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Abstract

The extreme-value index γ is an important parameter in extreme-value theory since it con-

trols the first order behavior of the distribution tail. In the literature, numerous estimators of

this parameter have been proposed especially in the case of heavy-tailed distributions, which

is the situation considered here. Most of these estimators depend on the k largest observa-

tions of the underlying sample. Their bias is controlled by the second order parameter ρ. In

order to reduce the bias of γ’s estimators or to select the best number k of observations to

use, the knowledge of ρ is essential. In this paper, we propose a simple approach to estimate

the second order parameter ρ leading to both existing and new estimators. We establish a

general result that can be used to easily prove the asymptotic normality of a large number of

estimators proposed in the literature or to compare different estimators within a given family.

Some illustrations on simulations are also provided.
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1 Introduction

Extreme-value theory establishes the asymptotic behavior of the largest observations in a sample.

It provides methods for extending the empirical distribution function beyond the observed data. It

is thus possible to estimate quantities related to the tail of a distribution such as small exceedance

probabilities or extreme quantiles. We refer to [11, 25] for general accounts on extreme-value

theory. More specifically, let X1, . . . , Xn be a sequence of random variables (rv), independent

and identically distributed from a cumulative distribution function (cdf) F . Extreme-value theory

establishes that the asymptotic distribution of the maximum Xn,n = max{X1, . . . , Xn} properly

rescaled is the extreme-value distribution with cdf

Gγ(x) = exp (−(1 + γx)+)−1/γ

where y+ = max(y, 0). The parameter γ ∈ R is referred to as the extreme-value index. Here, we

focus on the case where γ > 0. In such a situation, F is said to belong to the maximum domain

of attraction of the Fréchet distribution. In this domain of attraction, a simple characterization of

distributions is available: the quantile function U(x) := F←(1− 1/x) can be written as

U(x) = xγ`(x),

where ` is a slowly varying function at infinity i.e. for all λ > 0,

lim
x→∞

`(λx)
`(x)

= 1. (1)

The distribution F is said to be heavy tailed and the extreme-value parameter γ governs the heav-

iness of the tail. The estimation of γ is a central topic in the analysis of such distributions. Several

estimators have thus been proposed in the statistical literature and their asymptotic distributions

established under a second order condition: There exist a function A(x) → 0 of constant sign for

large values of x and a second order parameter ρ < 0 such that, for every λ > 0,

lim
x→∞

1
A(x)

log
(
`(λx)
`(x)

)
= Kρ(λ) :=

∫ λ

1

uρ−1du. (2)

Let us highlight that (2) implies that |A| is regularly varying with index ρ, see [16]. Hence, as the

second order parameter ρ decreases, the rate of convergence in (1) increases. Thus, the knowledge

of ρ can be of high interest in real problems. For example, the second order parameter is of

primordial importance in the adaptive choice of the best number of upper order statistics to be

considered in the estimation of the extreme-value index [24]. The estimation of ρ can also be used

to propose bias reduced estimators of the extreme value index (see for instance [4, 21, 23]) or of the

Weibull tail-coefficient [9, 10], even though some bias reduction can be achieved with the canonical

choice ρ = −1 as suggested in [12, 22]. For the above mentioned reasons, the estimation of the

second order parameter ρ has received a lot of attention in the extreme-value literature, see for

instance [3, 6, 13, 14, 17, 19, 26, 30, 31].
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In this paper, we propose a simple and general approach to estimate ρ. Let I = t(1, . . . , 1) ∈ Rd.

The two main ingredients of our approach are a random variable Tn = Tn(X1, . . . , Xn) ∈ Rd

verifying the following three assumptions:

(T1) There exists rvs ωn, χn and a function f : R− → Rd such that ω−1
n (Tn − χnI) P−→ f(ρ).

and a function ψ : Rd → R such that

(Ψ1) ψ(x+ λI) = ψ(x) for all x ∈ Rd and λ ∈ R,

(Ψ2) ψ(λx) = ψ(x) for all λ ∈ R \ {0}.

Note that (T1) imposes that Tn properly normalized converges in probability to some function

of ρ, while (Ψ1) and (Ψ2) mean that ψ is both location and shift invariant. Starting from these

three assumptions, we straightforwardly obtain that

ψ(ω−1
n (Tn − χnI)) = ψ(Tn) P−→ ψ(f(ρ)),

under a continuity condition on ψ. Denoting by Zn := ψ(Tn) and by ϕ := ψ ◦ f : R− → R, we

obtain Zn
P−→ ϕ(ρ). It is thus clear that, under an additional regularity assumption and assuming

that both Zn and ϕ are known, ρ can be consistently estimated thanks to ϕ−1(Zn). This estimation

principle is described more precisely in Section 2. The consistency and asymptotic normality of

the proposed estimator is also established. Examples of Tn random variables are presented in

Section 3. Some functions ψ are proposed in Section 4 and it is shown that the above mentioned

estimators [6, 13, 14, 17, 19] can be read as particular cases of our approach. As a consequence, this

remark permits to establish their asymptotic properties in a simple and unified way. We illustrate

how several asymptotically Gaussian estimators can be derived from this framework. Finally, some

estimators are compared in Section 5 both from the asymptotic and finite sample size performances

points of view.

2 Main results

Recall that Tn is a Rd- random vector verifying (T1) and ψ is a function Rd → R verifying (Ψ1)

and (Ψ2). We further assume that:

(Ψ3) There exist J0 ⊆ R− and an open interval J ⊂ R such that ϕ = ψ ◦ f is a bijection J0 → J .

Under this assumption, the following estimator of ρ may be considered:

ρ̂n =

∣∣∣∣∣∣ ϕ
−1(Zn) if Zn ∈ J

0 otherwise.
(3)

To derive the consistency of ρ̂n, an additional regularity assumption is introduced:
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(Ψ4) ψ is continuous in a neighborhood of f(ρ) and f is continuous in a neighborhood of ρ.

The proof of the next result is based on the heuristic consideration of Section 1 and is detailed in

Section 6.

Theorem 1. If (T1) and (Ψ1)–(Ψ4) hold then ρ̂n
P−→ ρ as n→∞.

