
HAL Id: hal-00640279
https://inria.hal.science/hal-00640279

Submitted on 11 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Praspel: A Specification Language for Contract-Based
Testing in PHP

Ivan Enderlin, Frédéric Dadeau, Alain Giorgetti, Abdallah Ben Othman

To cite this version:
Ivan Enderlin, Frédéric Dadeau, Alain Giorgetti, Abdallah Ben Othman. Praspel: A Specification
Language for Contract-Based Testing in PHP. 23th International Conference on Testing Software and
Systems (ICTSS), Nov 2011, Paris, France. pp.64-79, �10.1007/978-3-642-24580-0_6�. �hal-00640279�

https://inria.hal.science/hal-00640279
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Praspel: A Specification Language for
Contract-Based Testing in PHP

Ivan Enderlin, Frédéric Dadeau, Alain Giorgetti and Abdallah Ben Othman

LIFC / INRIA CASSIS Project – 16 route de Gray - 25030 Besançon cedex, France
Email: {ivan.enderlin, abdallah.ben othman}@edu.univ-fcomte.fr,

{frederic.dadeau, alain.giorgetti}@univ-fcomte.fr

Abstract. We introduce in this paper a new specification language
named Praspel, for PHP Realistic Annotation and SPEcification Lan-
guage. This language is based on the Design-by-Contract paradigm.
Praspel clauses annotate methods of a PHP class in order to both spec-
ify their contracts, using pre- and postconditions, and assign realistic
domains to the method parameters. A realistic domain describes a set
of concrete, and hopefully relevant, values that can be assigned to the
data of a program (class attributes and method parameters). Praspel is
implemented into a unit test generator for PHP that offers a random test
data generator, which computes test data, coupled with a runtime asser-
tion checker, which decides whether a test passes or fails by checking the
satisfaction of the contracts at run-time.
Keywords. PHP, Design-by-Contract, annotation language, unit test-
ing, formal specifications.

1 Introduction

Over the years, testing has become the main way to validate software. A chal-
lenge is the automation of test generation that aims to unburden the developers
from writing their tests manually. Recent development techniques, such as Agile
methods, consider tests as first-class citizens, that are written prior to the code.
Model-based testing [5] is an efficient paradigm for automating test generation.
It considers a model of the system that is used for generating conformance test
cases (w.r.t. the model) and computing the oracle (i.e. the expected result) that
is used to decide whether a test passes or fails.

In order to ease the model description, annotation languages have been de-
signed, firstly introduced by B. Meyer [19], creating the Design-by-Contract
paradigm. These languages make it possible to express formal properties (invari-
ants, preconditions and postconditions) that directly annotate program entities
(class attributes, methods parameters, etc.) in the source code. Many annota-
tion languages exist, such as the Java Modeling Language (JML) [15] for Java,
Spec# [3] for C#, or the ANSI-C Specification Language (ACSL) [4] for C.
Design-by-Contract considers that a system has to be used in a contractual way:
to invoke a method the caller has to fulfil its precondition; in return, the method
establishes its postcondition.

Contract-Driven Testing. Annotations can be checked at run time to make
sure that the system behaves as specified, and does not break any contract. Con-
tracts are thus well-suited to testing, and especially to unit testing [16]. The idea
of Contract-Driven Testing [1] is to rely on contracts for both producing tests, by
computing test data satisfying the contract described by the precondition, and
for test verdict assessment, by checking that the contract described by the post-
condition is ensured after execution. On one hand, method preconditions can
be used to generate test data, as they characterize the states and parameters
for which the method call is licit. For example, the Jartege tool [20] generates
random test data, in accordance with the domain of the inputs of a given Java
method, and rejects the values that falsify the precondition. The JML-Testing-
Tools toolset [6] uses the JML precondition of a method to identify boundary
states from which the Java method under test will be invoked. The JMLUnit [9]
approach considers systematic test data for method input parameters, and fil-
ters irrelevant ones by removing those falsifying the method precondition. On the
other hand, postconditions are employed similarly in all the approaches [6,8,9].
By runtime assertion checking, the postcondition is verified after each method
execution, to provide the test verdict.

Contributions. In this paper, we present a new language named Praspel, for
PHP Realistic Annotation and SPEcification Language. Praspel is a specification
language for PHP [21] which illustrates the concept of realistic domains. Praspel
introduces Design-by-Contract in PHP, by specifying realistic domains on class
attributes and methods. Consequently, Praspel is adapted to test generation:
contracts are used for unit test data generation and provide the test oracle by
checking the assertions at runtime.

Our second contribution is a test framework supporting this language. This
online test generation and execution tool works in three steps: (i) the tool gen-
erates values for variables according to the contract (possibly using different
data generators), (ii) it runs the PHP program with the generated values, and
(iii) the tool checks the contract postcondition to assign the test verdict.

