
HAL Id: hal-00640380
https://inria.hal.science/hal-00640380

Submitted on 11 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

To Replicate or Not To Replicate Queries in the
Presence of Autonomous Participants?

Quiané-Ruiz Arnulfo Jorge, Philippe Lamarre, Patrick Valduriez

To cite this version:
Quiané-Ruiz Arnulfo Jorge, Philippe Lamarre, Patrick Valduriez. To Replicate or Not To Replicate
Queries in the Presence of Autonomous Participants?. BDA: Bases de Données Avancées, 2011,
Rabbat, Morocco. �hal-00640380�

https://inria.hal.science/hal-00640380
https://hal.archives-ouvertes.fr

To Replicate or Not To Replicate Queries

in the Presence of Autonomous Participants?

.

Jorge-Arnulfo Quiané-Ruiz
Information Systems Group

Saarland University

66123 Saarbruecken, Germany

Jorge.Quiane@infosys.uni-saarland.de

Philippe Lamarre
LINA

Université de Nantes

44322 Nantes, France

Philippe.Lamarre@univ-nantes.fr

Patrick Valduriez
INRIA and LIRMM

34095 Montpellier, France

Patrick.Valduriez@inria.fr

Abstract

L’objectif d’un système largement distribué sur Internet est d’intégrer des participants dont

les spécificités et motivations ne sont pas toujours clairement identifiées a priori. En particulier,

des participants autonomes peuvent avoir des intérêts individuels spécifiques vis-à-vis des requêtes,

mais aussi des autres participants. Dans un tel contexte, un système ne prenant pas en compte

les individualités provoque des départs qui peuvent, par un effet domino, avoir des conséquences

dévastatrices. La satisfaction des participants passe par la prise en compte de leurs intérêts lors

de l’allocation des requêtes, mais elle peut aussi être affectée par les problèmes de pannes. La

réplication des requêtes est une solution permettant de résoudre ce dernier problème. Cependant, la

présence de participants autonomes rend cette approche plus délicate. Non seulement la réplication

de requête peut rapidement surcharger les participants et le système, mais l’intérêt des participants à

traiter des requêtes au cas où leurs collègues tombent en panne peut être assez faible. Les questions

qui se posent alors naturellement sont est-il opportun de répliquer les requêtes ?, mais aussi

quelles requêtes répliquer ? et dans ce cas avec quel niveau de réplication ? Dans cet article,

nous proposons des réponses à ces questions en revisitant le problème de la réplication du point

de vue de la satisfaction des participants. Nous présentons une nouvelle proposition, SbQR, qui

décide en temps réel si une requête doit être répliquée et avec quel degré. Pour cela, SbQR s’appuie

sur les notions de satisfaction des participants et de probabilité de panne. Dans la mesure où la

réplication d’un grand nombre de requêtes peut surcharger le système et donc impacter fortement

sur ses performances, nous proposons une variante, SbQR+. L’idée directrice consiste, dans les

périodes de forte charge, à utiliser les ressources disponibles prioritairement pour le traitement

des requêtes critiques. Les requêtes à faible impact sur la satisfaction des participants peuvent

alors voir le nombre de leurs réplicats diminuer. Exceptionnellement elles peuvent même être

totalement abandonnées. Nos expérimentations démontrent que ces solutions améliorent de manière

significative les algorithmes de référence du point de vue des performances et de la satisfaction

tout en s’adaptant dynamiquement aux évolutions de la criticité des requêtes et des probabilités de

pannes sans nécessiter aucun réglage (“tunning”) particulier.

Mots-Clefs: Tolérance à fautes, réplication de requêtes, satisfaction des participants,

participants autonommes, auto-adaptation, criticité de requêtes.

I. INTRODUCTION

In the last decade there has been a considerable increase in computing resources require-

ments in different research fields as well as in the industry. These needs have motivated the

development of new distributed systems allowing users to share data, services, or computing

resources using Internet as a large virtual computer. Volunteer computing (such as BOINC and

distributed.net) is only one example of these large-scale distributed systems. A particularity

of such large-scale systems is that participants (consumers and providers) are autonomous

in the sense that they may leave and join the system at will, but also, that they may have

special interests (intentions) for some queries1 and other participants. For example in BOINC

a consumer may desire to receive results from highly reputed providers while a provider may

desire to perform queries for some preferred projects.

