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MULTI-SENSOR PHD BY SPACE PARTITIONING: COMPUTATION OF A TRUE
REFERENCE DENSITY WITHIN THE PHD FRAMEWORK

E. DELANDE, E. DUFLOS, P. VANHEEGHE D. HEURGUIER
LAGIS FRE CNRS 3303 OPS /HAT / SPM
Ecole Centrale de Lille Thales Communication
59651 Villeneuve d’Ascq, France 92704 Colombes, France
ABSTRACT where Z(®) = U, <x Z¢ is the collection of measurements up to

imek, fix(W|Z®) is the current multi-target posterior density in
etW, fur1x(X|W) is the current multi-target Markov transition
ensity, from set’ to setX,, fr11(Z|X) is the current multi-sensor

In a previous paper, the authors proposed an extension of the Pro,
ability Hypothesis Density (PHD), a well-known method for single- d
sensor mu!tl-target tracking problems in a_BayeS|an fram.eworkmulti-targetIikelihood function.
to the multi-sensor case. The true expression of the multi-sensor
data update PHD equation was constructed using finite sets statistics ) o

(FISST) derivative techniques on functionals defined on multi-sensdgven though equations (1), (2) are well built within the FISST frame-
observation and state space named "cross-terms". In this paper, &gk, they are untractable because of the set integrals and the prob-
equivalent expression in a combinational form is provided, whichability densities defined on multi-object spaces. Mahler proposed
allows an easier interpretation of the data update equation. TheH) [2] to limit the propagation of the multi-target probability density
using the joint partitioning proposed by the authors in the previoug's/x(X|Z*)) to its firstmoment density, the PHD (z|Z")).
paper, an exact multi-sensor multi-target PHD filter is efficiently The PHD encapsulates information bothtarget number and states
propagated on a benchmark scenario involving 10 sensors and up Rt being defined on the single-state spatets propagation does
10 simultaneous targets where the brute force approach would hai¥t require the computation of cumbersome set integrals or multi-
been extremely burdensome. The availability of a true referencebject densities. Under certain assumptions on the target motion and
PHD then allows a validation of the classical iterated-corrector apthe observation models, Mahler provided in [2] the tractable PHD-

proximation method, albeit limited to the scope of the implementeceuivalents of Bayesian set equations (1) and (2), the latter in the
scenario. single-sensor casmly.

Index Terms— Probability Hypothesis Density, Multi-sensor

system, Multi-target tracking In a previous paper ([3]), the authors extended Mahler's work and

provided a true multi-sensor data update equation in a derivative
form. Here, an equivalent expression in a combinational form is
1. INTRODUCTION given; it allows an intuitive intepretation of the data update equa-
tion and made easier the comparison with Mahler's own extension
In the general multi-sensor multi-target Bayesian framework, ari0 the two-sensor case ([4]), which turned to be conclusive. This
unknown (and possibly varying) number of targets whose stateBaper also provides simulation results from the comparison between
x1,...x, * are observed by several sensors which produce a cothe PHD propagated by the true data update equation and by the
lection of measurements, ..., z, at every time steft. Mahler's  classical iterated-corrector approximation on a given scenario. Note
work on FISST ([1]) provides a mathematical framework to build that the theoretical results presented here are more detailed in [5],
multi-object densities and derive the Bayesian rules. Randomne&#d that a full understanding of this work requires some knowledge
on object number and their states are encapsulated into random fin@@out FISST theory and calculus rules which may be found in [1].
sets (RFS), namely multi-target (state) s&ts= {z1,...,z,} and
multi-sensor (measurement) s&f = {z1, ..., zm }. The objective is
then to propagate the multi-target probability deng“tgyc(X\Z(’“))

by using the Bayesian set equations at every time/step 2. MULTI-SENSOR DATA UPDATE EQUATION

x| 7"y = / X|W WlzEsw (1 Following the time update step and with the same assumption than
Jernn(X] ) S (XIW) fuaw (W] ) @) exposed by Mahler ([2]), the updated distributimuk(xw(’“))

Gy Ser1(Zea | X) frpan (X Z3) is assumed Poisson with parameteand intensityus(z) 2. Since
Feraper1 (X]Z2577) = T Fort (Zas W) fra s (W] Z0) W fes1n(X]Z®) is Poisson, its intensity.s(x) equals the time up-
(2)  dated PHDD,, (x| Z®) ([2]). Note that the following notations
were chosen as close as possible to Mahler’s work for clarity’s sake.