The asymptotic normality of ρ̂n can be established under a stronger version of (Ψ4):

(Ψ5) ψ is continuously differentiable in a neighborhood of f(ρ) and f is continuously differentiable

in a neighborhood of ρ,

and the assumption that a normalized version of Tn is itself asymptotically Gaussian:

(T2) There exists two rvs ωn, χn, a sequence vn →∞, two functions f , m : R− → Rd and a d× d
matrix Σ such that vn(ω−1

n (Tn − χnI)− f(ρ)) d−→ Nd(m(ρ), γ2Σ).

Theorem 2. Suppose (T2), (Ψ1)–(Ψ3) and (Ψ5) hold. If ρ ∈ J0 and ϕ′(ρ) 6= 0, then

vn(ρ̂n − ρ) d−→ N

(
mψ(ρ)
ϕ′(ρ)

,
γ2σ2

ψ(ρ)
(ϕ′(ρ))2

)
,

with ϕ′(ρ) = tf ′(ρ)∇ψ(f(ρ)) and where we have defined

mψ(ρ) := tm(ρ) ∇ψ(f(ρ)),

σ2
ψ(ρ) := t∇ψ(f(ρ)) Σ ∇ψ(f(ρ)).

3 Examples of Tn random variables

Let X1,n ≤ . . . ≤ Xn,n be the sample of ascending order statistics and k = kn be an interme-

diate sequence i.e. such that k → ∞ and k/n → 0 as n → ∞. Most extreme-value estimators

are based either on the log-excesses (logXn−j+1,n − logXn−k,n) or on the rescaled log-spacings

j(logXn−j+1,n− logXn−j,n) defined for j = 1, . . . , k. In the following, two examples of Tn random

variables are presented based on weighted means of the log-excesses and of the rescaled log-spacings.

The first example is based on

Rk(τ) =
1
k

k∑
j=1

Hτ

(
j

k + 1

)
j(logXn−j+1,n − logXn−j,n), (4)

where Hτ : [0, 1] → R is a weight function indexed by a parameter τ ∈ (0,∞). Without loss of

generality, one can assume that Hτ integrates to one. This random variable is used for instance

in [1] to estimate the extreme-value index γ, in [17, 26, 30] to estimate the second order parameter

ρ and in [18] to estimate the third order parameter, see condition (C2) below. It is a particular

case of the kernel statistic introduced in [7]. Let us also note that, in the case where Hτ (u) = 1
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for all u ∈ [0, 1], Rk(τ) reduces to the well-known Hill estimator [27]. The asymptotic properties

of Rk(τ) require some technical condition (denoted by (C1)) on the weight function Hτ . It has

been first introduced in [1] and it is recalled hereafter. Introducing the operator

µ : h ∈ L2([0, 1]) −→ µ(h) =
∫ 1

0

h(u)du ∈ R

and It(u) = u−t for t ≤ 0 and u ∈ (0, 1], the condition can be written as

(C1) Hτ ∈ L2([0, 1]), µ(|Hτ |Iρ+1+ε) <∞ and

Hτ (t) =
1
t

∫ t

0

u(ν)dν and

for some ε > 0 and for some function u satisfying for all j = 1, . . . , k∣∣∣∣∣(k + 1)
∫ j/(k+1)

(j−1)/(k+1)

u(t)dt

∣∣∣∣∣ ≤ g
(

j

k + 1

)
,

where g is a positive continuous and integrable function defined on (0, 1). Furthermore, for

η ∈ {0, 1}, and k →∞:

1
k

k∑
j=1

Hτ

(
j

k + 1

)(
j

k + 1

)−ηρ
= µ(HτIηρ) + o(k−1/2),

max
j∈{1,...,k}

∣∣∣∣Hτ

(
j

k + 1

)∣∣∣∣ = o(k1/2).

It is then possible to define T (R)
n on the basis of Rk(τ), given in (4), as

T (R)
n =

(
T

(R)
n,i = (Rk(τi)/γ)θi , i = 1, . . . , d

)
, (5)

where θi, i = 1, . . . , d are positive parameters. In the next lemma, it is proved that T (R)
n satisfies

condition (T2) under a third order condition, which is a refinement of (2):

(C2) There exist functions A(x)→ 0 and B(x)→ 0 both of constant sign for large values of x, a

second order parameter ρ < 0 and a third order parameter β < 0 such that, for every λ > 0,

lim
x→∞

(log `(λx)− log `(x)) /A(x)−Kρ(λ)
B(x)

= L(ρ,β)(λ) :=
∫ λ

1

sρ−1

∫ s

1

uβ−1duds,

and the functions |A| and |B| are regularly varying functions with index ρ and β respectively.

This condition is the cornerstone for establishing the asymptotic normality of estimators of ρ. Let

us denote by Yn−k,n the n− k largest order statistics from a n-sample of standard Pareto rv.
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Lemma 1. Suppose (C1), (C2) hold and let k = kn be an intermediate sequence k such that

k →∞, n/k →∞, k1/2A(n/k)→∞, k1/2A2(n/k)→ λA and k1/2A(n/k)B(n/k)→ λB , (6)

for λA ∈ R and λB ∈ R. Then, the random vector T (R)
n satisfies (T2) with ω

(R)
n = A(Yn−k,n)/γ,

χ
(R)
n = 1, vn = k1/2A(n/k),

f (R)(ρ) = (θiµ(Hτi
Iρ), i = 1, . . . , d) ,

m(R)(ρ) =
(
λA

θi(θi − 1)
2γ

µ2(Hτi
Iρ)− λBθiµ(Hτi

IρK−β); i = 1, . . . , d
)
,

and, for (i, j) ∈ {1, . . . , d}2, Σ(R)
i,j = θiθjµ(Hτi

Hτj
).

The proof is a straightforward consequence of Theorem 2 and Appendix A.5 in [17].

The second example requires some additional notations. Let us consider the operator

ϑ : (h1, h2) ∈ L2([0, 1])× L2([0, 1]) −→ ϑ(h1, h2) =
∫ 1

0

∫ 1

0

h1(u)h2(v)(u ∧ v − uv)dudv ∈ R

and the two functions Īt(u) = (1 − u)−t and Jt(u) = (− log u)−t defined for t ≤ 0 and u ∈ (0, 1].

