
HAL Id: hal-00639193
https://hal.inria.fr/hal-00639193

Submitted on 8 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Case for the TAGE Branch Predictor
André Seznec

To cite this version:
André Seznec. A New Case for the TAGE Branch Predictor. ACM. MICRO 2011 : The 44th Annual
IEEE/ACM International Symposium on Microarchitecture, 2011, Dec 2011, Porto Allegre, Brazil.
2011. <hal-00639193>

https://hal.inria.fr/hal-00639193
https://hal.archives-ouvertes.fr

A New Case for the TAGE Branch Predictor∗

André Seznec
INRIA/IRISA

Campus de Beaulieu

35042 Rennes Cedex

E-mail: andre.seznec@inria.fr

Abstract

The TAGE predictor is often considered as state-of-the-art in
conditional branch predictors proposed by academy. In this paper,
we first present directions to reduce the hardware implementation
cost of TAGE. Second we show how to further reduce the mis-
prediction rate of TAGE through augmenting it with small side
predictors.

On a hardware implementation of a conditional branch predic-
tor, the predictor tables are updated at retire time. A retired branch
normally induces three accesses to the branch predictor tables :
read at prediction time, read at retire time and write for the update.
We show that in practice, the TAGE predictor accuracy would not
be significantly impaired by avoiding a systematic second read of
the prediction tables at retire time for correct prediction. Com-
bined with the elimination of silent updates, this significantly re-
duces the number of accesses to the predictor. Furthermore, we
present a technique allowing to implement the TAGE predictor ta-
bles as bank-interleaved structures using single-port memory com-
ponents. This significantly reduces the silicon footprint of the pre-
dictor as well as its energy consumption without significantly im-
pairing its accuracy.

In the last few years, progress in branch prediction accuracy has
relied on associating a main state-of-the-art single scheme branch
predictor with specialized side predictors. As a second contri-
bution of the paper, we develop this side predictor approach for
TAGE. At the recent 3rd Championship Branch Prediction,it was
shown that the TAGE predictor can be augmented with several side
predictors, each one addressing a category of predictions that is not
optimally addressed by TAGE. The Immediate Update Mimicker
tracks the inflight already executed but not retired branches and

∗This work was partially supported by the European Research
Council Advanced Grant DAL No 267175

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’11, December 3-7, 2011, Porto Alegre, Brazil
Copyright c© 2011 ACM 978-1-4503-1053-6/11/12 ...$10.00.

use their result for correcting the predictions. Sometimes TAGE
fails to predict when the control flow path inside the loop body
is irregular. TAGE can be augmented with a loop predictor to
predict loops with constant iteration numbers, TAGE also some-
times fails to predict branches that are not strongly biased but that
are only statistically biased. The Statistical Corrector Predictor is
introduced to track these statistically correlated branches. These
side predictors allow to increase the prediction accuracy of TAGE.
Building on top of these proposals, we further show that the Sta-
tistical Corrector Predictor can be used to leverage local history to
further improve the potential of the TAGE predictor. Furthermore,
we show that the use of a Statistical Corrector predictor based on
local history, LSC, dwarfs the benefits of the loop predictor and
the global history Statistical Corrector.

Finally, we present a cost-effective implementation of the TAGE-
LSC predictor using single-port memory components and a re-
duced number of accesses per prediction.

Categories and Subject Descriptors

C.1.1 [Processor Architectures]: Single Data Stream Archi-
tectures

General Terms

Performance

1. Introduction

From 1990 to 2000, there has been a very active research in
branch prediction [28, 20, 16, 4, 17, 3] resulting in the design
of complex branch predictors [22]. After 2001, the research on
branch prediction was essentially conducted by a small community
that participated to the Championship Branch Prediction (CBP) in
2004 and 2006 [11, 21, 23, 8, 15, 6, 18]. However, tremendous
progress were made during this period: the research of neural in-
spired predictors led by Jimenez [13, 9, 11, 1], the introduction
of GEometric History Length predictors by Seznec [21] and the
introduction of the TAGE predictor by Seznec and Michaud [26].
In practice, on the traces distributed for the first two CBPs, more

accuracy progress was achieved between 2001 and 2006 than be-
tween 1993 and 2001 after the introduction of gshare by McFar-
ling in 1993 [16].

Since 2006, TAGE has been often considered as state-of-the-
art in terms of branch prediction accuracy [1, 5]. In this paper,
we reenforce the case for the TAGE predictor in two directions.
First we show that the TAGE predictor requires less accesses to
the predictor tables than other branch predictors thus potentially
enabling simpler (or more cost effective) implementation. Sec-
ond, building on the side predictors recently presented at the 3rd
Championship Branch Prediction [24] for the TAGE predictor, we
show that TAGE can be combined with a small local history pre-
dictor to obtain even higher accuracy at the same storage budget,
thus achieving state-of-art prediction accuracy. Combining these
two approaches, we present a cost-effective predictor that achieves
state-of-the-art prediction accuracy.

In a processor, the hardware predictor tables are updated at re-
tire time to avoid pollution by the wrong path; this delayed update
induces extra mispredictions compared with oracle update at fetch
time. Previous studies were generally showing that the accuracy
loss due to this delayed update on global history predictors is rel-
atively marginal [10, 21]. However these studies are assuming
that the predictor tables are read a second time and the prediction
recomputed at retire time. Each branch on the correct path poten-
tially leads to 3 accesses of the predictor tables, read at prediction
time, read at retire time and write at retire time. Such a high num-
ber of accesses potentially leads to a very costly branch predic-
tion structure (multiported and/or very complex bank-interleaved
structure). As a first contribution of the paper, we show that on
the TAGE predictor and contrary to other predictors, the read at
retire time can be avoided with limited accuracy loss. Combined
with the elimination of silent updates (more than 90 % in average),
this significantly reduces the number of accesses to the predictor.
Moreover, we present a bank-interleaving technique that allows
to use single-ported memory components to build the TAGE pre-
dictor tables. Combining these two techniques allows significant
silicon area savings and significant reduction of the energy con-
sumption on the predictor.

Since 2006, the trend for further prediction accuracy improve-
ment is to associate side predictors targeting special categories
of branches with a state-of-the-art main predictor (TAGE, [26],
OGEHL [21], Piecewise Linear [11], FTL [8]), e.g. a loop predic-
tor with the TAGE predictor in L-TAGE [26] or the address-branch
correlator in [5].

In this paper, we illustrate this approach for the TAGE predic-
tor with the ISL-TAGE predictor, that was presented at the 3rd
Championship Branch Prediction [24].