In this context, satisfying participants, i.e., to fill their intentions, is quite important when

allocating queries. This is because dissatisfaction might lead participants to leave the system,

which in turn causes some loss of system functionality and capacity to perform queries. But

also, the departure of a participant may yield other participants to leave the system in a

domino effect [18]. As a result, many solutions have been proposed to deal with different

query processing problems in the presence of autonomous participants, e.g., [12], [14], [18],

[24]. However, participants availability is usually not addressed, which is crucial because

provider failures can significantly dissatisfy consumers with no results for their queries

and consumer failures can dissatisfy providers as their results cannot be returned to failed

consumers. Therefore, as participant failures are the rule in large-scale distributed systems [4],

the responsiveness of applications built on top of autonomous participants is increasingly

limited by the availability of participants rather than performance.

A basic solution to deal with provider failures is to re-allocate, after detection of a provider

failure, the query to another provider. This approach, however, can significantly increase

response times. An alternative solution is then query replication [1], [2], [3], [9], [10], [25],

which can be passive or active. Passive query replication (which is based on checkpointing or

logging techniques [7], [8]) is not appropriate for dealing with autonomous participants. This

is because they inherently assume that providers use the same technique to produce results.

Furthermore, passive replication can significantly increase response times, because there is a

system overhead for detecting provider failures, determining which queries have been stopped,

and rescheduling stopped queries. On the other hand, active query replication [9] is more

adequate in this context as it does not make this assumption. It allocates queries to the number

of providers required by a consumer (called primary providers) plus some other providers

(called backup providers). In this way, the results produced by backup providers can be

returned to consumers in case of failure of primary providers. Nevertheless, most of them

support a fixed number of provider failures and none considers either consumer failures nor

participants satisfaction.

A. Motivating Example

Applications of different domains need to deal, in an automated way, with participant

failures in order to operate correctly. Volunteer computing, Web services, and grid computing

are some examples of these systems. However, a discussion on how one can apply our

proposal to each of them would be too long and beyond the scope of this paper. For this

reason, we illustrate query replication in the presence of autonomous participants only with

1We use the word “query” in the general sense of service request in information systems, thus with a more general

meaning than query in databases.

2

an application from volunteer computing. We use BOINC as example, a system that allows

scientific communities to create applications by using computing resources of thousands of

volunteers across the world. The query processing principle is as follows. Applications (the

consumers) submit their queries to BOINC by providing the number of providers from which

they want results. Volunteers (the providers) get queries from BOINC and return their results

to BOINC, which in turn returns them to consumers.

Consider now a simple scenario where a given research project running on BOINC (a

consumer in the BOINC system) sends a query, with a very high criticality, requiring results

from a single provider. Suppose that, when the query arrives into the system, the relevant

providers (those which can treat the query) have low query load, high intentions to perform

the incoming query, and high failure probability. In this case, replicating the query seems a

good idea. In contrast, consider now a scenario where a consumer sends a query with low

criticality requiring results from several providers. Suppose that, when the query comes in,

the relevant providers have high query load, low failure probability, and low intentions to

perform the incoming query. In this case, it is better to not replicate the query so as to avoid

overloading and dissatisfying providers. Furthermore, by not replicating this query one can

prioritize queries with high criticality.

However, in most of the cases it is not that simple and one needs to answer the following

simple question: should queries be replicated? If so, which queries should be replicated? how

many query replicas should be created? and which information must be used to decide on

query replication? This paper answers these questions by revisiting active query replication

from a satisfaction and probabilistic point of view. To the best of our knowledge, this is the

first work that deals with participants failures by considering the satisfaction of participants

as well as the failure probability of participants at the same time.

B. Research Challenge

For low query loads, it is easy to answer these questions since there are enough computing

resources to perform queries, including backup queries. In these cases, we can thus replicate

queries without fearing the consequences (except if such replication hurts participants

satisfaction). However, the difficulty increases as the query load gets higher, because the load

due to backup queries may induce even more significant problems than initial queries. For

example, replicating queries for high query loads impacts performance with longer response

times, which in turn increases the probability that a participant fails before performing a

query. Additionally, one must consider participants satisfaction as dissatisfaction might cause

a massive number of voluntarily departure of participants [18]. Therefore, supporting query

replication in the presence of autonomous participants is challenging for several reasons:

• The overhead of query replication may outweigh its benefits, by over-utilizing the

computing resources of the system or requiring either more powerful providers or

additional providers.