The random variables of interest are

Sk(τ, α) =
1
k

k∑
j=1

Gτ,α

(
j

k + 1

)
(logXn−j+1,n − logXn−k,n)α , (7)

where Gτ,α is a positive function indexed by two positive parameters α and τ . Without loss of

generality, it can be assumed that µ(Gτ,αJ−α) = 1. In [8, 20, 29] several estimators of γ based on

Sk(τ, α) are introduced in the particular case where G is constant. Most recently, in [6, 14, 26, 28],

Sk(τ, α) is used to estimate the parameters γ and ρ. The asymptotic distribution of these estimators

is obtained under the following assumption on the function Gτ,α.

(C3) The function Gτ,α is positive, non-increasing and integrable on (0, 1). Furthermore, there

exists δ > 1/2 such that 0 < µ(Gτ,αIδ) <∞ and 0 < µ(Gτ,αĪδ) <∞.

It is then possible to define T (S)
n on the basis of Sk(τ, α), see (7), as

T (S)
n =

(
T

(S)
n,i = (Sk(τi, αi)/γαi)θi , i = 1, . . . , d

)
. (8)

The following result is the analogous of Lemma 1 for the above random variables.

Lemma 2. Suppose (C2), (C3) hold. If the intermediate sequence k satisfy (6) then the random

vector T (S)
n satisfies (T2) with ω(S)

n = A(n/k)/γ, χ(S)
n = 1, vn = k1/2A(n/k),

f (S)(ρ) = (−θiαiµ(Gτi,αi
J1−αi

K−ρ); i = 1, . . . , d) ,

m(S)(ρ) =
(
λA

θiαi(αi − 1)
2γ

µ(GτiαiJ2−αiK
2
−ρ) + λBαiθiµ(Gτi,αiJ1−αiL(−ρ,−β)); i = 1, . . . , d

)
,

and, for (i, j) ∈ {1, . . . , d}2, Σ(S)
i,j = θiθjαiαjϑ(Gτi,αiJ1−αi , Gτj ,αjJ1−αj ).
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The proof is a straightforward consequence of Proposition 3 and Lemma 1 in [6]. In the next

section, we illustrate how the combination of T (R)
n or T (S)

n with some function ψ following (3) can

lead to existing or new estimators of ρ.

4 Applications

In this section, we propose estimators of ρ based on the random variable T (R)
n (subsection 4.1)

and T
(S)
n (subsection 4.2). In both cases, d = 8 and the following function ψδ : D 7→ R \ {0} is

considered

ψδ(x1, . . . , x8) = ψ̃δ(x1 − x2, x3 − x4, x5 − x6, x7 − x8), (9)

where δ ≥ 0, D = {(x1, . . . , x8) ∈ R8; x1 6= x2, x3 6= x4, and (x5 − x6)(x7 − x8) > 0}, and

ψ̃δ : R4 7→ R is given by:

ψ̃δ(y1, . . . , y4) =
y1

y2

(
y4

y3

)δ
.

Let us highlight that ψδ verifies the invariance properties (Ψ1) and (Ψ2).

4.1 Estimators based on the random variable Rk(τ)

Since d = 8, the random variable T
(R)
n defined in (5) depends on 16 parameters: {(θi, τi) ∈

(0,∞)2, i = 1, . . . , 8}. The following condition on these parameters is introduced. Let θ̃ =

(θ̃1, . . . , θ̃4) ∈ (0,∞)4 with θ̃3 6= θ̃4.

(C4) {θi = θ̃di/2e, i = 1, . . . , 8} with δ = (θ̃1 − θ̃2)/(θ̃3 − θ̃4). Furthermore, τ1 < τ2 ≤ τ3 < τ4,

τ5 < τ6 ≤ τ7 < τ8,

where dxe = inf{n ∈ N|x ≤ n}. Under this condition, T (R)
n involves 12 free parameters. We also

introduce the following notations: Z(R)
n = ψδ(T

(R)
n ) and ϕ

(R)
δ = ψδ ◦ f (R) where f (R) is given in

Lemma 1. Note that, since δ = (θ̃1 − θ̃2)/(θ̃3 − θ̃4), it is easy to check that Z(R)
n does not depend

on the unknown parameter γ. We now establish the asymptotic normality of the estimator ρ̂(R)
n

defined by (3) when T
(R)
n and the function ψδ are used:

ρ̂(R)
n =

∣∣∣∣∣∣ (ϕ(R)
δ )−1(Z(R)

n ) if Z(R)
n ∈ J

0 otherwise.
(10)

The following additional condition is required:

(C5) The function νρ(τ) = µ(HτIρ) is differentiable with, for all ρ < 0 and all τ ∈ R, ν′ρ(τ) > 0.

Let us denote for i ∈ {1, . . . , 4},

m
(R,i)
A = exp

{
(θ̃i − 1)(νρ(τ2i−1) + νρ(τ2i))

}
, m

(R,i)
B = exp

{
µ
(
(Hτ2i−1 −Hτ2i

)IρK−β
)

νρ(τ2i−1)− νρ(τ2i)

}
,
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and for u ∈ [0, 1],

v(R,i)(u) = exp
{
Hτ2i−1(u)−Hτ2i

(u)
νρ(τ2i−1)− νρ(τ2i)

}
.

For the sake of simplicity, we also introduce m(R)
A = (m(R,i)

A , i = 1, . . . , 4), m(R)
B = (m(R,i)

B , i =

1, . . . , 4) and v(R) = (v(R,i), i = 1, . . . , 4).

Corollary 1. Suppose (C1), (C2), (C4) and (C5) hold. There exist two intervals J and J0 such

that for all ρ ∈ J0 and for a sequence k satisfying (6),

k1/2A(n/k)(ρ̂(R)
n − ρ) d−→ N

(
λA
2γ
AB(R)

1 (δ, ρ)− λBAB(R)
2 (δ, ρ, β), γ2AV(R)(δ, ρ)

)
where

AB(R)
1 (δ, ρ) =

ϕ
(R)
δ (ρ)

[ϕ(R)
δ ]′(ρ)

log ψ̃δ(m
(R)
A ),

AB(R)
2 (δ, ρ, β) =

ϕ
(R)
δ (ρ)

[ϕ(R)
δ ]′(ρ)

log ψ̃δ(m
(R)
B ),

AV(R)(δ, ρ) =

(
ϕ

(R)
δ (ρ)

[ϕ(R)
δ ]′(ρ)

)2

µ
(

log2 ψ̃δ(v(R))
)
.