For the TAGE predictor, in order to limit the mispredictions due
to delayed updates, we introduce the Immediate Update Mimicker,
IUM, (Section 5.1) that aims at limiting these extra mispredictions
through predicting branches with inflight non-retired occurrences:
if the prediction for branch B is provided by the same predictor
table and the same table entry that already provided the prediction
for an already executed but not yet retired branch B’ the we use the
execution outcome of branch B’ as a prediction for branch B rather
than the output of the predictor. The IUM is shown to allow to re-
cover almost all the mispredictions due to delayed updates. While
TAGE is generally very efficient at predicting periodic regular be-
havior even when the period spans over hundreds or thousands of
branches, it fails to predict loop exits if the control flow path inside
the loop body is irregular. A loop predictor [6] can more efficiently

track loops with constant numbers of iterations and therefore pre-
dict the exit of these loops with a very high accuracy (Section 5.2).
On some applications, there exist branches (generally only a few)
that are not strongly correlated with the branch history or path,
but exhibit a statistical bias towards taken or not-taken. On these
branches, the TAGE predictor generally performs worse than sim-
pler solutions that capture statistical bias by using wide counters.
The Statistical Corrector predictor (Section 5.3) is introduced to
capture these branches and to predict them with an accuracy close
to their statistical bias at a reasonable cost. The ISL-TAGE pre-
dictor combines TAGE with the IUM, the loop predictor and the
Statistical Corrector Predictor.

In some applications, there remains some branches that are in-
trinsically better predicted through the use of local history than
through the use of a global history. In the ISL-TAGE predictor pro-
posal , the Statistical Corrector Predictor is indexed using the same
global history as TAGE. We show that replacing the global history
by the local history offers the opportunity to smoothly combine
the TAGE predictor with local prediction. Associated with TAGE,
a Statistical Corrector predictor based on local history (LSC for
short) essentially captures these branches. It also captures most
of the branches that the loop predictor is correctly predicting and
most of the branches that the initial Statistical Corrector predictor
based on global history is correcting. At similar storage budget,
the TAGE-LSC (+ IUM) predictor outperforms the ISL-TAGE pre-
dictor [24] 1 using a smaller number of components and a smaller
number of tagged tables, and without using any unrealistic tricks.

The remainder of the paper is organized as follows. Section 2
presents the experimental framework used in this paper. Section 3
recalls the main characteristics of the TAGE predictor used as the
main predictor in this paper and presents its main qualities and
its base performance. Section 4 analyzes the number of predic-
tor table accesses on a real hardware processor and shows that the
TAGE predictor exhibits marginal accuracy loss when the predic-
tion is not reread at retire time, therefore potentially allowing sim-
pler hardware implementation. Moreover we show that the TAGE
predictor can be designed with single-port bank-interleaved mem-
ory components instead of 3-ported memory components. Section
5 presents the ISL-TAGE predictors. Section 5.1 introduces the
Immediate Update Mimicker, IUM that recovers most of the mis-
predictions due to delayed update of the TAGE branch predictor
tables. Section 5.2 describes the loop predictor and its benefit as
a side predictor. Section 5.3 presents the Statistical Corrector pre-
dictor, that tracks branches that are not strongly correlated with
the branch history path but are statistically biased. In Section 6,
we show how the Statistical Corrector predictor can be leveraged
to use local history in a side predictor for TAGE. We show that
TAGE-LSC can achieve state-of-the-art prediction accuracy lev-
els for the prediction storage budgets (128K-512Kbits) that are
currently considered for implementation. In Section 7 presents
a cost-effective implementation of the TAGE-LSC predictor using
single-port memory components and avoiding predictor read at re-
tire time can be avoided for correct prediction. Section 8 concludes
this study.

2. Experimental Framework

In order to allow reproducibility of the experiments reported in
this paper, the evaluation framework used is the one provided for

1winner of the 3rd Championship Branch Prediction

the 3rd Championship Branch Prediction, http://www.jilp.org/jwac-
2/framework.html. The simulation is trace driven, but includes
features to model a simple out-of-order execution core with a real-
istic memory hierarchy. It allows to delay branch prediction table
updates till the retire stage in the pipeline. The benchmark set
features 40 traces, approximately 50 million micro-ops long clas-
sified into 5 categories: CLIENT, INT (Integer), MM (Multime-
dia), SERVER and WS (Workstation). It is noticeable that some
of these traces exhibit very large footprints (several tens of thou-
sands of static branches), they also include both user and system
activity.

2.1 Performance Metric

In order to remain consistent with the 3rd CBP, we will use the
metric Misprediction Penalty per Kilo Instructions (MPPKI) pro-
posed for the 3rd CBP. In practice, for the predictors considered
in this paper, this metric is globally proportional to the mispredic-
tion number despite that the average misprediction penalty varies
among the benchmarks.

2.2 Benchmark Set Characteristics

Based on a first analysis of the benchmark set after running a
base 512Kbits L-TAGE predictor, the benchmark set can be di-
vided in two major sets with very different misprediction rates.

A set of high misprediction rate benchmarks includes CLIENT02,
INT01, INT02, MM05, MM07, WS03 and WS04. These 7 bench-
marks represent approximately 3/4 th of the mispredictions of the
40 benchmarks. All these benchmarks exhibit more than 500,000
mispredictions (i.e more than 10 mispredictions per kilomicro-
operations) for the reference predictor (see next section) consid-
ered in this study. Among this class, CLIENT02 is the only bench-
mark amenable to a low misprediction rate by simply increasing
the size of the predictor to unrealistic storage budget (256 Mbits).

The set of the 33 medium and low misprediction rates bench-
marks represent only 1/4th of the mispredictions and none of them
exhibit more than 170,000 mispredictions on our reference predic-
tor.

3. Background on the TAGE Predictor

The TAGE predictor was introduced in [26] and is the core
predictor of the L-TAGE predictor that won the second Cham-
pionship Branch Prediction in 2006 [23]. Figure 1 illustrates a
TAGE predictor. The TAGE predictor features a base predictor
T0 in charge of providing a basic prediction and a set of (par-
tially) tagged predictor components Ti. The base predictor can be
a simple PC-indexed 2-bit counter bimodal table. The tagged pre-
dictor components Ti, 1 ≤ i ≤ M are indexed using different
global history lengths that form a geometric series, i.e, L(i) =
(int)(αi−1 ∗L(1) + 0.5) as introduced for the OGEHL predictor
[21]. On a TAGE predictor, most of the storage is used in tables
indexed with (relatively) short histories, but the predictor is able to
capture correlation with very old branches (up to 2000 branches in
our experiments in this paper).

An entry of a tagged component of the TAGE predictor consists
in a 3-bit prediction counter ctr whose sign provides the predic-
tion, a (partial) tag and a useful bit u to guide replacement policy
(Figure 2).

pc h[0:L1]

=? =? =?

predic1on

pc pc h[0:L2] pc h[0:L3]

1
1 1 1 1 1 1

1

1 Tagless base

Predictor

Figure 1. The TAGE predictor synopsis: a
base predictor is backed with several tagged
predictor components indexed with increas
ing history lengths

Par$al Tag Ctr U

Figure 2. An entry in a TAGE tagged table

A few definitions and notations.
The provider component is the matching component with the

longest history. The alternate prediction altpred is the prediction
that would have occurred if there had been a miss on the provider
component. If there is no hit on a tagged component then altpred

is the default prediction.

3.1 Prediction Computation

At prediction time, the base predictor and the tagged compo-
nents are accessed simultaneously. The base predictor provides a
default prediction. The tagged components provide a prediction
only on a tag match.