Paper outline. The paper is organized as follows. Section 2 briefly introduces
the concept of realistic domains. Section 3 presents an implementation of re-
alistic domains in the Praspel language, a new annotation language for PHP.
Section 4 describes the mechanism of automated generation of unit tests from
PHP files annotated with Praspel specifications. The implementation of Praspel
is described in Section 5. Section 6 compares our approach with related works.
Finally, Section 7 concludes and presents our future work.

2 Realistic Domains

When a method precondition is any logical predicate, say from first-order logic,
it can be arbitrarily difficult to generate input data satisfying the precondition.

One could argue that the problem does not appear in practice because usual
preconditions are only simple logical predicates. But defining what is a “simple”
predicate w.r.t. the problem of generating values satisfying it (its models) is a
difficult question, still partly open. We plan to address this question and to put
its positive answers at the disposal of the test community. In order to reach this
goal we introduce the concept of realistic domains.

Realistic domains are intended to be used for test generation purposes. They
specify the set of values that can be assigned to a data in a given program.
Realistic domains are well-suited to PHP, since this language is dynamically
typed. Therefore, realistic domains introduce a specification of data types that
are mandatory for test data generation. We introduce associated features to
realistic domains, and we then present the declination of realistic domains for
PHP.

2.1 Features of realistic domains

Realistic domains are structures that come with necessary properties for the val-
idation and generation of data values. Realistic domains can represent all kinds
of data; they are intended to specify relevant data domains for a specific con-
text. Realistic domains are more subtle than usual data types (integer, string,
array, etc.) and are actually refinement of those latters. For example, if a re-
alistic domain specifies an email address, we can validate and generate strings
representing syntactically correct email addresses, as shown in Fig. 1.

Realistic domains display two features, which are now described and illus-
trated.

Predicability. The first feature of a realistic domain is to carry a characteristic
predicate. This predicate makes it possible to check if a value belongs to the
possible set of values described by the realistic domain.

Samplability. The second feature of a realistic domain is to propose a value
generator, called the sampler, that makes it possible to generate values in the
realistic domain. The data value generator can be of many kinds: a random gen-
erator, a walk in the domain, an incrementation of values, etc.

We now present our implementation of realistic domains in PHP and show
some interesting additional principles they obey.

2.2 Realistic domains in PHP

In PHP, we have implemented realistic domains as classes providing at least
two methods, corresponding to the two features of realistic domains. The first
method is named predicate($q) and takes a value $q as input: it returns a
boolean indicating the membership of the value to the realistic domain. The sec-
ond method is named sample() and generates values that belong to the realistic

class EmailAddress extends String {

public function predicate($q) {
// regular expression for email addresses
// see. RFC 2822, 3.4.1. address specs.
$regexp = ’. . .’;
if(false === parent::predicate($q))

return false;

return preg_match($regexp,$q);
}

public function sample() {
// string of authorized chars
$chars = ’ABCDEFGHIJKL. . .’;
// array of possible domain extensions
$doms = array(’net’,’org’,’edu’,’com’);
$q = ’’;

$nbparts = rand(2, 4);

for($i = 0; $i < $nbparts; ++$i) {
if($i > 0)

// add separator or arobase
$q .= ($i == $nbparts - 1)

? ’@’ : ’.’;

$len = rand(1,10);
for($j=0; $j < $len; ++$j) {

$index = rand(0, strlen($chars) - 1);
$q .= $chars[$index];
}
}
$q .= ’.’ .

$doms[rand(0, count($doms) - 1)];
return $q;
}
}

Fig. 1. PHP code of the EmailAddress realistic domain

domain. An example of realistic domain implementation in a PHP class is given
in Fig. 1. This class represents the EmailAddress realistic domain already men-
tioned. Our implementation of realistic domains in PHP exploit the PHP object
programming paradigm and benefit from the following two additional principles.

Hierarchical inheritance. PHP realistic domains can inherit from each other.
A realistic domain child inherits the two features of its parent and is able to
redefine them. Consequently, all the realistic domains constitute an universe.

Parameterizable realistic domains. Realistic domains may have parameters.
They can receive arguments of many kinds. In particular, it is possible to use
realistic domains as arguments of realistic domains. This notion is very impor-
tant for the generation of recursive structures, such as arrays, objects, graphs,
automata, etc.

Example 1 (Realistic domains with arguments). The realistic domain bound-

integer(X, Y) contains all the integers between X and Y . The realistic do-
main string(L, X, Y) is intended to contain all the strings of length L con-
stituted of characters from X to Y Unicode code-points. In the realistic domain
string(boundinteger(4, 12), 0x20, 0x7E), the string length is defined by
another realistic domain.

3 PHP Realistic Annotation and Specification Language

Realistic domains are implemented for PHP in Praspel, a dedicated annotation
language based on the Design-by-Contract paradigm [19]. In this section, we
present the syntax and semantics of the language.