Note that this result can be read as an extension of [17], Proposition 3, in two ways. First, we

do not limit ourselves to the case δ = 1. Second, we do not assume that the function ϕ
(R)
δ is a

bijection, but it is shown to be a consequence of (C4). Besides, the proof of Corollary 1 is very

simple based on Theorem 2 and Lemma 1, see Section 6 for details.

As an example, the function Hτ : u ∈ [0, 1] 7→ τuτ−1, τ ≥ 1 satisfies conditions (C1) and (C5)

since νρ(τ) = τ/(τ − ρ). Letting τ1 ≤ τ5, τ2 = τ3, τ4 = τ8 and τ6 = τ7 leads to a simple expression

of ϕ(R)
δ :

ϕ
(R)
δ (ρ) = ω(δ, θ̃)

(
τ4 − ρ
τ1 − ρ

)(
τ5 − ρ
τ4 − ρ

)δ
where ω(δ, θ̃) =

(
θ̃1(τ1 − τ2)
θ̃2(τ2 − τ4)

)(
θ̃4(τ6 − τ4)
θ̃3(τ5 − τ6)

)δ
. (11)

Moreover, one also has explicit forms for J0 and J in two situations:

(i) If 0 ≤ δ ≤ δ0 := (τ4 − τ1)/(τ4 − τ5) then ϕ
(R)
δ is increasing from J0 = R− to J = ω(δ, θ̃) •

(1, ψ̃δ(τ4, τ1, τ4, τ5)).

(ii) If δ ≥ δ1 := δ0τ5/τ1 then ϕ(R)
δ is decreasing from J0 = R− to J = ω(δ, θ̃)•(ψ̃δ(τ4, τ1, τ4, τ5), 1).

Here, • denotes the scaling operator. The case δ ∈ (δ0, δ1) is not considered here, since one can

show that, in this situation, J0 ( R− and thus the condition ρ ∈ J0 of Corollary 1 is not necessarily

satisfied. Let us now list some particular cases where the inverse function of ϕ(R)
δ is explicit.

Example 1. Let δ = 1 i.e. θ̃1 − θ̃2 = θ̃3 − θ̃4. The rv Z(R)
n is denoted by Z(R)

n,1 . Since δ0 > 1, we

are in situation (i) and

ρ̂
(R)
n,1 =

τ5ω(1, θ̃)− τ1Z(R)
n,1

ω(1, θ̃)− Z(R)
n,1

1l{Z(R)
n,1 ∈ ω(1, θ̃) • (1, ψ̃1(τ4, τ1, τ4, τ5))}.
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Remark that this estimator coincides with the one proposed in [17], Lemma 1.

Example 2. Let δ = 0 i.e. θ̃1 = θ̃2. The rv Z
(R)
n is thus denoted by Z

(R)
n,2 . Again, we are in

situation (i) and a new estimator of ρ is obtained

ρ̂
(R)
n,2 =

τ4ω(0, θ̃)− τ1Z(R)
n,2

ω(0, θ̃)− Z(R)
n,2

1l{Z(R)
n,2 ∈ ω(0, θ̃) • (1, ψ̃0(τ4, τ1, τ4, τ5))}.

Example 3. Let τ1 = τ5. In this case δ0 = δ1 = 1 and thus, we are in situation (i) if δ < 1 and

in situation (ii) otherwise. In this case, the rv Z(R)
n is denoted by Z(R)

n,3 . A new estimator of ρ is

obtained:

ρ̂
(R)
n,3 =

τ4(Z(R)
n,3 /ω(δ, θ̃))1/(δ−1) − τ1

(Z(R)
n,3 /ω(δ, θ̃))1/(δ−1) − 1

1l{Z(R)
n,3 ∈ J}.

4.2 Estimators based on the random variable Sk(τ, α)

The random variable T (S)
n defined in (8) depends on 24 parameters: {(θi, τi, αi) ∈ (0,∞)3, i =

1, . . . , 8}. Let (ζ1, . . . , ζ4) ∈ (0,∞)4 with ζ3 6= ζ4. In the following, we assume that

(C6) {θiαi = ζdi/2e, i = 1, . . . , 8} with δ = (ζ1 − ζ2)/(ζ3 − ζ4). Furthermore, (τ2i−1, α2i−1) 6=
(τ2i, α2i), for i = 1, . . . , 4 and, for i = 3, 4, (τ2i−1, α2i−1) < (τ2i, α2i),

where (x, y) 6= (s, t) means that x 6= s and/or y 6= t and (x, y) < (s, t) means that x < s and y ≤ t
or x = s and y < t. We introduce the notations: Z(S)

n = ψδ(T
(S)
n ) and ϕ

(S)
δ = ψδ ◦ f (S) where

f (S) is given in Lemma 2. Under this condition, T (S)
n involves 20 free parameters. Besides, since

δ = (ζ1− ζ2)/(ζ3− ζ4), it is easy to check that Z(S)
n does not depend on the unknown parameter γ.

To establish the asymptotic distribution of the estimator ρ̂(S)
n , the following condition is required:

(C7) For all ρ < 0, the function νρ(τ, α) = µ(Gτ,αJ1−αK−ρ) is differentiable with ∂
∂τ νρ(τ, α) > 0

and ∂
∂ανρ(τ, α) > 0 for all α > 0 and all τ ∈ R.

For i = 1, . . . , 4, we introduce the notations:

m
(S,i)
A = exp

{
(α2i−1 − 1)µ(Gτ2i−1,α2i−1J2−α2i−1K

2
−ρ)− (α2i − 1)µ(Gτ2i,α2i

J2−α2i
K2
−ρ)

νρ(τ2i, α2i)− νρ(τ2i−1, α2i−1)

}
,

m
(S,i)
B = exp

{
µ(Gτ2i−1,α2i−1J1−α2i−1L(−ρ,−β))− µ(Gτ2i,α2i

J1−α2i
L(−ρ,−β))

νρ(τ2i, α2i)− νρ(τ2i−1, α2i−1)

}
,

and for u ∈ [0, 1],

v(S,i)(u) =
Gτ2i−1,α2i−1(u)J1−α2i−1(u)−Gτ2i,α2i

(u)J1−α2i
(u)

νρ(τ2i, α2i)− νρ(τ2i−1, α2i−1)
.