In the general case, the overall prediction is provided by the
hitting tagged predictor component that uses the longest history,
or in case of no matching tagged predictor component, the de-
fault prediction is used. It was remarked that when the provider
component is a tagged component and the prediction is weak, the
confidence in the prediction is quite low (often less than 60%). In
this situation, the alternate prediction is often more accurate than
the provider component prediction. This property was found to be
essentially temporal on the whole application. Dynamically mon-
itoring it through a single 4-bit counter USE_ALT_ON_NA was
found to allow to (slightly) improve prediction accuracy [26]. The
prediction computation algorithm is as follows:

1. Find the matching component with the longest history

2. if (the prediction counter is not weak or USE_ALT_ON_NA
is negative) then the prediction counter sign provides the
prediction else the prediction is the alternate prediction

3.2 Predictor Update

In all cases, the prediction counter of the provider component
is updated. The useful bit u is set if the prediction was correct and

the alternate prediction altpred was incorrect. New tagged entries
are allocated only on mispredictions.

3.2.1 Allocating tagged entries on mispredictions

In previous studies on the TAGE predictor, it was argued to al-
locate at most one entry to limit the footprint of the application
on the predictor. In practice, the footprint limitation holds only on
demanding applications and for small predictors (e.g. 64 Kbits)
or predictors with a small number of tables. For large TAGE pre-
dictors (in the 256Kbits-512Kbits range), we discovered that allo-
cating several (in practice up to 3 or 4) entries in different tables
enables a very short warming or transition phase in the predictor. It
also allows us to use a very simple and effective way of managing
the useful bits on the predictor (see below in Section 3.2.2).

If the provider component Ti is not the component using the
longest history (i.e., i ≤ M), then up to four entries on a predictor
component Tk with i < k ≤ M are allocated on non-consecutive
tables. The entries are chosen among the useless entries, i.e., with
a null u bit. An allocated entry is initialized with the prediction
counter set to weak correct. Bit u is initialized to 0 (i.e., not useful).

3.2.2 Managing the u bit

The useful bit u is used for locking entries in the predictor. The
u bit of a provider component is set whenever the prediction was
correct and the alternate prediction altpred was incorrect. In order
to avoid the useful bits to stay forever set, the following reset-
ting policy is implemented. The number of successes and failures
on entries allocations is monitored; this monitoring is performed
through a single 8-bit counter (u=1, increment, u=0, decrement).
This counter saturates when more failures than successes are en-
countered on allocations. At that time we reset all the u bits of
the predictor. Typically, such a global reset occurs when one out
of two entries on the used portion of the predictor has been set to
useful.

This simple policy was found to be more efficient than the pre-
viously proposed management using 2-bit useful counters for the
TAGE predictor [26][23]; it also uses a single u bit per tagged
TAGE entry.

3.3 Implementation Tradeoffs

Various parameters can be tuned on the TAGE predictor in or-
der to get prediction accuracy.

Depending on the storage budget one will use small or large
number of tables. It was shown in [23] that for small budgets (e.g.
32K-64Kbits) using 5 to 8 tables is good tradeoff and that for large
budgets (e.g. 256Kbits-512Kbits) using 12-15 tables is a better
tradeoff.

Most of the storage budget in the TAGE predictor is dedicated
to the partial tags. Using a large tag width leads to waste part of
the storage while using a small tag width leads to false tag match
detections. We found that , for a 13 tables TAGE predictor using
12-bit tag is good tradeoff. However Experiments showed that one
can use wider tag for long histories for a better tradeoff. Previous
experiments [26] have shown that the TAGE predictor performs
efficiently on a wide spectrum of history lengths with maximum
history lengths ranging from a 100 to more than 1,000 history bits.

3.4 The Reference TAGE Predictor

This study targets the 64Kbytes storage budget that was al-
lowed for the 3rd Championship Branch Prediction. Therefore
the reference TAGE predictor that will be used in this study has
been dimensioned to fit in that storage budget. It features a 13-
component, and uses the (6,2000) geometric history length with
the following table sizes for a total of 65,408 bytes of storage:

• Bimodal table: 32K prediction bits + 8K hysteresis bits

• Tag width for table Ti: max (6+i, 15) bits

• Table T1, 2Kentries, Tables 2-7, 4Kentries, Tables 8-9, 2Ken-
tries and Tables 10-12, 1K entries

4. The Delayed Update Issue on Conditional

Branch Predictor

On a real hardware processor, the predictor tables are updated
at retire time to avoid pollution of the predictor by wrong path
branches. A single predictor table entry may provide several mis-
predictions in a row due to this late update. While this phenomenon
has been recognized by the microarchitecture research community,
it has been considered to be relatively marginal on global history
predictors featuring long history [10, 21]. However these studies
were assuming that the predictor tables were reread and the pre-
diction recomputed at retire time: each branch on the correct path
potentially leads to 3 accesses of the predictor tables, read at pre-
diction time, read at retire time and write at retire time.

At a first glance, the second read at retire time appears useless
since one could use the values read at prediction time. However
the simple example of a loop execution and a bimodal 2-bit counter
predictor illustrated on Figure 3 shows that this second read might
be really needed. On the example the first 6 iterations are mispre-
dicted: till retiring the first iteration, i.e. for iterations 2 and 3, the
value read on the predictor is C=0, i.e. strongly not-taken, then till
retiring iteration 4, i.e. iterations 4, 5 and 6, the value read on the
predictor is C=1, i.e weakly taken; the bimodal predictor predicts
correctly at iteration 7 instead of of iteration 3 when immediately
updated or iteration 5 if the predictor was reread at update time.

Three predictor accesses per branch would normally necessi-
tate the use of 3-port predictor tables in order to issue and to com-
mit one branch per cycle. Unfortunately 3-port memory compo-
nent occupy much more area and dissipates much more energy
than single ported memory component. Simple experiments run
on CACTI 6.5 [19] showed that, for the range of memory array
sizes used in branch predictors (1Kbytes to 64Kbytes) and for
equal capacity the area of a 3-port memory array is 3-4 times larger
than a single-ported memory array, while the energy dissipated per
access is about 25-30 % higher.

To the best of our knowledge, no constructor has ever disclosed
how these potential 3 accesses per branch on the predictor are han-
dled in the hardware implementation of the predictor when one
want to sustain one branch prediction per cycle. Since 3-port pre-
dictor tables are not hardware cost-effective, alternative techniques
are needed.

In the remainder of the section, we present realistic techniques
to reduce the number of accesses on the branch predictor, particu-
larly for the TAGE predictor. Such techniques can be leveraged in
real designs to build predictors using dual-ported or single-ported

C=0 C=1 C=2

C=0, mispredic0on

C=1, mispredic0on

Fetch Execute Re0re

C=2, correct predic0on

Figure 3. Example of a loop execution as
suming a bimodal table with null prediction
counter at the first iteration.

memory components. More precisely, in Section 4.3, we propose
an implementation of the TAGE predictor using only single-ported
memory arrays.

4.1 Reducing the Number of Accesses on the Branch
Predictor

4.1.1 Eliminating silent updates

The first obvious technique to reduce the number of accesses on
the branch predictor is to avoid the silent updates of the predictor.
On update, in many cases the table entries are overwritten with
the exact same value they were previously holding. Eliminating
this silent update is a simple technique that holds for all branch
predictors and that should be very effective. This technique was
already mentioned by Baniasadi and Moshovos in the context of
energy saving [2].