Praspel specifications are written in API documentation comments as shown
in Fig. 3, 4, 5 and 6.

annotation ::= (clause)∗

clause ::= requires-clause;
| ensures-clause;
| throwable-clause;
| predicate-clause;
| invariant-clause;
| behavior-clause

requires-clause ::= @requires expressions
ensures-clause ::= @ensures expressions

throwable-clause ::= @throwable (identifier)+,
invariant-clause ::= @invariant expressions
behavior-clause ::= @behavior identifier {

(requires-clause;
| ensures-clause;

| throwable-clause;)+ }
expressions ::= (expression)+and
expression ::= real-dom-spec

| \pred(predicate)

real-dom-spec ::= variable (: real-doms
| domainof variable)

variable ::= constructors | identifier

constructors ::= \old(identifier) | \result
real-doms ::= real-dom+

or

real-dom ::= identifier (arguments)

| built-in
built-in ::= void()

| integer()
| float()
| boolean()
| string(arguments)
| array(arguments)
| class(arguments)

arguments ::= (argument)∗,
argument ::= number | string

| real-dom | array
array ::= [pairs]
pairs ::= (pair)∗,
pair ::= (from real-doms)?to real-doms

Fig. 2. Grammar of the concrete syntax

Praspel makes it possible to mix informal documentations and formal con-
straints, called clauses and described hereafter. Praspel clauses are ignored by
PHP interpreters and integrated development environments. Moreover, since
each Praspel clause begins with the standard @ symbol for API keywords, it
is usually well-handled by pretty printers and API documentation generators.

The grammar of Praspel annotations is given in Fig. 2. Notation (σ)? means
that σ is optional. (σ)r

s represents finite sequences of elements matching σ, in
which r is either + for one or more matches, or * for zero or more matches, and
s is the separator for the elements in the sequence.

Underlined words are PHP entities. They are exactly the same as in PHP.
A predicate is a valid logical PHP expression that returns a boolean. An identifier
is the name of a PHP class or the name of a method or method parameter. It
cannot be the name of a global variable or an attribute, which are respectively
prohibited (as bad programming) and defined as invariants in Praspel. The syn-
tax of identifiers strictly follows the syntax of PHP variables.

The other syntactic entities in this grammar are explained in the PHP man-
ual [21]. Praspel expressions are conjunctions of realistic domain assignments
and of relations between realistic domains, explained in Section 3.1. The spe-
cial case of array descriptions is explained in Section 3.2. Finally, clauses are
described in Section 3.3.

3.1 Assigning realistic domains to data

We now explain how to declare the realistic domains of method parameters and
we give the semantics of these declarations w.r.t. the method inputs and output.

The syntactic construction:

i: t1(. . .) or . . . or tn(. . .)

associates at least one realistic domain (among t1(. . .), . . . , tn(. . .)) to an iden-
tifier (here, i). We use the expression “domains disjunction” when speaking
about syntax, and the expression “domains union” when speaking about seman-
tics. The left-hand side represents the name of some method argument, whereas
the right-hand side is a list of realistic domains, separated by the “or” keyword.

The semantics of such a declaration is that the realistic domain of the identi-
fier i may be t1(. . .) or . . . or tn(. . .), i.e. it is the union (as in the C language) of
the realistic domains t1(. . .) to tn(. . .). These realistic domains are (preferably)
mutually exclusive.

Example 2 (An identifier with many realistic domains). The declaration:

y: integer() or float() or boolean()

means that y can either be an integer, a floating-point number or a boolean.

The domainof operator describes a dependency between the realistic domains
of two identifiers. The syntactic construction: identifier domainof identifier cre-
ates this relation. The semantics of i domainof j is that the realistic domain
chosen at runtime for j is the same as for i.

When an object is expected as a parameter, it can be specified using the
class(C) construct, in which C is a string designating the class name.

Example 3 (Use of a class as a realistic domain). The following declaration:

o: class(’LimitIterator’) or class(’RegexIterator’)

specifies that o is either an instance of LimitIterator or RegexIterator.

3.2 Array description

A realistic domain can also be an array description. An array description has
the following form:

[from T 1
1 (. . .) or . . . or T 1

i (. . .) to T 1
i+1(. . .) or . . . or T 1

n(. . .),
. . .
from T k1 (. . .) or . . . or T kj (. . .) to T kj+1(. . .) or . . . or T km(. . .)]

It is a sequence between square brackets “[” and “]” of pairs separated by symbol
“,”. Each pair is composed of a domain introduced by the keyword “from”, and
a co-domain introduced by the keyword “to”. Each domain and co-domain is a
disjunction of realistic domains separated by the keyword “or”. The domain is
optional.

The semantics of an array description depends of the realistic domain where
it is used. We detail this semantics in the most significant case, when the array
description is a parameter of the realistic domain array. Notice that an array
description and the realistic domain array are different. The realistic domain
array has two arguments: the array description and the array size.