Let us also consider m(S)
A = (m(S,i)

A , i = 1, . . . , 4) and m
(S)
B = (m(S,i)

B , i = 1, . . . , 4). The next

result is a direct consequence of Theorem 2 and Lemma 2, see Section 6 for a short proof.
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Corollary 2. Suppose (C2), (C3), (C6) and (C7) hold. There exist two intervals J and J0 such

that for all ρ ∈ J0 and for a sequence k satisfying (6),

k1/2A(n/k)(ρ̂(S)
n − ρ) d−→ N

(
λA
2γ
AB(S)

1 (δ, ρ) + λBAB(S)
2 (δ, ρ, β), γ2AV(S)(δ, ρ)

)
where

AB(S)
1 (δ, ρ)=

ϕ
(S)
δ (ρ)

[ϕ(S)
δ ]′(ρ)

log ψ̃δ(m
(S)
A ),

AB(S)
2 (δ, ρ, β)=

ϕ
(S)
δ (ρ)

[ϕ(S)
δ ]′(ρ)

log ψ̃δ(m
(S)
B ),

AV(S)(δ, ρ)=

(
ϕ

(S)
δ (ρ)

[ϕ(S)
δ ]′(ρ)

)2

ϑ
(
v(S,1)−v(S,2)−δ(v(S,3)−v(S,4)), v(S,1)−v(S,2)−δ(v(S,3)−v(S,4))

)
.

Let us highlight that Proposition 5, Proposition 7 and Proposition 9 of [6] are particular cases

of Corollary 2 for three different value of δ (δ = 2, δ = 1 and δ = 0 respectively). The asymp-

totic normality of the estimators proposed in [19] and in [14] can also be easily established with

Corollary 2.

As an example of function Gτ,α, one can consider the function defined on [0, 1] by:

Gτ,α(u) =
gτ−1(u)∫ 1

0
gτ−1(x)J−α(x)dx

for τ ≥ 1 and α > 0,

where the function gτ is given by

g0(x) = 1, gτ−1(x) =
τ

τ − 1
(1− xτ−1),∀τ > 1.

Clearly, the function Gτ,α satisfies condition (C7) and, under (C6), the expression of ϕ(S)
ρ is

ϕ
(S)
δ (ρ) =

ζ1
ζ2

(
ζ4
ζ3

)δ
νρ(τ1, α1)− νρ(τ2, α2)
νρ(τ3, α3)− νρ(τ4, α4)

[
νρ(τ7, α7)− νρ(τ8, α8)
νρ(τ5, α5)− νρ(τ6, α6)

]δ
with

νρ(τ, α) =
1− (1− ρ)−α + (τ − ρ)−α − τ−α

αρ(1− τ−α−1)
if τ 6= 1 and νρ(1, α) =

1
αρ

(1− ρ)α − 1
(1− ρ)α

.

Even if Corollary 2 ensures the existence of intervals J0 and J , they are impossible to specify in

the general case. In the following, we consider several sets of parameters where these intervals can

be easily exhibited and for which the inverse function ϕ(S)
δ admits an explicit form. To this end, it

is assumed that τ2 = τ3 = τ5 = τ6 = τ7 = τ8 = α7 = 1, α6 = 3, α8 = 2 and the following notation

is introduced:

ω∗(δ, ζ) =
ζ1
ζ2

(
3ζ4
ζ3

)δ
.

In all the examples below, J0 = R− and thus the condition ρ ∈ J0 is always satisfied. The first

three examples correspond to existing estimators of the second order parameter while the three

last examples give rise to new estimators.
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Example 4. Let δ = 0 (i.e. ζ1 = ζ2), α1 = α2 = α3 = α4 = 1, τ1 = 2 and τ4 = 3. Denoting by

Z
(S)
n,4 the rv Z(S)

n , the estimator of ρ is given by:

ρ̂
(S)
n,4 =

6(Z(S)
n,4 + 2)

3Z(S)
n,4 + 4

1l{Z(S)
n,4 ∈ (−2,−4/3)}.

Note that this estimator corresponds to the estimator ρ̂[2]
n,k defined in [6], Section 5.2.

Example 5. Let δ = 0, α1 = α3 = α4 = 1 and τ1 = τ4 = α2 = 2. Denoting by Z(S)
n,5 the rv Z(S)

n ,

we find back the estimator ρ̂[3]
n,k proposed in [6], Section 5.2:

ρ̂
(S)
n,5 =

2(Z(S)
n,5 − 2)

2Z(S)
n,5 − 1

1l{Z(S)
n,5 ∈ (1/2, 2)}.

Example 6. Let α1 = ζ1 = 4, α3 = ζ2 = ζ4 = 2, ζ3 = 3 and α2 = α4 = α5 = τ1 = τ4 = 1. These

choices entail δ = 2. Denoting by Z(S)
n,6 the rv Z(S)

n , the estimator of ρ given by:

ρ̂
(S)
n,6 =

6Z(S)
n,6 − 4 + (3Z(S)

n,6 − 2)1/2

4Z(S)
n,6 − 3

1l{Z(S)
n,6 ∈ (2/3, 3/4)}.

corresponds to the one proposed in [19], equation (12).

Example 7. Consider the case δ = 1 (i.e. ζ1−ζ2 = ζ3−ζ4), α1 = α2 = α3 = α4 = 1, τ1 = α5 = 2

and τ4 = 3. Denoting by Z(S)
n,7 the rv Z(S)

n , a new estimator of ρ is given by:

ρ̂
(S)
n,7 =

6Z(S)
n,7 + 4ω∗(1, ζ)

3Z(S)
n,7 + 4ω∗(1, ζ)

1l{Z(S)
n,7 ∈ ω∗(1, ζ) • (−4/3,−2/3)}.

Example 8. Let δ = 1, α1 = α3 = α4 = 1 and τ1 = τ4 = α2 = α5 = 2. Denoting by Z(S)
n,8 the rv

Z
(S)
n , we obtain a new estimator of ρ:

ρ̂
(S)
n,8 =

6Z(S)
n,8 − 4ω∗(1, ζ)

2Z(S)
n,8 − ω∗(1, ζ)

1l{Z(S)
n,8 ∈ ω∗(1, ζ) • (1/2, 2/3)}.