We confirmed this assumption by simulations of 3 very differ-
ent predictors: our reference TAGE predictor, a simple 512 Kbits
gshare [16] predictor as a representative of first generation pre-
dictor and a 520 Kbits GEHL predictor [21] as a representative of
neural inspired predictors 2. A GEHL predictor featuring 13 ta-
bles, 5 bit entries and 8K entries per table using (6,2000) history
length , i.e. a total of 520 Kbits was considered 3.

In practice, on the benchmark set, TAGE encounters an average
of 2.17 effective writes per misprediction or 9.06 writes per 100
retired conditional branches. GEHL, by construction of its update
policy, encounters slightly less than 2 effective writes per mispre-
diction (1.94) or 9.10 writes per 100 retired branches. Gshare en-
counters in average 1.54 writes per misprediction or 9.61 writes
per 100 retired branches.

2by neural inspired, we mean that prediction is computed through
a tree of adders and that the predictor update is threshold based as
described in the initial perceptron predictor study [13]
3The GEHL configuration was not optimized. The purpose of this
experiment is not here to compare accuracies of GEHL and TAGE,
but to illustrate the issues of delayed update and multiple accesses
to the predictor tables on different predictors

4.1.2 Eliminating the read at retire time ?

One would like to avoid the read of the predictor tables at re-
tire time if possible. However there might be performance loss.
We have conducted experiments to evaluate three possible sce-
narii on the 3 branch predictors used above and compared their
performance with the oracle update at fetch time scenario [I] as a
reference. The three possible scenarii are:

1. [A]: reread the prediction tables at retire time before (poten-
tial) update.

2. [B]:only read prediction at fetch time, propagate all the in-
formations with the branches in the pipeline, and write the
update at retire time.

3. [C]: reread the predictions at retire time for mispredicted
branches only.

Scenario [A] potentially leads to 3 accesses per branch prediction
and systematically generates 2 reads for each retired branch. Sce-
nario [B] generates at most one read and one write. Scenario [C]

generates 2 read accesses only on mispredicted branches. Scenarii
[B] and [C] necessitate that the values read on the predictor are
propagated with the branch instruction in the pipeline and used at
retire time.

In practice for the first generation predictors such as gshare

using a single table of prediction counters, the accuracy loss en-
countered in Scenario [B] is dramatic. On the 512 Kbits gshare,
we respectively obtained [I] 944 MPPKI, [A] 970 MPPKI , [B]

1292 MPPKI , [C] 1011 MPPKI. Scenario [B] where the predictor
table is only read at fetch time can not be considered as a solution
for a real hardware implementation. Even Scenario [C] , reread-
ing the predictor at retire time for mispredicted branches, leads to
a quite significant accuracy loss.

On predictors derived from neural-inspired predictors (percep-
tron, piecewise linear, OGEHL), the same phenomenon occurs as
illustrated on the 520 Kbits GEHL predictor. The different scenarii
lead to the following results : [I] 664 MPPKI , [A] 685 MPPKI ,
[B] 801 MPPKI, [C] 744 MPPKI. While the 3.5 % extra penalty
due to delayed update is acceptable in Scenario [A] , the losses due
to the use of old counter values on correct predictions (Scenarii [B]

and [C]) are very large and cannot be considered for effective im-
plementation. On the GEHL predictor, 13 counters are involved
in a prediction. In particular when the same branch has several
inflight occurrences, the prediction counters associated with the
short histories are not correctly incremented or decremented.

For the TAGE predictor, the accuracy loss phenomenon is much
less pronounced: [I] 609 MPPKI, [A] 617MPPKI, [B] 640 MPPKI,
[C] 625 MPPKI. On TAGE, on correct predictions, only one or
two TAGE entries are involved in a prediction and its update. On
a correct prediction, in Scenarii [B] and [C] , the update will use
old prediction counter values only if the provider component and
entry was updated by an already inflight branch at prediction time.
Moreover, at the difference of the neural inspired predictors, the
amplitude of the prediction counters is limited.

4.2 Summary on Number of Predictor Accesses
per Branch

Compared with predictors using wide counters or predictors
using a single predictor table, TAGE suffers only a marginal ac-
curacy impact when the predictor table is read only once at pre-

diction time particularly if it is read at retire time on mispredic-
tions. The performances losses on Scenario [C] on GEHL pre-
dictors and gshare will push designers to reject this scenario and
therefore to perform systematically two reads on the predictor ta-
bles per branch.

On the other hand, the validity of Scenario [C] for TAGE opens
the possibility to implement the TAGE predictor with bank-inter-
leaved tables built with single-ported memory banks (e.g. 4-way
interleaved) since each (retired) branch generates in average only
1.13 accesses (1 read at prediction time, 0.04 read in average at re-
tire time, and 0.09 write in average at retire time) to the predictor
tables. Such a solution can leverage the proposition for the EV8
branch predictor [22] to guarantee that two or even three consecu-
tive branch predictions will access different banks in each table as
shown below.

4.3 Towards 4way Interleaved singleported Pre
dictor Tables for TAGE

In this section, we assume that each of the tables in the TAGE
predictor is 4-way interleaved. We assume that a single branch
(either direct or indirect) is predicted per cycle. In order to guar-
antee a smooth repartition of the accesses among the banks, one
can guarantee that the predicted branch will not access any of the
banks that were accessed by the two previous predictions as fol-
lows:

Let X,Y and Z be the PCs of the three successive branches, we
compute b(Z), the number of the bank accessed for the prediction
of Z as follows:

if (Z is unconditional) b(Z) = -1 ; /*i.e. no access*/
else
{b(Z) = Z & 3; while ((b(Z) == b(X)) || (b(Z) == b(Y))
b(Z) = (b(Z) +1) & 3;}

We assume that prediction has priority over update and that write
at retire time has priority over read at retire time. Our algorithm
guarantees that for every bank of any of the predictor tables, for
every 3 cycles interval, 2 cycles are free for performing the up-
dates.

Since for scenario [C], reads at retire time and effective write
updates are rare, no huge buffering is needed. In practice, reading
the predictor, computing the update and updating the predictor ne-
cessitates a few cycles: the read at retire time can be delayed by
one cycle (conflict with a prediction) and the update by up to two
cycles (conflict with prediction or/and an older update).

Simulations of bank-interleaving for scenario [C] leads to 627
MMPKI, i.e., very close to the 625 MPPKI achieved without bank-
interleaving, but using 3-port memory arrays. Evaluations using
CACTI 6.5 [19] report a 3.3x decrease of the silicon area occupied
by the memory arrays and a 2x decrease of the energy dissipated
in the memory arrays per predictor access when assuming bank-
interleaving instead of 3-port memory array.

Note that this bank-interleaving technique can be applied for
most global history predictors also resulting in marginal accuracy
losses. On local history predictors, the bank-interleaving tech-
nique can also be applied on the predictor tables but results in more
substantial prediction accuracy loss since several entries corre-
spond to the same (history,branch) pair, thus inducing more alias-
ing conflicts, and necessitating a longer training.