• A provider might not have the same satisfaction of being utilized as primary or backup

provider. This is because the query results produced by a backup provider are returned

to the consumer only in case the primary providers fails. This is, for example, the case

where providers get paid for their produced results.

• On the other hand, providers also consume their computing resources for nothing in

case of consumer failures.

C. Contributions

In summary, the main contributions of this paper are as follows.

3

• We formalize the query allocation problem and make precise query replication in the

presence of autonomous participants (Section II).

• We introduce a global satisfaction notion to characterize the fact that (i) queries have

different criticality for consumers; (ii) a consumer may receive less results than it expects;

and (iii) a provider may perform queries for nothing (Section IV).

• We propose two automatic query replication algorithms, SbQR and SbQR+, that

consider global satisfaction as the basis of their functionality to decide on-the-fly

(i) which queries should be replicated and (ii) how many query replicas should be

created (Section V).

• We experimentally demonstrate that SbQR: (i) significantly outperforms popular baseline

algorithms and (ii) automatically adapts to the workload and the criticality of queries

(Section VI).

II. PROBLEM DEFINITION

A. System Model

We adopt the usual architecture of a mediator m, and of a set I of autonomous participants2.

The role of mediator m is to do all the necessary computations so as to decide which providers

allocate a query. Participants may play two different roles: consumer and provider. The set

of consumers and providers are denoted by C (C ⊆ I) and P (P ⊆ I), respectively. Besides

autonomy, we assume that participants perform queries when they are required for and assume

that they can fail, but only for network failure or a software dysfunction. To formalize this

aspect, we assume that each participant i ∈ I has a probability fi to fail per time unit. Many

research works have addressed this problem of estimating this failure probability [6], [13].

Thus, in this paper, we simply assume that the mediator is able to estimate this probability.

Mediator m may also fail, but this is orthogonal to the focus of this paper. Replicating

mediators is a solution to deal with this, but for the sake of simplicity we assume in this

paper that m never fails.

Providers in P are potentially heterogeneous in terms of capability and capacity. Hetero-

geneous capability means that providers usually do not provide the same functionalities and

thus cannot deal with the same queries. Heterogeneous capacity means that some providers

may perform more queries per time unit than others. We denote those providers that can deal

with a query q (the relevant providers) as Pq, with Pq ⊆ P . A consumer c ∈ C submits a

query to mediator m in a format abstracted as a 4-tuple q = < c, d, γ, n >, where: q.c ∈ C
is the identifier of the consumer that has issued the query; q.d is the description of the task

to be done; q.γ ∈ [0...1] denotes the criticality of the query. Indeed, it may be crucial for

a consumer to receive as many results as required for some queries while it may tolerate

to receive no results for other queries. Notice that as in practice consumers exactly knows

what they are querying for, it is easy for them to specify the criticality of their queries. The

greater the value is, the more critical the query is; q.n ∈ N∗ is the number of providers from

which a consumer desire to fetch results. Among others, a consumer may desire to allocate

a query q to various providers for two reasons: to avoid Byzantine providers and to get the

result that best fits its intentions, such as in flight booking systems. Hereafter, we simply use

c, d, n, or γ when there is no ambiguity on q.

2Notice that, scaling up to several mediators is orthogonal to the problem we consider in this paper. We recently addressed

this scale up problem in [17].

4

Participants are interested in performing some queries and in the way their queries are

treated. This is why, given a query q, consumer q.c (respectively, each provider that is able

to perform q) gives its intentions, for getting results from each provider p in set Pq (resp.,

for performing q), to m. In [18], we presented a strategy for participants to compute their

intentions. Hence, in this paper, we assume participants provide their intentions, in the interval

[−1...1], to mediator m as specified in [18]. The greater the intention, the greater the desire

of a consumer (resp., provider) to see its query be treated by a given provider (to perform a

given query). Mediator m stores consumer’s intentions in vector
−→
CIq and providers’ intention

in vector
−→
PIq. For example,

−→
CIq[p] denotes the intention of consumer q.c to see its query q

be treated by provider p and
−→
PIq[p] denotes the intention of provider p to perform query q.