Example 9. Let τ1 = τ4 = α1 = 1, α2 = α3 = α5 = 2 and α4 = 3. Denoting by Z(S)
n,9 the rv Z(S)

n ,

the estimator of ρ is given by:

ρ̂
(S)
n,9 =

3(Z(S)
n,9/(3ω

∗(δ, ζ)))1/(δ+1) − 1

(Z(S)
n,9/(3ω∗(δ, ζ)))1/(δ+1) − 1

1l{Z(S)
n,9 ∈ ω∗(δ, ζ) • (3−δ, 3)}.

In the particular case where δ = 0, this estimator corresponds to the one proposed in [13].

To summarize, we have illustrated how Theorem 2 may be used to prove the asymptotic nor-

mality of estimators built on T
(R)
n or T (S)

n : Corollary 1 and Corollary 2 cover a large number of

estimators proposed in the literature. Five new estimators of ρ have been introduced: ρ̂(R)
n,2 , ρ̂(R)

n,3 ,

ρ̂
(S)
n,7, ρ̂(S)

n,8 and ρ̂
(S)
n,9. All of them are explicit and are asymptotically Gaussian. The comparison
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of their finite sample properties is a huge task since they may depend on their parameters (θi, τi,

αi) as well as on the simulated distribution. We conclude this study by proposing a method for

selecting some “asymptotic optimal” parameters within a family of estimators. The performances

and the limits of this technique are illustrated by comparing several estimators on simulated data.

5 Comparison of some estimators

Some estimators of ρ are now compared on a specific Pareto-type model, namely the Burr dis-

tribution with cdf F (x) = 1 − (ζ/(ζ + xη))λ , x > 0, ζ, λ, η > 0, considered for instance in [2],

equation (3). The associated extreme-value index is γ = 1/(λη) and this model satisfies the third

order condition (C2) with ρ = β = −1/λ, A(x) = γxρ/(1 − xρ) and B(x) = ρxρ/(1 − xρ). We

limit ourselves to the case ζ = 1 and λ = 1/η so that γ = 1.

5.1 Estimators based on the random variable Rk(τ)

Let us first focus on the estimators of ρ based on the random variables Rk(τi) considered in

Section 4.1 with kernel functions Hτi
(u) = τiu

τi−1, for i = 1, . . . , 8. The values of the parameters

τ1, ..., τ8, θ̃1, θ̃3 and θ̃4 are taken as in [17, 30]: τ1 = 1.25, τ2 = τ3 = 1.75, τ4 = τ8 = 2, τ5 = 1.5,

τ6 = τ7 = 1.75, θ̃1 = 0.01, θ̃3 = 0.02 and θ̃4 = 0.04. According to the authors, these values yield

good results for distributions satisfying the third order condition (C2) with β = ρ. For these

parameters, a simple expression of ϕ(R)
δ is obtained, see (11), and we have δ0 = 1.5 and δ1 = 1.8.

Recall that θ̃2 = θ̃1 + δ(θ̃4 − θ̃3) for δ ≥ 0. In the following, we propose to choose the remaining

parameter δ using a method similar to the one proposed in [15]. It consists in minimizing with

respect to δ an upper bound on the asymptotic mean-squared error. The method is described in

Paragraph 5.1.1 and an example of application is presented in Paragraph 5.1.2.

5.1.1 Controlling the asymptotic mean-squared error

As in [17], we assume that ρ = β. Following Corollary 1, the asymptotic bias components of

ρ̂
(R)
n are respectively proportional to AB(R)

1 (δ, ρ) and AB(R)
2 (δ, ρ, ρ) while its asymptotic variance

is proportional to AV(R)(δ, ρ). The asymptotic mean-squared error of ρ̂(R)
n can be defined as

AMSE(δ, γ, ρ) =
1

kA2(n/k)

((
λA
2γ
AB(R)

1 (δ, ρ)− λBAB(R)
2 (δ, ρ, ρ)

)2

+ γ2AV(R)(δ, ρ)

)
. (12)

One way to choose the parameter δ could be to minimize the above asymptotic mean-squared error.

In practice, the parameters γ, ρ as well as the functions A and B are unknown and thus the asymp-

totic mean-squared error cannot be evaluated. To overcome this problem, it is possible to introduce

an upper bound on AMSE(δ, γ, ρ). Assuming that δ ∈ [0, δ0) ∪ (δ1,∞) and ρ ∈ [ρmin, ρmax], it is

easy to check that |AB(R)
1 (δ, ρ)| ≥ |AB(R)

1 (δ1, ρmax)|, |AB(R)
2 (δ, ρ, ρ)| ≥ |AB(R)

2 (δ0, ρmin, ρmin)| and,
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numerically, we can see that AV(R)(δ, ρ) ≥ AV(R)(1.32,−0.46). We thus have:

AMSE(δ, γ, ρ) ≤ Cπ(δ, ρ)
kA2(n/k)

,

with π(δ, ρ) = (AB(R)
1 (δ, ρ)AB(R)

2 (δ, ρ, ρ))2AV(R)(δ, ρ) and where the constant C does not depend

on δ and ρ. We thus consider for ρ < 0 the parameter δ minimizing the function π(δ, ρ). For

instance, when ρ is in the neighborhood of 0, one can show that the optimal value is δ = δ0 = 1.5.

5.1.2 Illustration on the Burr distribution

Three estimators are compared:

• the estimator ρ̂(R)
n,1 proposed in [17], and which corresponds to the case δ = 1, see Example 1,

• the new explicit estimator ρ̂(R)
n,2 introduced in Example 2 which corresponds to the case δ = 0,

• the new implicit estimator defined by ρ̂(R)
n,0 := ρ̂

(R)
n with δ = δ0 = 1.5, see equation (10).