Example 4 (Array specification). Consider the following declarations:

a1: array([from integer() to boolean()], boundinteger(7, 42))

a2: array([to boolean(), to float()], 7)

a3: array([from integer() to boolean() or float()], 7)

a4: array([from string(11) to boolean(), to float() or integer()], 7)

a1 describes an homogeneous array of integers to booleans. The size of the yielded
array is an integer between 7 and 42. In order to produce a fixed-size array, one
must use an explicit constant, as in the subsequent examples. a2 describes two
homogeneous arrays: either an array of booleans, or an array of floats, but not
both. In all cases, the yielded array will have a size of 7. If no realistic domain
is given as domain (i.e. if the keyword “from” is not present), then an auto-
incremented integer (an integer that is incremented at each sampling) will be
yielded. a2 is strictly equivalent to array([to boolean()], 7) or array([to

float()], 7). a3 describes an heterogeneous array of booleans and floats alto-
gether. Finally, a4 describes either an homogeneous array of strings to booleans
or an heterogeneous array of floats and integers.

3.3 Designing Contracts in Praspel

This section describes the syntax and semantics of the part of Praspel that
defines contracts for PHP classes and methods. Basically, a contract clause is
either the assignment of a realistic domain to a given data, or it is a PHP
predicate that provides additional constraints over variables values (denoted by
the \pred construct).

Invariants. In the object programming paradigm, class attributes may be con-
strained by properties called “invariants”. These properties must hold before
and after any method call and have the following syntax.

@invariant I1 and . . . and Ip;

Classically, invariants have to be
class C {

/**

* @invariant a: boolean();

*/

protected $a;

}

Fig. 3. Example of invariant clause

satisfied after the creation of the
object, and preserved through each
method execution (i.e. assuming the
invariant holds before the method,
then it has to hold once the method
has terminated). Invariants are also
used to provide a realistic domain
to the attributes of an object.

Example 5 (Simple invariant). The invariant in Fig. 3 specifies that the attribute
a is a boolean before and after any method call.

Method contracts. Praspel makes it possible to express contracts on the meth-
ods in a class. The contract specifies a precondition that has to be fulfilled for
the method to be executed. In return, the method has to establish the specified
postcondition. The contract also specifies a set of possible exceptions that can be
raised by the method. The syntax of a basic method contract is given in Fig. 4.
The semantics of this contract is as follows.

Each Rx (1 ≤ x ≤ n) represents ei-
/**

* @requires R1 and ... and Rn;

* @ensures E1 and ... and Em;

* @throwable T1, ..., Tp;

*/

function foo (...) { ... }

Fig. 4. Syntax of Method Contracts

ther the assignment of a realistic domain
to a data, or a PHP predicate that pro-
vides a precondition. The caller of the
method must guarantee that the method
is called in a state where the properties
conjunction R1 ∧ . . . ∧ Rn holds (mean-
ing that the PHP predicate is true, and
the value of the data should match their
assigned realistic domains). By default,
if no @requires clause is declared, the parameter is implicitly declared with the
undefined realistic domain (which has an always-true predicate and sample an
integer by default).

Each Ez (1 ≤ z ≤ m) is either the assignment of a realistic domain to a
data (possibly the result of the method) after the execution of the method, or
an assertion specified using a PHP predicate that specifies the postcondition of
the method. The method, if it terminates normally, should return a value such
that the conjunction E1 ∧ . . . ∧ Em holds.

Each Ty (1 ≤ y ≤ p) is an exception name. The method may throw one of
the specified exceptions T1 ∨ . . . ∨ Tp or a child of these ones. By default, the
specification does not authorize any exception to be thrown by the method.

Postconditions (@ensures clauses)
/**

* @requires x: boundinteger(0,42);

* @ensures \result: eveninteger()

* and \pred(x >= \old(x));
* @throwable FooBarException;

*/

function foo ($x) {
if($x === 42)

throw new FooBarException();

return $x * 2;

}

Fig. 5. Example of Simple Contract

usually have to refer to the method
result and to the variables in the pre-
state (before calling the function). Thus,
PHP expressions are extended with two
new constructs: \old(e) denotes the
value of expression e in the pre-state of
the function, and \result denotes the
value returned by the function. No-
tice that our language does not in-
clude first-order logic operators such
as universal or existential quantifiers.
Nevertheless, one can easily simulate
such operators using a dedicated boolean
function, that would be called in the PHP predicate.

/**
* @requires R1 and ... and Rn;
* @behavior α {
* @requires A1 and ... and Ak;
* @ensures E1 and ... and Ej;
* @throwable T1, ..., Tt;
* }
* @ensures Ej+1 and ... and Em;
* @throwable Tt+1, ..., Tl;
*/

function foo ($x1...) { body }

(a)

/**
* @requires x: integer();
* @behavior foo {
* @requires y: positiveinteger()
* and z: boolean();
* }
* @behavior bar {
* @requires y: negativeinteger()
* and z: float();
* @throwable BarException;
* }
* @ensures \result: boolean();
*/

function foo ($x, $y, $z) { ... }

(b)

Fig. 6. Behavioral Contracts

Example 6 (Simple contract). Consider the example provided in Fig. 5. This
function foo doubles the value of its parameter $x and returns it. In a special
case, the function throws an exception.

