M. Giraud and J. Varré, Parallel position weight matrices algorithms, International Symposium on Parallel and Distributed Computing, pp.65-69, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00623404

A. Sandelin, W. Alkema, P. Engström, and W. Wasserman, JASPAR: an open-access database for eukaryotic transcription factor binding profiles, Nucleic Acids Research, vol.32, issue.90001, pp.91-94, 2004.
DOI : 10.1093/nar/gkh012

E. Wingender, X. Chen, R. Hehl, H. Karas, I. Liebich et al., TRANSFAC: an integrated system for gene expression regulation, Nucleic Acids Research, vol.28, issue.1, pp.316-319, 2000.
DOI : 10.1093/nar/28.1.316

J. Shendure and H. Ji, Next-generation DNA sequencing, Nature Biotechnology, vol.105, issue.10, pp.1135-1145, 2008.
DOI : 10.1038/nbt1486

G. Robertson, M. Hirst, M. Bainbridge, M. Bilenky, Y. Zhao et al., Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing, Nature Methods, vol.128, issue.8, pp.651-657, 2007.
DOI : 10.1038/nmeth1068

G. E. Crooks, G. Hon, J. M. Chandonia, and B. S. , WebLogo: A Sequence Logo Generator, Genome Research, vol.14, issue.6
DOI : 10.1101/gr.849004

M. Charalambous, P. Trancoso, and A. Stamatakis, Initial Experiences Porting a Bioinformatics Application to a Graphics Processor, Adv. in Informatics, pp.415-425, 2005.
DOI : 10.1007/11573036_39

W. Liu, B. Schmidt, G. Voss, and W. , Müller-Wittig, GPU-ClustalW: using graphics hardware to accelerate multiple sequence alignment, High Performance Computing, pp.363-374, 2006.

M. C. Schatz, C. Trapnell, A. L. Delcher, and A. Varshney, High-throughput sequence alignment using Graphics Processing Units, BMC Bioinformatics, vol.8, issue.1, p.474, 2007.
DOI : 10.1186/1471-2105-8-474

C. Trapnell and M. C. Schatz, Optimizing data intensive GPGPU computations for DNA sequence alignment, Parallel Computing, vol.35, issue.8-9, pp.429-440, 2009.
DOI : 10.1016/j.parco.2009.05.002

S. A. Manavski and G. Valle, CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment, BMC Bioinformatics, vol.9, issue.Suppl 2, p.10, 2008.
DOI : 10.1186/1471-2105-9-S2-S10

Y. Liu, B. Schmidt, W. Liu, and D. L. Maskell, CUDA???MEME: Accelerating motif discovery in biological sequences using CUDA-enabled graphics processing units, Pattern Recognition Letters, vol.31, issue.14, 2009.
DOI : 10.1016/j.patrec.2009.10.009

J. Varré, B. Schmidt, S. Janot, and M. Giraud, Genome-scale Pattern Analysis in the Post-ENCODE Era, 2010.

M. Defrance and H. T. Bioinformaticsdoi, Predicting transcription factor binding sites using local over-representation and comparative genomics, BMC, pp.10-1186

J. M. Claverie and S. Audic, The statistical significance of nucleotide position-weight matrix matches, Bioinformatics, vol.12, issue.5, pp.431-440, 1996.
DOI : 10.1093/bioinformatics/12.5.431

J. Zhang, B. Jiang, M. Li, J. Tromp, X. Zhang et al., Computing exact P-values for DNA motifs, Bioinformatics, vol.23, issue.5, pp.531-537, 2007.
DOI : 10.1093/bioinformatics/btl662

H. Touzet and J. Varré, Efficient and accurate P-value computation for Position Weight Matrices, Algorithms for Molecular Biology, vol.2, issue.1
DOI : 10.1186/1748-7188-2-15

URL : https://hal.archives-ouvertes.fr/inria-00270263

D. E. Schones, P. Sumazin, and M. Q. Zhang, Similarity of position frequency matrices for transcription factor binding sites, Bioinformatics, vol.21, issue.3, pp.307-313, 2005.
DOI : 10.1093/bioinformatics/bth480

S. M. Kielbasa, D. Gonze, and H. Herzel, Measuring similarities between transcription factor binding sites, BMC Bioinformatics, vol.6, issue.237, pp.1-11, 2005.