In the remainder of the paper apart Section 7, we will con-
sider that predictors are implemented using 3-port memory arrays.
Moreover apart Section 5.1 and Section 7, we will consider that
the predictor is systematically reread at retire time.

5. The ISL-TAGE predictor

In this section, we detail the side predictors that were proposed
for TAGE at the 3rd Championship on Branch Prediction [24].

5.1 The Immediate Update Mimicker

In the previous section, we have pointed out that the impact
of delayed update on the TAGE predictor is much lower than on
other predictors including the neural-inspired predictors, particu-
larly when one try to only read at prediction time and write at retire
time. In order to further limit the impact of the use of the delayed
update, an add-on to TAGE can be implemented, the Immediate
Update Mimicker, IUM.

On a misprediction, the global history can be repaired imme-
diately and when a block is fetched on the correct path, the spec-
ulative branch history is correct. In practice, repairing the global
history is straightforward if one uses a circular buffer to implement
the global history. We leverage the same idea with IUM predictor
(Figure 4).

When fetching a conditional branch, IUM records the predic-
tion, the identity of the entry E in the TAGE predictor (number
of the table and its index) that provides the prediction. At branch
resolution on a misprediction, the IUM is repaired through reini-
tializing its head pointer to the associated IUM entry and updating
this entry with the correct direction.

When fetching on the correct path, the associated IUM entry
associated with an inflight branch B features the matching predic-
tor entry E that provided the TAGE prediction and the effective

outcome of branch B (corrected in case of a misprediction on B).
In case of a new hit on entry E in the predictor before the retire-
ment of branch B, the (TAGE predictor + IUM) can respond with
the direction provided by the IUM rather than with the TAGE pre-
diction (on which entry E has not been updated).

IUM can be implemented in hardware through a fully-associative
table with one entry per inflight branch. It allows to recover about
3/4th of the mispredictions due to late update of the TAGE predic-
tor tables if all predictions are recomputed are retire time (Scenario
[A], 611 MPPKI vs Scenario [I] 609 MPPKI). For Scenario [B],
prediction tables are read only at fetch time, half of the mispredic-
tions due to delayed updates are recovered (624 MPPKI) while for
Scenario [C] where prediction tables are reread only on mispre-
dictions, the accuracy loss is limited (614 MPPKI).

Without the IUM, the gap between immediate update and re-
alistic update is very dependent on the benchmarks. For some
benchmarks, particularly on the set of high misprediction rate bench-
marks and for scenarii [A] and [C] the difference between immedi-
ate update and realistic update is marginal (< 1% of the mispredic-
tions), while on other benchmarks (e.g. CLIENT04, CLIENT06)
it represents more than 10 % of the mispredictions. For all the
benchmarks, the IUM reduces this gap to less 1% for Scenario
[A] or 2% for Scenario [C] . For Scenario [B], CLIENT02, a high
misprediction rate benchmark, is a specific outlier with an accu-
racy loss of 9 % without the IUM. With the IUM, it reaches an
acceptable 5 % accuracy loss.

P(redic(on) or E(xecuted)

T(able)

A(ddress in the table)

P

T

A

E

T

A

P

T

A

P

T

A

E

T

A

P

T

A

P

T

A

P

T

A

P

T

A

P

T

A

P

T

A

P

T

A

Fetch

P

T

A

Same table, same entry = use the outcome

 instead of TAGE

E

T

A

E

T

A

E

T

A

P

T

A

P

T

A

E

T

A

P

T

A

E

T

A

P

T

A

P

T

A

P

T

A

P

T

A

P

T

A

 Misprediction

Fetch on corrected path

Figure 4. The Immediate Update Mimicker:
when the prediction is provided by the same
entry and the same component as an already
executed inflight branch, use the outcome of
the branch instead of the TAGE prediction.

Note that for implementing Scenario [B] or [C] in a real hard-
ware predictor, one will have to propagate information read on the
predictor at prediction time up to retire time. The IUM entry can
be augmented with a few fields to propagate these information.

For the sake of simplicity and since the accuracy difference
between Scenario [A] and Scenario [C] is very limited, we will
use Scenario [A] in the remainder of the paper.

5.2 The Loop Predictor

Loops with constant number of iterations are branches that are
highly predictable when one only considers the local history. The
TAGE predictor is generally able to predict these loops with very
high accuracy when the control flow inside the loop is regular.
However when the control flow in the loop body is erratic, the
TAGE predictor may fail to correctly predict the exit of the loop
[6].

A loop predictor can simply identify regular loops with con-
stant number of iterations. The loop predictor will provide the
global prediction when it identifies the branch as a loop with a con-
stant iteration number and when this identificatiion has reached
a high confidence, i.e. when the loop has been executed several
times with the same number of iterations. In practice, reaching a
high confidence level after 7 executions of the overall loop appears
as a good tradeoff.

A loop predictor with a limited number of entries and high as-
sociativity is sufficient. In the experiments we report below, a 4-
way skewed associative 64-entry loop predictor is assumed. Each
entry in the loop predictor table consists of a past iteration count
on 10 bits, a retire iteration count on 10 bits each , a partial tag on
10 bits, a confidence counter on 3 bits, an age counter on 3 bits and
1 direction bit i.e. 37 bits per entry. Replacement policy is based
on the age. An entry can be replaced only if its age counter is null.
On allocation, age is first set to 7. Age is decremented whenever
the entry was a possible replacement target and incremented when

the entry is used and has provided a valid prediction and the pre-
diction would have been incorrect otherwise. Age is reset to zero
whenever the branch is determined as not being a regular loop.

The overall hardware complexity of the loop predictor is not in
the loop predictor table itself but in the speculative management
of the iteration numbers.

S(pecula)ve) I(tera)on)

P(rogram) C(ounter)

Inflights loops

SI

PC

SI

PC

SI

PC

SI

PC

SI

PC

SI

PC

SI

PC

SI

PC

 Loop Predictor Table

Hit, number of itera)ons

Branch

Itera)on number

hit

outcome

new SI

SI

PC

Figure 5. The loop predictor and the Specu
lative Loop Iteration Management: use of the
nonspeculative iteration number or of the it
eration number of the most recent inflight it
eration.

Figure 5 illustrates here a possible implementation of such a
speculative management, a Speculative Loop Iteration Manager,
SLIM. The SLIM records a new entry for each branch recognized
as a loop. The entry features the PC of the branch and the (specu-
lative) iteration number that has been reached. At prediction time,
the loop predictor is checked. On a hit with high confidence, the
(non-speculative) number of the current iteration and the number
of iterations in the loop are read on the predictor. The SLIM is
read in parallel. If the branch also hits in the SLIM then the most
recent hitting entry provides the speculative iteration number. The
speculative iteration number is incremented and checked against
the predicted number of iterations of the loop, branch outcome is
predicted accordingly. On a misprediction, the SLIM entries after
the misprediction are cleared. On a loop retirement, the associated
SLIM entry is cleared.

Associating the loop predictor on top of the base TAGE+IUM
predictor allows to reach 593 MPPKI, i.e. approximately a 3 %
reduction of the performance loss due to imperfect prediction by
the TAGE+IUM predictor.