This work was supported by the Direction Générale de I'Armemen
(DGA) and the Centre National de la Recherche ScientifiqIdRE)

1The target state;; € X is usually composed of a position, a velocity, 2us() = Hr41|kSk+1/% (-), time subscripts are omitted for simplicity’s
etc. sake




2.1. Observation model

Assume that, following target transition between time ste@sd
k+ 1, each sensgr € [1 N| produces measuremeisiependently

Each cross-term above denotes a "likelihood" of a "link" between
points in the single-state spageand/or the observation spacg&,
hence their name.

of the others according to the observation model described as fol-

lows:

e Targeti is detected with probabllltxo“] (zhi1) %

e If detected, target produces aslnglemeasuremenzt e 2zl
with probability distributionf, ;) (2|2 1) = LY (a,4);

e False alarms are Poisson with parametét and intensity
Al eld] (2);

e Observation processes on each target are independent condi-

tionally on the multi-target seX, ;.

2.2. Cross-terms

Generalizing the single-sensor case led the authors to the introduc-

tion and the definition of theross-termg[5]) which played an im-

portant role in the construction of the multi-sensor data update equ

tion:

Definition 2.1. For each sensoj € [1 NJ, let gY! be a real-
valued function on observation spac®’! such thatvz € 2z,

0 < gY'(z) < 1. Leth be a real-valued function on state spate
such thatvz: € X, 0 < h(z) < 1. The cross-terns[g!Y, ..., g™, b

is the functional defined by:

N
B[g[l]’ ...,g[N]7 h] = Z(/\[j]c[j] [g[j]] _ )\[j])

j=1
N .
+us |R]] (1 — i+ pl'pSY) )] )
j=1
Wherepo l(z) = [ gl ka (z|z)dz,
(g9 fgm cl(z)dz ands[h] = [ h(z)s(x)dx

Using FISST calculus rules ([2]), the cross-tefrean be differenti-
ated on a single-target space paine X’ and/or an tuple of various
single-sensor observation point§! € ZU! ([5]). The analytical

expressions of the differentiated cross-terms allows an intuitive in-

terpretation as "likelihoods" for example, withV = 3:

3
1] g[2] 4031 p j .
* [ oL 51 < ]]g[ilzo,hzl - ,us(m)H (1 —pg](x)). a

j=1
target is in state: andwas not detected by any sensor;

538[gM g2, 413 h) _
* [ sw62l1152[2 L[i]:o,h:l N
2 () ()] 1— o ): atarget is i
ws(x) Hj:1 p () i (z) p, (x)): atargetisin
statez, generated measurementd! and z?! and was not
detected by sens@ér

528[gM g2 B3] )
° 521116202] ; =
ziHoz glil=0,h=1

s [Hz ( [j]L[jl ) (1 _

measurements[” andz[? andwas not detected by sensbr

[3])} : a single target generated

3p£lj] ()= pg]k_H (.), time subscripts are omitted for simplicity’s sake
4"Likelihood" should not be interpreted in its classical Baian sense

2.3. Data update equation

Denote bkaJrl =M. zﬂi][j]} the set of current measurements

produced by thg-th sensor, and byx+1 = (Z,[:ll, . Z,[fil) the
current multi-sensor measurement set. The authors proposediin [3]
multi-sensor data update equation constructed as a set differentiation

of the cross-terns[g!!, ... g™ h):
(V] ,h])]
gll=0,nh=1

oI ,m}
glil=0,h=1

Since a single target, if detected by sengat the current time step,

Disajpr (2|25 =

i(ém%ﬂ+...+[]rvn][N] slgl g
oz (521 “‘(Szm[N]