Behavorial clauses. In addition, Praspel makes it possible to describe explicit
behaviors inside contracts.

A behavior is defined by a name and local @requires, @ensures, and @thro-

wable clauses (see Fig. 6(a)). The semantics of behavioral contracts is as follows.
The caller of the method must guarantee that the call is performed in a state

where the property R1 ∧ . . . ∧ Rn holds. Nevertheless, property A1 ∧ . . . ∧ Ak
should also hold. The called method establishes a state where the property (A1∧
. . .∧Ak ⇒ E1∧ . . .∧Ej)∧Ej+1∧ . . .∧Em holds, meaning that the postcondition
of the specified behavior only has to hold if the precondition of the behavior is
satisfied. Exceptions Ti (1 ≤ i ≤ t) can only be thrown if the preconditions
R1 ∧ . . . ∧Rn and A1 ∧ . . . ∧Ak hold.

The @behavior clause only contains @requires, @ensures and @throwable

clauses. If a clause is declared or used outside a behavior, it will automatically
be set into a default/global behavior. If a clause is missing in a behavior, the
clause in the default behavior will be chosen.

Example 7 (Behavior with default clauses). The specification in Fig. 6(b) is an
example of a complete behavioral clause. This contract means: the first argument
$x is always an integer and the result is always a boolean, but if the second
argument $y is a positive integer, then the third argument $z is a boolean
(behavior foo), else if $y is a negative integer, and the $z is a float and then the
method may throw an exception (behavior bar).

4 Automated Unit Test Generator

The unit test generator works with the two features provided by the realistic
domains. First, the sampler is implemented as a random data generator, that

public function foo ($x1 ...) {

$this->foo pre(...);

// evaluation of \old(e)

try {

$result = $this->foo body($x1 ...);

}
catch (Exception $exc) {

$this->foo exception($exc);
throw $exc;
}

$this->foo post($result, ...);

return $result;
}

public function foo pre(...) {

return verifyInvariants(...)
&& verifyPreCondition(...);

}

public function foo post(...) {

return verifyPostCondition(...)
&& verifyInvariants(...);

}

public function foo exception($e) {

return verifyException($e)
&& verifyInvariants(...);

}

public function foo body($x1 ...) ...

Fig. 7. PHP Instrumentation for Runtime Assertion Checking

satisfies the precondition of the method. Second, the predicate makes it possible
to check the postcondition (possibly specifying realistic domains too) at runtime
after the execution of the method.

4.1 Test Verdict Assignment using Runtime Assertion Checking

The test verdict assignment is based on the runtime assertion checking of the
contracts specified in the source code. When the verification of an assertion
fails, a specific error is logged. The runtime assertion checking errors (a.k.a.
Praspel failures) can be of five kinds. (i) precondition failure, when a precon-
dition is not satisfied at the invocation of a method, (ii) postcondition failure,
when a postcondition is not satisfied at the end of the execution of the method,
(iii) throwable failure, when the method execution throws an unexpected ex-
ception, (iv) invariant failure, when the class invariant is broken, or (v) internal
precondition failure, which corresponds to the propagation of the precondition
failure at the upper level.

The runtime assertion checking is performed by instrumenting the initial
PHP code with additional code which checks the contract clauses. The result of
the code instrumentation of a given method foo is shown in Fig. 7. It corresponds
to the treatment of a behavioral contract, as shown in Fig. 6. The original method
foo is duplicated, renamed (as foo body) and substituted by a new foo method
which goes through the following steps:

– First, the method checks that the precondition is satisfied at its beginning,
using the auxiliary method foo pre.

– Second, the \old expressions appearing in the postconditions are evaluated
and stored for being used later.

– Third, the replication of the original method body is called. Notice that this
invocation is surrounded by a try-catch block that is in charge of catching
the exception that may be thrown in the original method.

– Fourth, when the method terminates with an exception, this exception is
checked against the expected ones, using the auxiliary method foo excep-

tion. Then the exception is propagated so as to preserve the original behav-
ior of the method.

– Fifth, when the method terminates normally, the postconditions and the
invariants are checked, using the auxiliary method foo post.

– Sixth, and finally, the method returns the value resulting of the execution of
foo body.

Test cases are generated and executed online: the random test generator
produces test data, and the instrumented version of the initial PHP file checks
the conformance of the code w.r.t. specifications for the given inputs. The test
succeeds if no Praspel failure (listed previously) is detected. Otherwise, it fails,
and the log indicates where the failure has been detected.