First, the estimators are compared on the basis of their asymptotic mean-squared errors. Taking

λA = k1/2A2(n/k) and λB = ρλA/γ, the asymptotic mean-squared errors are plotted on the left

panel of Figure 1 as a function of k ∈ {1500, . . . , 4999} with n = 5000 and for ρ ∈ {−1,−0.25}. It

appears that ρ̂(R)
n,0 yields the best results for ρ = −1. This is in accordance with the results from

the previous paragraph: δ = 1.5 is the “optimal” when ρ is close to 0. As a preliminary conclusion,

the criterion π(.) seems to be well-adapted for tuning the estimator parameters. At the opposite,

when ρ = −0.25, the best estimator from the asymptotic mean-squared error point of view is ρ̂(R)
n,2 .

Second, the estimators are compared on their finite sample size performances. For each esti-

mator, and for each value of k ∈ {1500, . . . , 4999}, the empirical mean-squared error is computed

on 500 replications of the sample of size n = 5000. The results are displayed on the right panel

of Figure 1. The conclusions are qualitatively the same: ρ̂(R)
n,0 yields the best results in the case

ρ ≥ −1 where as ρ̂(R)
n,2 yields the best results in the case ρ < −1. Let us note that, consequently,

ρ̂
(R)
n,1 is never the best estimator in the situation considered here. In practice, the case ρ ≥ −1 is

the more interesting one, since it corresponds to a strong bias. For this reason, it seems to us that

ρ̂
(R)
n,0 should be preferred.

5.2 Estimators based on the random variable Sk(τ, α)

Let us now consider the estimators of ρ based on the random variables Sk(τi, αi) for i = 1, . . . , 8

considered in Section 4.2 in the case where (τ1, α1) = (τ7, α7), (τ2, α2) = (τ8, α8), (τ3, α3) = (τ5, α5)

and (τ4, α4) = (τ6, α6). In Paragraph 5.2.1, we show that the asymptotic mean-squared error

is independent of δ. In contrast, Paragraph 5.2.2 illustrates the finite sample behavior of the

estimators when δ varies.
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5.2.1 Comparison in terms of asymptotic mean-squared error

From Corollary 2, the asymptotic bias and variance components of ρ̂(S)
n are respectively propor-

tional to

AB(S)
1 (δ, ρ) =

g(S)(ρ)
(g(S))′(ρ)

(
logm(S,1)

A − logm(S,2)
A

)
,

AB(S)
2 (δ, ρ) =

g(S)(ρ)
(g(S))′(ρ)

(
logm(S,1)

B − logm(S,2)
B

)
,

AV(S)(δ, ρ) =
(

g(S)(ρ)
(g(S))′(ρ)

)2

ϑ(v(S,1) − v(S,2), v(S,1) − v(S,2)),

where

g(S)(ρ) =
ζ1
ζ2

µ(Gτ1,α1J1−α1K−ρ)− µ(Gτ2,α2J1−α2K−ρ)
µ(Gτ3,α3J1−α3K−ρ)− µ(Gτ4,α4J1−α4K−ρ)

.

It thus appears that the asymptotic mean-squared error (defined similarly to (12)) does not depend

on δ. From the asymptotic point of view, all the estimators ρ̂(S)
n such that (τ1, α1) = (τ7, α7),

(τ2, α2) = (τ8, α8), (τ3, α3) = (τ5, α5) and (τ4, α4) = (τ6, α6) are thus equivalent.

5.2.2 Comparison on the simulated Burr distribution

For the sake of simplicity, we fix α1 = α7 = θ5 = θ7 = τ1 = · · · = τ8 = 1, α2 = α3 = α5 = α8 = 2,

α4 = α6 = 3, θ3 = θ8 = 1/2, θ4 = 1/3, θ6 = 2/3, θ1 = δ + 1 and θ2 = (δ + 1)/2 so that δ is the

unique free parameter. The resulting estimator is ρ̂(S)
n,9, it coincides with the one proposed in [13]

when δ = 0. For each value of k ∈ {500, . . . , 4999}, the empirical mean-squared error associated

to ρ̂
(S)
n,9 is computed on 500 replications of the sample of size n = 5000 for δ ∈ {0, 1, 2} and for

ρ ∈ {−0.25,−1}. The results are displayed on Figure 2. It appears that δ = 0 yields the best

results for both values of ρ: the empirical mean-squared error is smaller than these associated to

δ = 1 or δ = 2. This hierarchy cannot be observed on the asymptotic mean-squared error.

5.3 Tentative conclusion

The families of estimators of the second order parameter usually depend on a large set, say Θ, of

parameters (12 parameters for estimators based on the random variables Rk(τ) and 20 parameters

for Sk(τ, α)). The methodology proposed in Paragraph 5.1.1 permits to compute an upper bound

π(.) on the asymptotic mean-squared error AMSE associated to the estimators. This requires

to show that the quantities AB1, AB2 and AV are lower bounded when Θ varies in some region

RΘ. Thus, it may be possible, for some well chosen region RΘ, to find an ”optimal” set of

parameters minimizing π(.). Unfortunately, the AMSE may not depend on all the parameters

in Θ (see Paragraph 5.2.1) whereas the finite sample performances of the estimator does (see

Paragraph 5.2.2). In such a case, the definition of a criterion for selecting an optimal Θ is an open

question.
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6 Proofs

Proof of Theorem 1. Clearly, (Ψ1) and (Ψ2) entail Zn = ψ(ω−1
n (Tn − χnI)). Moreover, (T1)

and (Ψ4) yield Zn
P−→ ψ(f(ρ)) = ϕ(ρ). For all ε > 0, we have

P(|ρ̂n − ρ| > ε) = P({|ρ̂n − ρ| > ε} ∩ {Zn ∈ J}) + P({|ρ̂n − ρ| > ε} ∩ {Zn /∈ J})

≤ P({|ρ̂n − ρ| > ε} ∩ {Zn ∈ J}) + P({Zn /∈ J})

= P({|ϕ−1(Zn)− ρ| > ε} ∩ {Zn ∈ J}) + P({Zn /∈ J}).

From (Ψ3) and (Ψ4), ϕ−1 is also continuous in a neighborhood of ϕ(ρ). Since Zn
P−→ ϕ(ρ), it

follows that P({|ϕ−1(Zn) − ρ| > ε} ∩ {Zn ∈ J}) → 0 as n → ∞. Besides, ρ ∈ J0 yields ϕ(ρ) ∈ J
and thus

P({Zn /∈ J})→ 0 as n→∞. (13)

As a conclusion, P(|ρ̂n − ρ| > ε)→ 0 as n→∞ and the result is proved.

