H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-723, 1974.
DOI : 10.1109/TAC.1974.1100705

T. Alexandrov, J. Decker, B. Mertens, A. M. Deelder, R. A. Tollenaar et al., Biomarker discovery in MALDI-TOF serum protein profiles using discrete wavelet transformation, Bioinformatics, vol.25, issue.5, pp.25643-649, 2009.
DOI : 10.1093/bioinformatics/btn662

D. J. Bartholomew, Latent Variable Models and Factor Analysis, 1987.
DOI : 10.1002/9781119970583

A. Basilevsky, Statistical Factor Analysis and Related Methods, 1994.
DOI : 10.1002/9780470316894

G. Bouchard and G. Celeux, Selection of generative models in classification, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.4, pp.544-554, 2006.
DOI : 10.1109/TPAMI.2006.82

C. Bouveyron and S. Girard, Robust supervised classification with mixture models: Learning from data with uncertain labels, Pattern Recognition, vol.42, issue.11, pp.2649-2658, 2009.
DOI : 10.1016/j.patcog.2009.03.027

URL : https://hal.archives-ouvertes.fr/hal-00325263

C. Bouveyron, S. Girard, and C. Schmid, High-Dimensional Discriminant Analysis, Communications in Statistics - Theory and Methods, vol.1, issue.14, pp.2607-2623, 2007.
DOI : 10.1214/aos/1176344136

URL : https://hal.archives-ouvertes.fr/inria-00548516

J. Bruske and G. Sommer, Intrinsic dimensionality estimation with optimally topology preserving maps, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.5, pp.572-575, 1998.
DOI : 10.1109/34.682189

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Camastra, Data dimensionality estimation methods: a survey, Pattern Recognition, vol.36, issue.12, pp.2945-2954, 2003.
DOI : 10.1016/S0031-3203(03)00176-6

F. Camastra and A. Vinciarelli, Estimating the intrinsic dimension of data with a fractal-based method, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.10, pp.1404-1407, 2002.
DOI : 10.1109/TPAMI.2002.1039212

B. Chalmond and S. Girard, Nonlinear modeling of scattered multivariate data and its application to shape change, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, issue.5, pp.422-432, 1999.
DOI : 10.1109/34.765654

R. Everson and S. Roberts, Inferring the eigenvalues of covariance matrices from limited, noisy data, IEEE Transactions on Signal Processing, vol.48, issue.7, pp.2083-2091, 2000.
DOI : 10.1109/78.847792

M. Fan, H. Qiao, and B. Zhang, Intrinsic dimension estimation of manifolds by incising balls, Pattern Recognition, vol.42, issue.5, pp.780-787, 2009.
DOI : 10.1016/j.patcog.2008.09.016

C. Fraley and A. Raftery, Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering, Journal of Classification, vol.24, issue.2, pp.155-181, 2007.
DOI : 10.1007/s00357-007-0004-5

K. Fukunaga and D. R. Olsen, An Algorithm for Finding Intrinsic Dimensionality of Data, IEEE Transactions on Computers, vol.20, issue.2, pp.176-183, 1971.
DOI : 10.1109/T-C.1971.223208

I. Jolliffe, Principal Component Analysis, 1986.
DOI : 10.1007/978-1-4757-1904-8

J. Karhunen and J. Joutsensalo, Representation and separation of signals using nonlinear PCA type learning, Neural Networks, vol.7, issue.1, pp.113-127, 1994.
DOI : 10.1016/0893-6080(94)90060-4

E. Levina and P. Bickel, Maximum Likelihood Estimation of Intrinsic Dimension, 17th Annual Conference on Neural Information Processing Systems, 2005.

D. Mackay and Z. Ghahramani, Comments on 'maximum likelihood estimation of intrinsic dimension, 2005.

T. Minka, Automatic choice of dimensionality for PCA, 13th Annual Conference on Neural Information Processing Systems, 2000.

G. Nyamundanda, L. Brennan, and I. C. Gormley, Probabilistic principal component analysis for metabolomic data, BMC Bioinformatics, vol.11, issue.1, pp.571-581, 2010.
DOI : 10.1186/1471-2105-11-571

URL : http://doi.org/10.1186/1471-2105-11-571

E. Pettis, T. Bailey, A. Jain, and R. Dubes, An intrinsic dimensionality estimator from nearest-neighbor information, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.1, pp.25-37, 1979.

J. J. Rajan and P. J. Rayner, Model order selection for the singular value decomposition and the discrete Karhunen-Loève transform using a Bayesian approach. IEE proceedings Vision, image and signal processing, pp.116-123, 1997.

S. Roweis and L. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, vol.290, issue.5500, pp.2323-2326, 2000.
DOI : 10.1126/science.290.5500.2323

URL : http://astro.temple.edu/~msobel/courses_files/saulmds.pdf

B. Schölkopf, A. Smola, and K. Müller, Nonlinear Component Analysis as a Kernel Eigenvalue Problem, Neural Computation, vol.20, issue.5, pp.1299-1319, 1998.
DOI : 10.1007/BF02281970

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

J. Tenenbaum, V. D. Silva, and J. Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science, vol.290, issue.5500, pp.2319-2323, 2000.
DOI : 10.1126/science.290.5500.2319

M. Tipping and C. Bishop, Mixtures of Probabilistic Principal Component Analyzers, Neural Computation, vol.2, issue.1, pp.443-482, 1999.
DOI : 10.1007/BF00162527

M. Tipping and C. Bishop, Probabilistic Principal Component Analysis, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.61, issue.3, pp.611-6222, 1999.
DOI : 10.1111/1467-9868.00196

D. Tyler, Asymptotic Inference for Eigenvectors, The Annals of Statistics, vol.9, issue.4, pp.725-736, 1981.
DOI : 10.1214/aos/1176345514

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA078960

P. Verveer and R. Duin, An evaluation of intrinsic dimensionality estimators, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.17, issue.1, pp.81-86, 1995.
DOI : 10.1109/34.368147

M. Welling, F. Agakov, and C. Williams, Extreme Components Analysis, 16th Annual Conference on Neural Information Processing Systems, 2003.

C. Williams and F. Agakov, Products of Gaussians and Probabilistic Minor Component Analysis, Neural Computation, vol.14, issue.5, pp.1169-1182, 2002.
DOI : 10.1142/S0129065791000169