4.2 Random Test Data Generation

To generate test data, we rely on a randomizer, a sampling method that is in
charge of generating a random value for a given realistic domain. The randomizer
works with the realistic domain assignments provided in the @requires clauses
of the contracts.

Assume that the precondition of a method specifies the realistic domain of
parameter i as follows: @requires i: t1(. . .) or . . . or tn(. . .);. When this
method is randomly tested, a random value for i is generated in the domain of
one of its n declared realistic domains. If n ≥ 2, then a realistic domain tc(. . .)
is first selected among t1(. . .), . . . , tn(. . .) by uniform random generation of c
between 1 and n. Then, the randomizer generates a value of domain tc(. . .) for
i using the sampling method provided by this realistic domain.

When the data to be generated is an object of class C, the invariant of class
C is analyzed in order to recover the realistic domains associated to the class
attributes, and it recursively generates a data value for each class attribute. An
instance of class C is created and the generated data values are assigned to the
class attributes.

By default, the test case generation works by rejection of irrelevant values,
as described in the simplified algorithm in Fig. 8. This algorithm has three pa-
rameters. The first one, nbTests, represents the number of tests the user wants
to generate. The second parameter, maxTries, is introduced in order to ensure
that the generator stops if all the yielded values are rejected. Indeed, the gen-
erator may fail to yield a valid value because the preconditions lay down too
strong constraints. The third and last parameter, methods, represents the set of
methods to test.

For many realistic domains this default test generation method can be over-
loaded by more efficient methods. We have already implemented the following
enhancements:

function generateTests(nbTests, maxTries, methods)
begin

tests ← 0
do

tries ← 0
f ← select method under test amongst methods
do

tries ← tries + 1
for each parameter p of f do
t ← select realistic domain of p
i ← generate random value ∈ [1..card(t)]

v ← ith value of realistic domain t
assign value v to parameter p

done
while f precondition fails ∧ tries ≤ maxTries
if tries ≤ maxTries then

run test case / keep test case
tests ← tests + 1

end if
while tests ≤ nbTests

end

Fig. 8. Test Cases Generation Algorithm

– Generation by rejection is more efficient when the rejection probability is
low. Therefore, the hierarchy of realistic domains presented in Section 2.2 is
constructed so that each class restricts the domain of its superclass as little
as possible, and rejection always operates w.r.t. this direct superclass for
more efficiency.

– Realistic domains representing intervals are sampled without rejection by a
direct call to a uniform random generator, in fact two generators: a discrete
and a continuous one.

The users are free to add their own enhancements and we plan to work in this
direction in a near future.

5 Tool Support and Experimentation

The Praspel tool implements the principles described in this paper. Praspel
is freely available at http://hoa-project.net/. It is developed in Hoa [12]
(since release 0.5.5b), a framework and a collection of libraries developed in
PHP. Hoa combines a modular library system, a unified streams system, generic
solutions, etc. Hoa also aims at bridging the gap between research and industry,
and tends to propose new solutions from academic research, as simple as possible,
to all users. Praspel is a native library of Hoa (by opposition to user libraries).
This deep integration ensures the durability and maintenance of Praspel. It is
provided with an API documentation, a reference manual, a dedicated forum,
etc. Moreover, we get feedbacks about the present research activity through Hoa
user community.

A demonstration video of the Praspel tool is also available at the following
address: http://hoa-project.net/Video/Praspel.html. As shown in this de-
monstration, the Praspel language is easy to learn and to use for developers. The

tool support makes it possible to produce test data and run test cases in a dedi-
cated framework with little effort. Praspel has been presented and demonstrated
at the ForumPHP’10 conference, which gathers the PHP community, and was
received very favourably.

We applied Praspel to web application validation. In such applications, PHP
functions are used to produce pieces of HTML code from simple inputs. Be-
ing also teachers, we have decided to test the (buggy!) code of our students of
the “Web Languages” course. Using a dedicated library of Hoa to build LL(k)
parsers, we easily designed the realistic domains associated with the expected
output HTML code, that had to be well-structured, and respecting some struc-
tural constraints (e.g. exactly one <option> of a <select> has to be set by
default). We analysed their functions using this mechanism.

To save space, we have reported this experimentation on a web page at the fol-
lowing address: http://lifc.univ-fcomte.fr/home/~fdadeau/praspel.html,
along with the links to download the Hoa framework (implementing Praspel),
and some samples of the possibilities of Praspel.