5.3 The Statistical Corrector Predictor

The TAGE predictor is very efficient at predicting very corre-
lated branches even if the correlation is with very remote branches,
e.g. on a 1000 bits branch history. However, TAGE fails at pre-
dicting statistically biased branches e.g. branches that are not cor-
related with the control flow path, but have only some statistical
bias towards a direction. On some of these branches, the TAGE
predictor performs even worse than a simple PC-indexed table of
wide counters (e.g. 5 bit counters).

In order to better predict this class of statistically biased branches,
the Statistical Corrector predictor is introduced [24]. The correc-

tion aims at detecting the unlikely predictions and to revert them:
the prediction and the (address, history) pair is presented to Sta-
tistical Corrector predictor which decides whether or not inverting
the prediction (similar to the Agree predictor [27]). Since in most
cases the prediction provided by the TAGE predictor is correct,
the Statistical Corrector predictor agrees most of the time with the
TAGE predictor. Therefore a relatively small Statistical Corrector
predictor performs close to an unlimited size Statistical Corrector
predictor.

A quite efficient implementation of the Statistical Corrector
predictor was derived from the GEHL predictor [21]. It features 4
logical tables indexed with the 4 shortest history lengths (0, 6, 10,
17) as the main TAGE predictor and the prediction (Taken/Not
taken) flowing out from the TAGE predictor. The tables are 1K
6-bit entries, i.e., a total of 24 Kbits.

Main

(TAGE

+IUM)

Predictor

H

A

Stat.

Corr

.

Predic*on +

counter value

Loop Predictor
+

H

A

Pred

counter value

Figure 6. The Statistical Corrector predictor

The prediction is computed as the sign of the sum of the (cen-
tered) predictions read on the Statistical Corrector table plus eight
times the (centered) output of the hitting bank in TAGE. By cen-
tered predictions, we mean 2*ctr+1. Incorporating the prediction
counter value from TAGE allows to take into account the confi-
dence in the TAGE prediction [25]. The TAGE prediction is re-
verted if the Statistical Corrector predictor disagrees and the abso-
lute value of the sum is above a dynamic threshold. The dynamic
threshold is adjusted at run-time in order to ensure that the use
of the Statistical Corrector predictor is beneficial. The technique
used to adapt the threshold is similar to the technique proposed for
dynamically adapting the update threshold of the GEHL predictor
[21].

When adding the Statistical Corrector predictor on top of the
TAGE + IUM + loop predictor, a performance of 580 MPPKI is
reached, i.e. approximately a 2 % reduction of the performance
loss due to imperfect TAGE+IUM+loop predictor. Unrealistic tricks
were used in [24] to bring the performance to 568 MPPKI.

5.4 The ISLTAGE Predictor Performance

Using side predictors of relatively small size, the ISL-TAGE
predictor reduces the misprediction rate of the 512Kbits TAGE
predictor by 6 % which is approximately the misprediction re-

duction that would be obtained by scaling the TAGE predictor to
2Mbits.

6. TAGE-LSC: Adapting the Statistical Cor-

rector Predictor to Local History

In many applications, there exist branches whose behaviors are
only correlated with their own local history (loops, but also peri-
odic behavior). Most of these behaviors are captured by the global
history predictors, but some are not. Hybrid predictors combining
local history and global history were introduced [16] for captur-
ing the best of global correlation and local correlation. However
metapredictors were shown to be poorly efficient and new solu-
tions combining local history and global history were proposed
for neural based predictors [12, 8]. Up to now, there has not been
any elegant proposal to combine the global history TAGE predic-
tor with some efficient local history predictor. The approach used
for the Statistical Corrector Predictor can be adapted to offer such
a solution as illustrated in Figure 7.

6.1 Architecture of the TAGELSC predictor

TAGE

+

IUM

H

A

Local

Statistical

Correlator

Predictor

Predic*on +

counter value

+

LH

A

Pred

counter value

Local History Table

+

Specula*ve Local

History Manager

Figure 7. The TAGELSC predictor combines a
TAGE predictor and a Local history Statistical
Corrector Predictor

On the LSC predictor (Figure 7), a local history table and a
Speculative Local History Manager (Figure 8) are accessed in par-
allel with the TAGE predictor. When a branch with same index in
the local history table is already inflight the pipeline, the Specula-
tive Local History Manager provides the speculative local history.
The speculative local history is associated with the TAGE predic-
tion to index a LGEHL (Local history GEHL) predictor. The pre-
diction is computed as the sign of the sum of the (centered) pre-
dictions read on the Statistical Corrector table plus eight times the
(centered) output of the hitting bank in TAGE. The TAGE predic-

S(pecula)ve) H(istory)

P(rogram) C(ounter)

Inflight loops

SH

PC

SH

PC

SH

PC

SH

PC

SH

PC

SH

PC

SH

PC

SH

PC

Direct Mapped

Local History Table

S
ta
t. C

o
rr.

Local History

predic)on

new SH = (SH <<1) + predic)on

SH

PC

PC

TAGE predic)on

Figure 8. Speculative Local History Manage
ment

tion is reverted if the Statistical Corrector predictor disagrees and

the absolute value of the sum is above a dynamic threshold.
The structure of the Speculative Local History Manager is very

similar to the Immediate Update Mimicker (one entry per inflight
branch, associative search on inflight branches, . . .). Therefore
these two structures could be combined in a real hardware proces-
sor

We found that using 5 tables featuring 1K 6-bit entries and his-
tory lengths (0,4, 10, 17, 31) on the LGEHL predictor and a small
32-entry direct-mapped local history table is sufficient to capture
most of the local correlation that a 512 Kbits TAGE predictor does
not capture on our benchmark set. In most cases, the LSC predic-
tion just agrees with the TAGE prediction, but when it disagrees
and above the threshold, it provides the correct prediction in more
than 70 % of the cases.

The very small size of the required local history table can be ex-
plained by the observation that for most benchmarks a very small
number of static branches (generally less than 10) represent the
majority of the dynamic mispredictions on the TAGE predictor.

On top of the (TAGE + IUM + loop predictor + Statistical Cor-
rector predictor), the LSC predictor allows to reach 555 MPPKI,
thus nearly reducing misprediction rate by more than 4%. In prac-
tice, using the LSC predictor alone on top the TAGE+IUM pre-
dictor allows to reach 559 MPPKI, i.e. it captures most of the
mispredictions that are captured the loop predictor and the Statis-
tical Corrector predictor. A 30 Kbits LSC predictor reduces the
performance loss due to imperfect prediction of the TAGE+IUM
predictor by more than 8 %.

In order to get fair comparison with the ISL-TAGE [24], we
adjusted the size of the TAGE-LSC predictor to 512 Kbits by sim-
ply reducing the size of Table T7 to 2K entries (thus saving 34K
storage bits) in the reference predictor. We obtain 562 MMPKI
against 581 MPPKI for a 512 Kbits ISL-TAGE predictor with sim-
ilar structure (same TAGE predictor, 5 tables GEHL-like predictor
for Statistical Corrector Predictor and loop predictor) and 568
MPPKI for the ISL-TAGE predictor presented at the 3rd CBP (16-

component TAGE+ IUM+ Statistical Corrector predictor + loop
predictor + costly tricks such as sharing/interleaving TAGE tagged
tables, sharing/interleaving Statistical Corrector predictor tables
and extensive search for the best set of history lengths).