[A1+...+m[N] )
6771, m
{ BORRL efla"

a_

cannotgenerate more than one measuremengifi, one can ex-
pects to vanish if differentiated in at least two points from tame
observation spacé[j]; this is indeed the case within the FISST cal-
culus rules. That is, remaining cross-terms in (4) are differentiated
in measurements®! ..., z*»] from dlfferentsensorskl, v ke o,
equivalently, on a tuple(z[’“l], ..., zlFn] ) defined on the carte5|an
productzlil x . x zlknl,

Thus, if we denote by:

e Zx the set of (unorderedjtuples,1 < ¢ < N, defined on
current measurement sgt.. 1, with at most one measure-
ment from each observation space;

e For any tupleT; = (2", ... 2"y € Zy, B[T;, ] the
cross-term[igz[kl]ffaz[kn] Blg™M, ..., g™, h]] i’
then (4) can be expanded as follows (see [5] for details):

Disajpr (2] 2% =

oo > | 8ms) T 81,1
TeT(ZN) Ti€T T?J;E;
B0, 6.] + — (5)
TeT(ZNn) Ti€T
where:

e T € P(Zy) is acombinational termi.e. a set of tuples
containing each measurement4i.; once and only onge

e T(Zx) C P(Zn) is the set of all combinational terms.

Note that equations (4) and (5) are different forms from shee
multi-sensor data update equation and thereforequévalent The
combinational form (5) provides an easier interpretation of the data
update process since, similarly to the cross-terms, each combina-
tional term can be interpreted intuitively as a "likelihood" linking
the whole measurement s&t ., to the state spac#.

For example, withV' = 2 and Zy4+1 = {zg ,zé”,zl }, one of
the combinational terms i§(z/"!, 2i?), (2['))} and it appears in (5)
through the following products:



o B[(=", 2, 118[(z1"), 1]: a target generatedoth 2I"! and
z?], another source generateEl] only (either target or false
alarm);

. 5[(4 ,z?]) 0z ]ﬂ[(z2 ), 1]: a target is inz and generated
both z; (1 andzg I, another source generateB] only (either
target or false alarm);

o B[z, 21%), 118[(z["), 6.): atarget is inx, generatect!’!

and was not detected by sens®r another target generated

both 2" and 2.

2.4. Simplification by state and sensor partitioning

wheref,, is the cross-term restricted to sensprs Ps(p) C [1 N]

and to the subregiofr(p) C X, T(Z](\f:) is the set of combina-
tional terms restricted to measurements from senser’s (p). As
illustrated on a simple scenario in [3], the "brute force" (5) and the
partition method (9) both yield the true data updated density since
(5) and (9) are equivalent, yet the partition method spares itself the
computation of vanishing cross-terms and is therefore significantly
lighter.

3. SIMULATION

Since the single-sensor equivalent of equation (4) has a nice ana-
lytical expression and is easy to compute ([2]), Mahler introduced

In [5] the authors showed that if the sensor FOVs do not all overlaphe classical iterated-corrector approximation in which the single-
with each other, many differentiated cross-terms are likely to vanis§ensor data update equation is appliédimes successively, con-
in the multi-sensor data update (5). That is why the joint partitioningSidering the measurements from senéat thei-th iteration. That

of the sensors and the state space was proposed ([5], [3]):

Definition 2.2. For any sensoy € [1 N], let F,ﬂl C X denote its
field of view at timé: + 1 defined as:

(6)

Define the equivalence relation "cross™{ between sensors as:

VxEXJCGF,ﬂ_l <:>pdk+1( x)#0

Vi,j € 1N, (i ¢ j) & (F, nFPl #0) )

Let {Ps(p)};—, be the sensor partition oft N| formed by the

equivalence classes of the transitive closure of the "cross" relatio

Let{ Pr(p)}};—o *be the space partition of the state spatelefined
by:
U Fk+1 (p=0)
Pr(p) = (8)
U gL #0)

JE€Ps(p)

Finally, for any element’s(p) ot the sensor partition, let, =
| Ps(p)| denotes the number of sensorsin(p), and letps, ..., pn,,
denote the increasing indexes jh N] of sensors belonging to
Ps(p).