6 Related Works

Various works consider Design-by-Contract for unit test generation [6,9,10,14,17].
Our approach is inspired by the numerous works on JML [15]. Especially, our test
verdict assignment process relies on Runtime Assertion Checking, which is also
considered in JMLUnit [9], although the semantics on exceptions handling differs.
Recently, JSConTest [14] uses Contract-Driven Testing for JavaScript. We share
a common idea of adding types to weakly typed scripting languages (JavaScript
vs PHP). Nevertheless our approach differs, by considering flexible contracts,
with type inheritance, whereas JSConTest considers basic typing informations
on the function profile and additional functions that must be user-defined. As
a consequence, due to a more expressive specification language, Praspel per-
forms more general runtime assertion checks. ARTOO [10] (Adaptative Random
Testing for Object-Oriented software) uses a similar approach based on ran-
dom generation involving contracts written in Eiffel [18], using the AutoTest
tool. ARTOO defines the notion of distance between existing objects to select
relevant input test data among the existing objects created during the execu-
tion of a program. Our approach differs in the sense that object parameters are
created on-the-fly using the class invariant to determine relevant attributes val-
ues, in addition to the function precondition. Praspel presents some similarities
with Eiffel’s types, especially regarding inheritance between realistic domains.
Nevertheless, realistic domains display the two properties of predicability and
samplability that do not exist in Eiffel. Moreover, Praspel adds clauses that Eif-
fel contracts do not support, as @throwable and @behavior, which are inspired
from JML.

Our test generation process, based on random testing, is similar to Jartege [20]
for JML. Jartege is able to generate a given number of tests sequences of a given

length, for Java programs with JML specifications. Jartege uses the type of in-
put parameters to compute random values for method parameters, that are then
checked against the precondition of the method, using an online test generation
approach.

Also for JML, Korat [7] uses a user-defined boolean Java function that defines
a valid data structure to be used as input for unit testing. A constraint solving
approach is then used to generate data values satisfying the constraints given by
this function, without producing isomorphic data structures (such as trees). Our
approach also uses a similar way to define acceptable data (the predicate feature
of the realistic domains). Contrary to Korat, which automates the test data gen-
eration, our approach also requires the user to provide a dedicated function that
generates data. Nevertheless, our realistic domains are reusable, and Praspel
provides a set of basic realistic domains that can be used for designing other
realistic domains. Java PathFinder [23] uses a model-checking approach to build
complex data structures using method invocations. Although this technique can
be viewed as an automation of our realistic domain samplers, its application
implies an exhausive exploration of a system state space. Recently, the UDITA
language [13] makes it possible to combine the last two approaches, by pro-
viding a test generation language and a method to generate complex test data
efficiently. UDITA is an extension of Java, including non-deterministic choices
and assumptions, and the possibility for the users to control the patterns em-
ployed in the generated structures. UDITA combines generator- and filter-based
approaches (respectively similar to the sampler and characteristic predicate of a
realistic domain).

Finally, in the domain of web application testing, the Apollo [2] tool makes it
possible to generate test data for PHP applications by code analysis. The tests
mainly aim at detecting malformed HTML code, checked by an common HTML
validator. Our approach goes further as illustrated by the experimentation, as
it makes it possible not only to validate a piece of HTML code (produced by a
Praspel-annotated function/method), but also to express and check structural
constraints on the resulting HTML code. On the other hand, the test data gen-
eration technique proposed by Apollo is of interest and we are now investigating
similar techniques in our test data generators.

7 Conclusion and Future Works

In this paper, we have introduced the concept of realistic domain in order to
specify test data for program variables. Realistic domains are not types but
may replace them in weakly-typed languages, such as Web languages like PHP,
our implementation choice. Realistic domains are a (realistic) trade-off between
two extreme ways to specify preconditions: a too coarse one with types and
a too fine one with first-order formulas. They provide two useful features for
automated test generation: predicability and samplability. Predicability is the
ability to check the realistic domain of a data at run time, whereas samplability
provides a means to automatically generate data values matching a given real-

istic domain. Realistic domains are specified as annotations in the code of the
language. We have implemented these principles on PHP, in a dedicated spec-
ification language named Praspel, based on the Design-by-Contract paradigm.
This approach is implemented into a test generator that is able to (i) generate
automatically unit test data for PHP methods, using a random data generator
that produces input parameter values that satisfy the precondition, (ii) run the
tests and (iii) check the postcondition to assign the test verdict. Praspel imple-
ments the two features of runtime assertion checking and test data generation
independently. As a consequence, the user is not restricted to use a random test
data generator and can write his own test data generator.

We are currently investigating the improvement of our data generator, to
replace randomly generated values by a constraint-based approach [11] for which
the realistic domains of input parameters would be used to define data domains.
Constraint solving techniques will then be employed to produce test data that
satisfy the precondition of the method, as in Pex [22]. We are also planning to
consider a grey-box testing approach that would combine a structural analysis of
the code of PHP methods, coupled with the definition of the realistic domains of
their input parameters. Finally, we are interested in extending (and generalizing)
the concept of realistic domains to other programming languages, especially
those already providing a type system, to illustrate the benefits of this concept.

References

1. B. K. Aichernig. Contract-based testing. In Formal Methods at the Crossroads:
From Panacea to Foundational Support, volume 2757 of LNCS, pages 34–48.
Springer, 2003.