S. Gupta, J. A. Stamatoyannopoulos, T. L. Bailey, and W. S. Noble, Quantifying similarity between motifs, Genome Biology, vol.8, issue.2
DOI : 10.1186/gb-2007-8-2-r24

URL : http://doi.org/10.1186/gb-2007-8-2-r24

U. J. Pape, S. Rahmann, and M. Vingron, Natural similarity measures between position frequency matrices with an application to clustering, Bioinformatics, vol.24, issue.3
DOI : 10.1093/bioinformatics/btm610

T. D. Wu, C. G. Nevill-manning, and D. L. Brutlag, Fast probabilistic analysis of sequence function using scoring matrices, Bioinformatics, vol.16, issue.3, pp.233-244, 2000.
DOI : 10.1093/bioinformatics/16.3.233

A. Liefooghe, H. Touzet, and J. Varré, Large Scale Matching for Position Weight Matrices, Combinatorial Pattern Matching, pp.401-412, 2006.
DOI : 10.1007/11780441_36

URL : https://hal.archives-ouvertes.fr/inria-00270270

A. Aho and M. Corasick, Efficient string matching: an aid to bibliographic search, Communications of the ACM, vol.18, issue.6, pp.333-340, 1975.
DOI : 10.1145/360825.360855

D. E. Knuth, J. H. Morris, and V. R. Pratt, Fast Pattern Matching in Strings, SIAM Journal on Computing, vol.6, issue.2, pp.323-360, 1977.
DOI : 10.1137/0206024

R. S. Boyer and J. S. Moore, A fast string searching algorithm, Communications of the ACM, vol.20, issue.10, pp.762-772, 1977.
DOI : 10.1145/359842.359859

A. Liefooghe, H. Touzet, and J. Varré, Self-overlapping Occurrences and Knuth-Morris-Pratt Algorithm for Weighted Matching, p.2009
DOI : 10.1007/978-3-540-75530-2_25

URL : https://hal.archives-ouvertes.fr/inria-00365411

C. Pizzi, P. Rastas, and E. Ukkonen, Fast Search Algorithms for Position Specific Scoring Matrices, LNCS, vol.4414, pp.239-250, 2007.
DOI : 10.1007/978-3-540-71233-6_19

J. Korhonen, P. Martinmäki, C. Pizzi, P. Rastas, and E. Ukkonen, MOODS: fast search for position weight matrix matches in DNA sequences, Bioinformatics, vol.25, issue.23, pp.3181-3182, 2009.
DOI : 10.1093/bioinformatics/btp554

M. Beckstette, R. Homann, R. Giegerich, and S. Kurtz, Fast index based algorithms and software for matching position specific scoring matrices, BMC Bioinformatics, vol.7

V. Freschi and A. Bogliolo, Using sequence compression to speedup probabilistic profile matching, Bioinformatics, vol.21, issue.10, pp.2225-2234, 2005.
DOI : 10.1093/bioinformatics/bti323

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/21/10/2225

D. G. Brown, Bioinformatics Algorithms: Techniques and Applications, 2008, Ch. A survey of seeding for sequence alignment, pp.126-152
DOI : 10.1007/978-3-662-44753-6

R. Staden, Methods for calculating the probabilities of finding patterns in sequences, Bioinformatics, vol.5, issue.2, pp.89-96, 1989.
DOI : 10.1093/bioinformatics/5.2.89

S. Rahmann, Dynamic Programming Algorithms for Two Statistical Problems in Computational Biology, WABI 2003, pp.151-164, 2003.
DOI : 10.1007/978-3-540-39763-2_12

D. E. Knuth, The Art of Computer Programming, 1997.

J. E. Stajich, D. Block, and K. Boulez, The Bioperl Toolkit: Perl Modules for the Life Sciences, Genome Research, vol.12, issue.10, pp.1611-1618, 2002.
DOI : 10.1101/gr.361602

R. C. Holland, T. A. Down, M. Pocock, A. Prlic, D. Huen et al., BioJava: an open-source framework for bioinformatics, Bioinformatics, vol.24, issue.18, pp.2096-2097, 2008.
DOI : 10.1093/bioinformatics/btn397

J. Varré, S. Janot, and M. Giraud, Biomanycores, a repository of interoperable open-source code for many-cores bioinformatics, Bioinformatics Open Source Conference, 2009.