Proof of Theorem 2. Recalling that Zn = ψ(ω−1
n (Tn − χnI)), a first order Taylor expansion

shows that there exists ε ∈ (0, 1) such that

vn(Zn − ϕ(ρ)) = t(vnξn) ∇ψ(f(ρ) + εξn),

where we have defined ξn = ω−1
n (Tn − χnI) − f(ρ). Therefore, ξn

P−→ 0 and (Ψ5) entail that

∇ψ(f(ρ) + εξn) P−→ ∇ψ(f(ρ)). Thus, taking account of (T2), we obtain that

vn(Zn − ϕ(ρ)) d−→ N (mψ(ρ), γ2σ2
ψ(ρ)). (14)

Now, Pn(x) := P({vn(ρ̂n − ρ) ≤ x}) can be rewritten as

Pn(x) = P({vn(ρ̂n − ρ) ≤ x} ∩ {Zn ∈ J}) + P({vn(ρ̂n − ρ) ≤ x} ∩ {Zn /∈ J})

= P({vn(ϕ−1(Zn)− ρ) ≤ x} ∩ {Zn ∈ J}) + P({vn(ρ̂n − ρ) ≤ x} ∩ {Zn /∈ J})

=: P1,n(x) + P2,n(x).

Let us first note that

0 ≤ P2,n(x) ≤ P({Zn /∈ J})→ 0 as n→∞, (15)

in view of (13) in the proof of Theorem 1. Focusing on P1,n(x), since ϕ is continuously differentiable

in a neighborhood of ρ and ϕ′(ρ) 6= 0, it follows that ϕ is monotone in a neighborhood of ρ. Let

us consider the case where ϕ is decreasing, the case ϕ increasing being similar. Writing J = (a, b),

it follows that

P1,n(x) = P({a ∨ ϕ(ρ+ x/vn) ≤ Zn ≤ b})

= P({vn(a ∨ ϕ(ρ+ x/vn)− ϕ(ρ)) < vn(Zn − ϕ(ρ)) ≤ vn(b− ϕ(ρ))}).
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Introducing Gn the cumulative distribution function of vn(Zn − ϕ(ρ)), we have

1− P1,n(x) = 1−Gn(vn(b− ϕ(ρ))) +Gn(vn(a ∨ ϕ(ρ+ x/vn)− ϕ(ρ)))

= 1−Gn(vn(b− ϕ(ρ))) +Gn(vn(a− ϕ(ρ))) ∨Gn(vn(ϕ(ρ+ x/vn)− ϕ(ρ)))

=: P1,1,n + P1,2,n ∨ P1,3,n(x).

Let G denote the cumulative distribution function of the N (mψ(ρ), γ2σ2
ψ(ρ)) distribution. It is

straightforward that

P1,1,n ≤ 1−G(vn(b− ϕ(ρ))) + sup
t∈R
|Gn(t)−G(t)|.

Since ρ ∈ J0, we have ϕ(ρ) ∈ J = (a, b). In particular, b > ϕ(ρ) yields 1−G(vn(b− ϕ(ρ)))→ 0 as

n → ∞. Besides, (14) shows that Gn(t) → G(t) for all t ∈ R and thus Gn(t) → G(t) uniformly,

see for instance [11], p.552. As a preliminary conclusion P1,1,n → 0 and, similarly, P1,2,n → 0 as

n→∞. Finally,

|P1,3,n(x)−G(xϕ′(ρ))| ≤ |G(vn(ϕ(ρ+ x/vn)− ϕ(ρ))−G(xϕ′(ρ))|+ sup
t∈R
|Gn(t)−G(t)|

and, in view of (Ψ5), vn(ϕ(ρ + x/vn) − ϕ(ρ)) → xϕ′(ρ) as n → ∞, which leads to P1,3,n(x) →
G(xϕ′(ρ)) as n→∞. We thus have shown that

P1,n(x)→ 1−G(xϕ′(ρ)) = G(x|ϕ′(ρ)|) as n→∞. (16)

Collecting (15) and (16) yields

P({vn(ρ̂n − ρ) ≤ x})→ G(x|ϕ′(ρ)|) as n→∞

and concludes the proof.

Proof of Corollary 1. Clearly, ψδ given in (9) satisfies (Ψ1) and (Ψ2). Moreover, Lemma 1

shows that (T2) holds. To apply Theorem 2 it only remains to prove that (Ψ3) and (Ψ5) are

satisfied. First remark that under (C4) and (C5), ϕ(R)
δ (ρ) is well defined for all ρ ≤ 0 since

f (R)(ρ) ∈ D. Furthermore, from Lemma 1, we have for i = 1, . . . , 4,

T
(R)
n,2i−1 − T

(R)
n,2i =

θ̃iA(Yn−k,n)
γ

(νρ(τ2i−1)− νρ(τ2i))(1 + oP (1)),

as n goes to infinity. Hence, conditions (C4) and (C5) imply that T (R)
n ∈ D. Finally, using Lerch’s

Theorem (see [5], page 345), condition (C4) implies that there exists ρ0 < 0 such that the first

derivative of ϕ(R)
δ is non zero at ρ0. Thus, the inverse function theorem insures the existence of

intervals J0 and J for which the function ϕ(R)
δ is a continuously differentiable bijection from J0 to

J . In conclusion, conditions (Ψ3) and (Ψ5) are satisfied and Theorem 2 applies.
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Proof of Corollary 2. The proof follows the same lines as the one of Corollary 1. It consists in

remarking that, under (C6) and (C7), one has f (S)(ρ) ∈ D and T
(S)
n ∈ D since,

T
(S)
n,2i−1 − T

(S)
n,2i =

ζiA(n/k)
γ

(νρ(τ2i, α2i)− νρ(τ2i−1, α2i−1)) (1 + oP (1)),

in view of Lemma 2.
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Figure 1: Asymptotic mean-squared errors (left) and empirical mean-squared errors (right) of ρ̂(R)
n,0 ,

ρ̂
(R)
n,1 and ρ̂

(R)
n,2 as a function of k for a Burr distribution.
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Figure 2: Empirical mean-squared errors of ρ̂(S)
n,9 as a function of k for a Burr distribution.
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