2. S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M.D. Ernst.
Finding bugs in dynamic web applications. In Proceedings of the 2008 international
symposium on Software testing and analysis, ISSTA ’08, pages 261–272, New York,
NY, USA, 2008. ACM.

3. M. Barnett, K.R.M. Leino, and W. Schulte. The Spec# Programming System:
An Overview. In Proceedings of the International Workshop on Construction and
Analysis of Safe, Secure and Interoperable Smart devices (CASSIS’04), volume
3362 of LNCS, pages 49–69, Marseille, France, March 2004. Springer-Verlag.

4. P. Baudin, J.-C. Filliâtre, T. Hubert, C. Marché, B. Monate, Y. Moy, and V. Pre-
vosto. ACSL: ANSI C Specification Language (preliminary design V1.2), 2008.

5. B. Beizer. Black-box testing: techniques for functional testing of software and sys-
tems. John Wiley & Sons, Inc., New York, NY, USA, 1995.

6. F. Bouquet, F. Dadeau, and B. Legeard. Automated Boundary Test Generation
from JML Specifications. In FM’06, 14th Int. Conf. on Formal Methods, volume
4085 of LNCS, pages 428–443, Hamilton, Canada, August 2006. Springer.

7. C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated Testing based on
Java Predicates. In ISSTA’02: Proceedings of the 2002 ACM SIGSOFT interna-
tional symposium on Software testing and analysis, pages 123–133, New York, NY,
USA, 2002. ACM.

8. C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and
M. Veanes. Testing concurrent object-oriented systems with spec explorer. In

J. Fitzgerald, I. Hayes, and A. Tarlecki, editors, International Symposium of For-
mal Methods (FM’2005), volume 3582 of LNCS, pages 542–547. Springer, 2005.

9. Y. Cheon and G. T. Leavens. A simple and practical approach to unit testing: The
JML and JUnit way. In B. Magnusson, editor, ECOOP 2002 — Object-Oriented
Programming, 16th European Conference, volume 2374 of LNCS, pages 231–255,
Berlin, June 2002. Springer.

10. I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. ARTOO: Adaptive Random Testing
for Object-Oriented Software. In ICSE ’08: Proceedings of the 30th international
conference on Software engineering, pages 71–80, New York, NY, USA, 2008. ACM.

11. R. A. DeMillo and A. J. Offutt. Constraint-Based Automatic Test Data Genera-
tion. IEEE Trans. Softw. Eng., 17(9):900–910, 1991.

12. I. Enderlin. Hoa Framework project, 2010. URL: http://hoa-project.net.
13. M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and D. Marinov.

Test generation through programming in UDITA. In ICSE’10: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering, pages 225–
234, New York, NY, USA, 2010. ACM.

14. P. Heidegger and P. Thiemann. Contract-Driven Testing of JavaScript Code. In
TOOLS 2010 - 48th Int. Conf. on Objects, Models, Components, Patterns, volume
6141 of LNCS, pages 154–172, 2010.

15. G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed design.
In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Behavioral Specifi-
cations of Businesses and Systems, pages 175–188. Kluwer Academic Publishers,
Boston, 1999.

16. G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the design
of JML accommodates both runtime assertion checking and formal verification.
In F. S. de Boer, Bonsangue M. M., S. Graf, and W.-P. de Roever, editors, For-
mal Methods for Components and Objects: First International Symposium, FMCO
2002, Lieden, The Netherlands, November 2002, Revised Lectures, volume 2852 of
LNCS, pages 262–284. Springer, Berlin, 2003.

17. P. Madsen. Unit Testing using Design by Contract and Equivalence Partitions. In
XP’03: Proceedings of the 4th international conference on Extreme programming
and agile processes in software engineering, pages 425–426, Berlin, Heidelberg,
2003. Springer.

18. B. Meyer. Eiffel: programming for reusability and extendibility. SIGPLAN Not.,
22(2):85–94, 1987.

19. B. Meyer. Applying ”design by contract”. Computer, 25(10):40–51, 1992.
20. C. Oriat. Jartege: A Tool for Random Generation of Unit Tests for Java Classes. In

R. Reussner, J. Mayer, J.A. Stafford, S. Overhage, S. Becker, and P.J. Schroeder,
editors, First Int. Conf. on the Quality of Software Architectures, QoSA 2005 and
Second Int. Workshop on Software Quality, SOQUA 2005, volume 3712 of LNCS,
pages 242–256, Erfurt, Germany, September 2005. Springer.

21. PHP Group. The PHP website, 2010. URL: http://www.php.net.
22. N. Tillmann and J. de Halleux. Pex: White box test generation for .net. In

B. Beckert and R. Hhnle, editors, Tests and Proofs, volume 4966 of LNCS, pages
134–153. Springer Berlin / Heidelberg, 2008.

23. W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test input generation with Java
PathFinder. SIGSOFT Softw. Eng. Notes, 29(4):97–107, 2004.