6.2 Performance Evaluation of the TAGELSC
Predictor

Many parameters can be varied in the TAGE-LSC (storage size,
number of tables and history lengths).

As its parents TAGE and GEHL predictors, the TAGE-LSC
predictor is very robust to the choice of the history lengths, for
instance on a 512Kbits TAGE-LSC predictor, using a (3,300) his-
tory series lead to 575 MPPKI, the (4,1000) history series lead to
563 MPPKI, and the (8,5000) history series leads to 563 MPPKI.

Decreasing the number of the TAGE predictor tables has not a
large impact. A 9-component TAGE-LSC predictor using (6,1000)
history series achieves 566 MPPKI and a 6-component TAGE-
LSC predictor using (6,500) history series achieves 583 MPPKI.

On Figure 9, we illustrate the respective performance for TAGE
predictors and TAGE+LSC predictors for size ranging from 128 Kbits
to 32 Mbits. The simulations were run just by scaling the sizes
of all the components by a power of two, no attempt to optimize
other parameters was done. For both predictors, the performance
reaches a plateau around 16-32Mbits. In fact for 39 out of the 40
benchmarks, it reaches the plateau well before 16-32 Mbits, but for
CLIENT02 the misprediction rate suddenly falls at 2Mbits- 8Mbits
budget: most of the mispredictions are due to only 2 branches that
have repetitive behaviors but with thousands of different patterns.
The TAGE-LSC predictor exhibits more potential than the TAGE
predictor. In the range of size of interest for hardware implemen-
tation, 128Kbits - 512Kbits, the TAGE-LSC predictor performs
consistently as a 4-8 larger TAGE predictor.

450

500

550

600

650

700

128K 256K 512K 1M 2M 4M 8M 16M 32M

TAGE

TAGE‐LSC

M
P
P
K
I

Storage budget

Figure 9. TAGE vs.TAGELSC

6.3 Comparisons with Alternative Branch Predic
tors

At the 3rd ChampionShip Branch Prediction, the FTL++ pre-
dictor [7] and the OH-SNAP [14] were respectively ranked 2nd

and 3rd with respectively 581 MPPKI and 598 MPPKI. The con-
figurations presented at the Championship have some features that
are not realistically implementable. However both these predictors
capture some correlations that are not captured by TAGE-LSC.

Both FTL++ and OH-SNAP are based on neural based tech-
niques, respectively GEHL combined with LGEHL for FTL++
and piecewise linear [11] combined with dynamic weight adap-
tation [1] for OH-SNAP.

Both these predictors are significantly outperformed on the 33
most predictable benchmarks by both ISL-TAGE and TAGE-LSC:
respectively 196 MPPKI for ISL-TAGE, 198 MPPKI for TAGE-
LSC, 232 MPPKI for FTL++ and 254 MPPKI for OH-SNAP.

On the other hand, both FTL++ and OH-SNAP slightly out-
perform ISL-TAGE and TAGE-LSC on the 7 most unpredictable
benchmarks as illustrated by Figure 10: respectively 2311 MPPKI
for ISL-TAGE, 2287 MPPKI for TAGE-LSC, 2222 MPPKI for
FTL++ and 2227 MPPKI for OH-SNAP. Understanding the intrin-
sic auto- and inter-correlation properties that are better captured by
FTL++ and/or OH-SNAP than TAGE-LSC might lead to further
progress in branch prediction research.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

ISL‐TAGE

TAGE‐LSC

OH‐SNAP

FTL++

M
P
P
K
I

Figure 10. Prediction accuracy on the 7 less
predictable benchmarks

7. Towards Cost-effective TAGE-LSC Predic-

tor

In Section 4, we have shown that, at a marginal accuracy loss
the TAGE predictor can be implemented using 4-way bank-inter-
leaved single port memory components and that the predictor read
at retire time can be avoided on correct predictions also at a marginal
accuracy loss.

However the TAGE-LSC predictor features local history com-
ponents which accuracy could be impaired when applying these
optimizations. Therefore we run experiments with the TAGE-LSC
predictor to assess the accuracy loss due applying the same com-
plexity reduction to the local history components on the complete
TAGE-LSC predictor.

7.1 Bank interleaving

Using the bank-interleaving technique described in Section 4.3
on local history components can have two conjugated impacts on
the prediction accuracy. First more entries are needed for mapping
a single branch (up to four times), second more entries have to be
trained, thus leading to more start-up mispredictions.

Using bank-interleaving on the 512 Kbits TAGE-LSC consid-
ered in the previous section revealed to be quite efficient even for
the local history components apart for a single application trace
CLIENT02. Doubling the number of entries in the local compo-
nents was found to restored the accuracy on CLIENT02. In our
experiments, we were able to define a 512 Kbits TAGE-LSC pre-
dictor using 4-way interleaved single-ported tables and achieving
569 MPPKI, i.e. an accuracy loss of 3 MPPKI due to interleav-
ing on the local components (training impact), 2 MPPKI due to
interleaving on the TAGE components and 2 MPPKI due to size
reduction of some tables of TAGE to fit the 512 Kbits storage bud-
get.

Evaluations with CACTI6.5 [19] indicate that this interleaving
allows to reduce the silicon area by approximately a factor 3.3 and
to approximately halve the power consumption per predictor read
access.

7.2 Eliminating the Read at Retire Time on Cor
rect Predictions

In Section 4, we have shown that the second read at retire time
can be avoided on the TAGE predictor when prediction is correct
with limited impact on the predictor accuracy.

On top of the 4-way interleaved TAGE-LSC predictor consid-
ered above, applying this optimization on both the TAGE com-
ponents and the LSC components does not degrade too much the
accuracy, since 575 MPPKI is achieved. This accuracy loss is very
limited (2 MPPKI) if the optimization is applied only applied only
to the TAGE components. Eliminating the second read for correct
predictions on the local history components has a slightly higher
accuracy impact (4 MPPKI). Since silent updates represent the
vast majority of updates and can be eliminated, the elimination of
the read at retire time on correct prediction allows to nearly halves
the energy consumption of the predictor on correct predictions.

On the other hand, completely eliminating the second read (Sce-
nario [B] in Section 4) has as a much higher impact accuracy im-
pact (599 MPPKI) and therefore is not recommended.

8. Conclusion

The TAGE predictor has often been considered as state-of-the-
art in conditional branch prediction in terms of prediction accuracy
[1]. Asserting confidence to predictions by TAGE has recently
been shown to be simple and storage free [25]. In this paper, we
have further made the case for considering the TAGE predictor in
real hardware processors through two directions: 1) reduction of
its implementation cost and its energy consumption 2) improve-
ment of its prediction accuracy.

On a processor, a prediction on a correct branch generates 3
predictor table accesses, read at prediction time, second read at re-
tire time and write update at retire time. This normally leads to
the use of multiport memory components for the branch predic-
tor. We have shown that, on a real hardware implementation, the

TAGE accuracy would not be significantly impaired by avoiding
a systematic second read of the prediction tables at retire time for
correct prediction. Combined with the elimination of silent up-
dates, this leads to only 1.13 predictor tables accesses in average
per retired branch. Furthermore, we have shown that it is pos-
sible to implement the TAGE predictor tables as bank-interleaved
structures single-port banks, thus significantly reducing the silicon
footprint of the predictor as well as its energy consumption.

