Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus

Erwan Faou 1, 2, * Ludwig Gauckler 3 Christian Lubich 4
* Corresponding author
1 IPSO - Invariant Preserving SOlvers
IRMAR - Institut de Recherche Mathématique de Rennes, Inria Rennes – Bretagne Atlantique
Abstract : It is shown that plane wave solutions to the cubic nonlinear Schrödinger equation on a torus behave orbitally stable under generic perturbations of the initial data that are small in a high-order Sobolev norm, over long times that extend to arbitrary negative powers of the smallness parameter. The perturbation stays small in the same Sobolev norm over such long times. The proof uses a Hamiltonian reduction and transformation and, alternatively, Birkhoff normal forms or modulated Fourier expansions in time.
Document type :
Journal articles
Communications in Partial Differential Equations, Taylor & Francis, 2013, 38 (7), pp.1123-1140. <10.1080/03605302.2013.785562>


https://hal.archives-ouvertes.fr/hal-00622240
Contributor : Marie-Annick Guillemer <>
Submitted on : Thursday, October 11, 2012 - 2:38:53 PM
Last modification on : Thursday, July 7, 2016 - 11:31:21 AM

Files

nlspw-v30.pdf
Files produced by the author(s)

Identifiers

Citation

Erwan Faou, Ludwig Gauckler, Christian Lubich. Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus. Communications in Partial Differential Equations, Taylor & Francis, 2013, 38 (7), pp.1123-1140. <10.1080/03605302.2013.785562>. <hal-00622240v2>

Export

Share

Metrics

Record views

156

Document downloads

575