. , An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Communications on Pure and Applied Mathematics, vol.58, issue.11, pp.1413-1457, 2004.
DOI : 10.1002/cpa.20042

P. Combettes and V. Wajs, Signal Recovery by Proximal Forward-Backward Splitting, Multiscale Modeling & Simulation, vol.4, issue.4, pp.1168-1200, 2005.
DOI : 10.1137/050626090

URL : https://hal.archives-ouvertes.fr/hal-00017649

A. Beck and M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, pp.183-202, 2009.
DOI : 10.1137/080716542

J. Moreau, Proximit?? et dualit?? dans un espace hilbertien, Bulletin de la Soci&#233;t&#233; math&#233;matique de France, vol.79, pp.273-299, 1965.
DOI : 10.24033/bsmf.1625

Y. E. Nesterov, method for solving the convex programming problem with convergence rate, Dokl. Akad. Nauk SSSR, vol.269, issue.1 2 3, pp.543-547, 1983.

I. Loris, -penalized functionals, Inverse Problems, vol.25, issue.3, p.35008, 2009.
DOI : 10.1088/0266-5611/25/3/035008

URL : https://hal.archives-ouvertes.fr/hal-00309817

E. Hale, W. Yin, and Y. Zhang, Fixed-Point Continuation for $\ell_1$-Minimization: Methodology and Convergence, SIAM Journal on Optimization, vol.19, issue.3, pp.1107-1130, 2008.
DOI : 10.1137/070698920

U. Svensson and U. Kristiansen, Computational modelling and simulation of acoustic spaces, Proc. AES 22nd Conf. on Virtual, Synthetic and Entertainment Audio, pp.1-20, 2002.

E. Vincent, R. Gribonval, and C. Févotte, Performance measurement in blind audio source separation, IEEE Transactions on Audio, Speech and Language Processing, vol.14, issue.4, pp.1462-1469, 2006.
DOI : 10.1109/TSA.2005.858005

URL : https://hal.archives-ouvertes.fr/inria-00544230

J. Dmochowski, J. Benesty, and S. Affès, On Spatial Aliasing in Microphone Arrays, IEEE Transactions on Signal Processing, vol.57, issue.4, pp.1383-1395, 2009.
DOI : 10.1109/TSP.2008.2010596