R. Agrawal, T. Imielinski, and A. N. Swami, Mining association rules between sets of items in large databases, pp.207-216, 1993.

J. M. Ale and G. H. Rossi, An approach to discovering temporal association rules, Proceedings of the 2000 ACM symposium on Applied computing , SAC '00, pp.294-300, 2000.
DOI : 10.1145/335603.335770

D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu, MAFIA: a maximal frequent itemset algorithm, IEEE Transactions on Knowledge and Data Engineering, vol.17, issue.11, 2005.
DOI : 10.1109/TKDE.2005.183

T. Calders, N. Dexters, and B. Goethals, Mining frequent itemsets in a stream, pp.83-92, 2007.

J. H. Chang and W. S. Lee, Finding recent frequent itemsets adaptively over online data streams, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.487-492, 2003.
DOI : 10.1145/956750.956807

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

X. Chen and I. Petrounias, Mining Temporal Features in Association Rules, 'PKDD '99: Proceedings of the Third European Conference on Principles of Data Mining and Knowledge Discovery, pp.295-300, 1999.
DOI : 10.1007/978-3-540-48247-5_33

C. Fung, J. Xu-yu, P. S. Lu, and H. , Parameter free bursty events detection in text streams, 'VLDB '05: Proceedings of the 31st international conference on Very large data bases, pp.181-192, 2005.

Y. Chi, H. Wang, P. S. Yu, and R. R. Muntz, Catch the moment: maintaining closed frequent itemsets over a data stream sliding window, Knowledge and Information Systems, vol.34, issue.6, pp.265-294, 2006.
DOI : 10.1007/s10115-006-0003-0

Z. Chong, J. X. Yu, H. Lu, Z. Zhang, and A. Zhou, False-Negative Frequent Items Mining from Data Streams with Bursting, in 'DASFAA'05: Database Systems for Advanced Applications, pp.422-434, 2005.

R. C. Crepeau, The economics of super bowl xliii, 2010.

A. Duncan, Super bowl xxxv fun facts, 2010.

C. Gao and J. Wang, Efficient itemset generator discovery over a stream sliding window, Proceeding of the 18th ACM conference on Information and knowledge management, CIKM '09, pp.355-364, 2009.
DOI : 10.1145/1645953.1646000

C. Giannella, J. Han, J. Pei, X. Yan, and P. Yu, Mining Frequent Patterns in Data Streams at Multiple Time Granularities, Next Generation Data Mining, AAAI/MIT, 2003.

J. Han, J. Pei, and Y. Yin, Mining frequent patterns without candidate generation, pp.1-12, 2000.
DOI : 10.1145/335191.335372

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. J. Jr, Efficiently mining long patterns from databases., in 'SIGMOD, pp.85-93, 1998.

C. Lee, C. Lin, and M. Chen, On mining general temporal association rules in a publication database, pp.337-344, 2001.

Y. Li, P. Ning, X. S. Wang, and S. Jajodia, Discovering calendar-based temporal association rules, Data & Knowledge Engineering, vol.44, issue.2, 2003.
DOI : 10.1016/S0169-023X(02)00135-0

W. Lian, D. W. Cheung, and S. M. Yiu, Maintenance of maximal frequent itemsets in large databases, Proceedings of the 2007 ACM symposium on Applied computing , SAC '07, pp.388-392, 2007.
DOI : 10.1145/1244002.1244094

C. Lucchese, S. Orlando, and R. Perego, Fast and memory efficient mining of frequent closed itemsets, IEEE Transactions on Knowledge and Data Engineering, vol.18, issue.1, pp.21-36, 2006.
DOI : 10.1109/TKDE.2006.10

F. Masseglia, P. Poncelet, M. Teisseire, and A. Marascu, Web usage mining: extracting unexpected periods from web logs, Data Mining and Knowledge Discovery, vol.6, issue.1, pp.39-65, 2008.
DOI : 10.1007/s10618-007-0080-z

URL : https://hal.archives-ouvertes.fr/inria-00461877

B. Ozden, S. Ramaswamy, and A. Silberschatz, Cyclic association rules, Proceedings 14th International Conference on Data Engineering, pp.412-421, 1998.
DOI : 10.1109/ICDE.1998.655804

A. T. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares, A clustering-based approach for discovering interesting places in trajectories, Proceedings of the 2008 ACM symposium on Applied computing , SAC '08, pp.863-868, 2008.
DOI : 10.1145/1363686.1363886

G. K. Palshikar, M. S. Kale, and M. M. Apte, Association rules mining using heavy itemsets', Data Knowl, Eng, vol.61, issue.1, pp.93-113, 2007.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, Discovering Frequent Closed Itemsets for Association Rules, pp.398-416, 1999.
DOI : 10.1007/3-540-49257-7_25

URL : https://hal.archives-ouvertes.fr/hal-00467747

J. F. Roddick and M. Spiliopoulou, A survey of temporal knowledge discovery paradigms and methods, IEEE Transactions on Knowledge and Data Engineering, vol.14, issue.4, pp.750-767, 2002.
DOI : 10.1109/TKDE.2002.1019212

B. Saleh and F. Masseglia, Time Aware Mining of Itemsets, 2008 15th International Symposium on Temporal Representation and Reasoning, pp.93-97, 2008.
DOI : 10.1109/TIME.2008.12

URL : https://hal.archives-ouvertes.fr/inria-00359182

W. Teng, M. Chen, and P. S. Yu, A Regression-Based Temporal Pattern Mining Scheme for Data Streams, pp.93-104, 2003.
DOI : 10.1016/B978-012722442-8/50017-3

H. Toivonen, Sampling large databases for association rules, pp.134-145, 1996.

J. Wang, J. Han, and J. Pei, CLOSET+, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.236-245, 2003.
DOI : 10.1145/956750.956779

H. Xiong, M. Steinbach, A. Ruslim, and V. Kumar, Characterizing pattern preserving clustering, Knowledge and Information Systems, vol.8, issue.3, pp.311-336, 2009.
DOI : 10.1007/s10115-008-0148-0

J. S. Yoo, P. Zhang, and S. Shekhar, Mining Time-Profiled Associations: An Extended Abstract, pp.136-142, 1920.
DOI : 10.1007/11430919_17

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Zhang, X. Wu, C. Zhang, and J. Lu, Computing the minimum-support for mining frequent patterns, Knowledge and Information Systems, vol.18, issue.3, pp.233-257, 2008.
DOI : 10.1007/s10115-007-0081-7

Y. Zhu and D. Shasha, Efficient elastic burst detection in data streams, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.336-345, 2003.
DOI : 10.1145/956750.956789