Then, equation (5) can be simplified ([5]) and is equivalent to:

Diiajor (x| 250y =

Diysrji(2| 2 (z € Pr(0))

oo > BIme) T Bl
(p)\ T; €T T;€T
TeT(Z "p) T;#Tl

B0, 8.] + IR IR

TET(ZI(\?T))) TieT

(I € Pf(p)7p # 0)
C)

S(Ps(p}E, {Ps 1 ()}, and {Pr(p)}E,

{Pr k+1 (p)};;igl, time subscripts are omitted for simplicity’s sake.

is, the "iterated" method proceeds with senssgquentiallyrather
thanin a whole However, to the authors’ knowledge, the quality
of the approximation provided by the iterated method is unknown
since it lacks a comparison with a true reference. The objective of
this simulation is to evaluate the iterated method on a given scenario
by comparing the PHD updated through the iterated method with the
true reference PHD, available thanks to the partition method.

3.1. Scenario description

A target statex € R* is composed of positionz{ ) and velocity

(¢, y) variables. Targets evolve according to a nearly constant ve-
locity (NCV) model. The birth process is Poisson with a constant
ate, new targets are spread uniformly in the state space. Targets
die whenever reaching the edges of the 2-D position subspace. The
test scenario lasts 500 time steps and involves up to 12 simultane-
ous targets. The ten sensors provide measurements with an indepen-
dant Gaussian noise on range, bearing and eventually radial velocity.
False alarms are Poisson and uniformly spread inside the FOV. Each
sensor has its own set of sensing parameters (detection probability,
FOV shape, false alarm rate, noise variances). Their FOVs are as-
sumed fixed and spread as follows:

aanom,
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Fig. 1: Sensors’ positions (dots) and FOVs in position subspace

The PHD multi-target tracker was implemented with a particle filter
([6]), in this particular case the "cross" relation (7) is restricted as
follows: two sensorg, j» are said to cross each other if and only if
at least one particlg’ belongs to both FOVs. Note (fig. 1) that the
FOV configuration is such that the sensor partition at any time is a



subdivision of the coarse partitiqi —3—4—7,2,5—6—10,8—-9}. 4, CONCLUSION AND FURTHER WORK
Thus, the computational gain of the partition method over the brute ) o
force approach is likely to be significant regardless of the particldn this paper, a new formulation of the partioning method for the

spreading. practical implementation of an exact multi-sensor multi-target PHD
filter has been proposed. Thanks to this method, the computational
3.2. Results cost of the implementation of the multi-sensor multi-target data up-

date step is significanlty reduced whenever the configuration of the
The same scenario (i.e with identical target behavior) has been rusensor FOVs is favorable to a partitioning. This method is of practi-
10 times, maintaining simultaneously a partition-based PHD and aal interest because it allows the efficient computation of a reference
iterated-based PHD. The two densities are compared through the efensity which is exact in the sense of Bayesian inference within
timated target number (fig. 2) and the OSPA distance [7] betweethe PHD framework. In this paper, the classical iterated-corrector
the set of real targets and the sets of PHD-extracted estimated targejsproximation was compared to the exact multi-sensor PHD filter,
(fig. 3). These two figures show that, on this particular scenario, thavailable through the partition method, on a 10-sensor scenario. The
iterated method has similar performances than the partition methodesults seem to indicate similar performances, for target number as
although it does not appear in this paper for lack of space, this is fumwell as target state estimation.
ther illustrated by the almost identical trajectories in the 2D position
subspace of the PHD-extracted tracks given by both methods.  Furthermore, the partitioning method seems to offer new perspec-
tives on the multi-sensor PHD problem. First, the same comparison
could be implemented on various scenarios in order to validate the
iterated approximation method on a broader range of situations in-
volving different sensor and/or target behaviors. Then, since the pa
titioning shows that the data update step can be procésdegen-
dentlyin each partition element of the state space, the authors believe
that the approximation in the iterated-corrector method depemigts
on the order in which sensors are processed within their respective
partition element rather than within all the sensors; should this re-
sult be verified, it could provide new leads for the resolution of the
well-known sensor order issue in the various PHD iterative approx-
imations. Finally, one may think of applying a similar partitioning
technique in order to obtain a tractable PENT-based [8] multi-sensor
managetr; this is currently under consideration by the authors.
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