We have also shown that to further improve TAGE predictor
accuracy, TAGE can be augmented with (small) side predictors,
each targeting a set of branches that are difficult to predict with
TAGE. We have presented the Immediate Update Mimicker that
tracks the inflight already executed but not retired branches and
uses their result for correcting the predictions. The IUM allows
to recover most of the mispredictions due to delayed updates. As
already proposed for the L-TAGE [23], TAGE can be augmented
with a loop predictor to correctly predict loops with constant iter-
ation numbers. TAGE is very efficient at predicting the behavior
of branches that are completely correlated with the path history
even when this path is thousands of branches long. But TAGE
fails at capturing branches that are not strongly biased but that
are only statistically biased. To capture these statistical biases,
we have introduced the Statistical Corrector Predictor. Relying
on the use of wide counters, the Statistical Corrector predictor
tracks these statistically correlated branches. These 3 side predic-
tors were presented at the 3rd Championship Branch Prediction
for the ISL-TAGE predictor [24]. We have further extended this
approach showing that the Statistical Corrector Predictor can be
used to leverage local history to further improve the potential of
the TAGE predictor. Furthermore,the LSC, Statistical Corrector
predictor based on local history, dwarfs the benefits of the loop
predictor and the global history Statistical Corrector and therefore
makes a good case for the use of a TAGE-LSC predictor which
combines a main TAGE predictor with IUM and a small LSC, Lo-
cal history Statistical Corrector predictor.

Finally we have shown that the TAGE-LSC predictor is ame-
nable to a cost-effective implementation at a marginal accuracy
loss through exploiting bank-interleaved structures and avoiding
the second read at retire time on correct predictions.

9. References

[1] Renée St. Amant, Daniel A. Jiménez, and Doug Burger. Low-power,
high-performance analog neural branch prediction. In MICRO,
pages 447–458, 2008.

[2] Amirali Baniasadi and Andreas Moshovos. Sepas: a highly accurate
energy-efficient branch predictor. In ISLPED, pages 38–43, 2004.

[3] A. N. Eden and T.N. Mudge. The YAGS branch predictor. In
Proceedings of the 31st Annual International Symposium on

Microarchitecture, Dec 1998.

[4] M. Evers, P.-Y. Chang, and Y.N. Patt. Using hybrid branch
predictors to improve branch prediction accuracy in the presence of
context switches. In Proceedings of the 23rd Annual International

Symposium on Computer Architecture, May 1996.

[5] Hongliang Gao, Yi Ma, Martin Dimitrov, and Huiyang Zhou.
Address-branch correlation: A novel locality for long-latency
hard-to-predict branches. In HPCA, pages 74–85, 2008.

[6] Hongliang Gao and Huiyang Zhou. Adaptive information
processing: An effective way to improve perceptron predictors.
Journal of Instruction Level Parallelism (http://www.jilp.org/vol7),
April 2005.

[7] Y. Ishii, K. Kuroyanagi, T. Sawada, M. Inaba, and K. Hiraki.
Revisiting local history for improving fused two-level branch

predictor. In Proceedings of the 3rd Championship on Branch

Prediction, http://www.jilp.org/jwac-2/, 2011.

[8] Yasuo Ishii. Fused two-level branch prediction with ahead
calculation. Journal of Instruction Level Parallelism

(http://wwwjilp.org/vol9), May 2007.

[9] D. Jimenez. Fast path-based neural branch prediction. In
Proceedings of the 36th Annual IEEE/ACM International

Symposium on Microarchitecture, dec 2003.

[10] D. Jiménez. Reconsidering complex branch predictors. In
Proceedings of the 9th International Symposium on High Perform

ance Computer Architecture, 2003.

[11] D. Jiménez. Piecewise linear branch prediction. In Proceedings of

the 32nd Annual International Symposium on Computer

Architecture, june 2005.

[12] D. Jiménez, S. W. Keckler, and C. Lin. The impact of delay on the
design of branch predictors. In Proceedings of the 33rd Annual

International Symposium on Microarchitecture, Monterey,
California, December 2000.

[13] D. Jiménez and C. Lin. Dynamic branch prediction with
perceptrons. In Proceedings of the Seventh International Symposium

on High Perform ance Computer Architecture, 2001.

[14] Daniel A. Jiménez. Oh-snap: Optimized hybrid scaled neural analog
predictor. In Proceedings of the 3rd Championship on Branch

Prediction, http://www.jilp.org/jwac-2/, 2011.

[15] G.H. Loh and D.S. Henry. Predicting conditional branches with
fusion-based hybrid predictors. In Proceedings of the 11th

Conference on Parallel Architectures and Compilation Techniques,
2002.

[16] S. McFarling. Combining branch predictors. TN 36, DEC WRL,
June 1993.

[17] P. Michaud, A. Seznec, and R. Uhlig. Trading conflict and capacity
aliasing in conditional branch predictors. In Proceedings of the 24th

Annual International Symposium on Computer Architecture

(ISCA-97), June 1997.

[18] Pierre Michaud. A PPM-like, tag-based predictor. Journal of

Instruction Level Parallelism (http://www.jilp.org/vol7), April 2005.

[19] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P.
Jouppi. Cacti 6.0: A tool to model large caches. Research report
hpl-2009-85, HP Laboratories, 2009.

[20] S.T. Pan, K. So, and J.T. Rahmeh. Improving the accuracy of
dynamic branch prediction using branch correlation. In Proceedings

of the 5th International Conference on Architectural Support for

Programming Languages and Operating Systems, 1992.

[21] A. Seznec. Analysis of the O-GEHL branch predictor. In
Proceedings of the 32nd Annual International Symposium on

Computer Architecture, june 2005.

[22] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeidès. Design tradeoffs
for the ev8 branch predictor. In Proceedings of the 29th Annual

International Symposium on Computer Architecture, 2002.

[23] André Seznec. The L-TAGE branch predictor. Journal of Instruction

Level Parallelism (http://wwwjilp.org/vol9), May 2007.

[24] André Seznec. A 64 kbytes ISL-TAGE branch predictor. In
Proceedings of the 3rd Championship Branch Prediction, June 2011.

[25] André Seznec. Storage Free Confidence Estimation for the TAGE
branch predictor. In Proceedings of the 17th IEEE Symposium on

High-Performance Computer Architecture (HPCA 2011), Feb 2011.

[26] André Seznec and Pierre Michaud. A case for (partially)-tagged
geometric history length predictors. Journal of Instruction Level

Parallelism (http://www.jilp.org/vol8), April 2006.

[27] E. Sprangle, R.S. Chappell, M. Alsup, and Y.N. Patt. The agree
predictor: A mechanism for reducing negative branch history
interference. In 24

th Annual International Symposium on Computer

Architecture, 1995.

[28] T.-Y. Yeh and Y.N. Patt. Two-level adaptive branch prediction. In
Proceedings of the 24th International Symposium on

Microarchitecture, Nov. 1991.