Finally, notice that failures of participants may dissatisfy other participants with no results

for their queries or with results that are not returned to consumers. This is why providers

also express the cost of performing a query q and that consumers indicate how critical their

queries are. Providers’ costs are in the interval [0.. + ∞[and stored by m in vector
−→
PCq.

For example, a cost
−→
PCq[p] = 100 could mean the number of milliseconds that provider p

needs to perform a query q.

B. Query Allocation Problem

Generally speaking, the goal of mediator m is to allocate each incoming query q to a set

of providers so that good system performance, high participants’ satisfaction, and results for

queries with high criticality are ensured. We can divide this general problem into the two

following independent subproblems.

RANKING RELEVANT PROVIDERS. To allocate a given incoming query q, the mediator first

ranks providers in Pq according to a policy based on the challenges the system wants to solve.

For example, the mediator may score providers by considering: providers’ utilization for

applications requiring query load balancing [19], [20]; participants’ intentions for volunteer

computing applications [18]. Thus, it might exist as many scoring functions as types of

applications. We assume that the mediator can provide a vector
−→
R q of ranked providers so

that
−→
R q[1] is the best scored provider and

−→
R q[||Pq||] is the worst scored provider. Once more

again, mediator m can rank providers by applying the techniques we proposed in [18].

SELECTING RELEVANT PROVIDERS. The problem here is that of deciding the number of

providers to which to allocate a query. Formally, given an incoming query q and vector
−→
R q,

the mediator must choose r best ranked providers in
−→
R q to which to allocate q. Set P̂ r

q

denotes such a set of r best ranked providers, i.e., P̂ r
q =

−→
R q[1...r].

In this paper, we focus on the problem of selecting relevant providers. It is worth noting

that a simple solution to this problem is to allocate a query q to the number of providers

required by the consumer (which leads to have r = q.n). However, this approach inherently

assumes that either participants cannot fail or failures are treated after detection. In the

presence of autonomous participants, it is possible that only a set
̂̂
Pq (with

̂̂
Pq ⊂ P̂ r

q) of

providers returns results for a query q, instead of set P̂ r
q . We formalize this problem in the

presence of autonomous participants as follows.

PROBLEM STATEMENT. Given an incoming query q and ranked vector
−→
R q of providers,

each p ∈
−→
R q with a failure probability fp, mediator m must determine r to allocate q to

−→
R q[1...r] providers so that participants are satisfied and that consumers receive as many

results as required for their critical queries.

5

III. A SATISFACTION MODEL FOR FAULTY PARTICIPANTS

In this section, we extend the satisfaction model we proposed in [18] so as to consider

query criticality and faulty participants.

A. Consumer Satisfaction

A consumer can evaluate by means of its satisfaction if it gets the results it expects from the

mediator. There are two kinds of satisfaction: one with respect to what a consumer expects

as results from providers and another one with respect to what a consumer expects from

the mediator (i.e., query allocations to its preferred providers). [16] proposes a satisfaction

definition that is of the first kind. The authors define consumer’s satisfaction as the average

of the consumer’s satisfaction in each query it has issued. Satisfaction is computed by a

consumer by evaluating results with respect to response times and information freshness.

[18] proposes a satisfaction definition with regards to what a consumer expects from the

mediator (the second kind of satisfaction) as the average of the consumer’s intentions in

each query it has issued. Both satisfaction definitions use the same maths and are quite

important for a consumer. However, when replicating queries, the mediator is interested in

what a consumer expects from query allocations. This is why we consider the latter kind of

satisfaction. Generally speaking, we define the satisfaction of a consumer as in [18]. But,

we also take queries’ criticality and providers’ failures into consideration. Intuitively, an

incoming query with γ = 1 (respectively γ = 0) means that the consumer would not be

satisfied at all if it did not receive all the results it requires (resp. means that the satisfaction

of the consumer strongly depends on the number of results it receives). To consider this,

given a query q, we introduce the consumer’s satisfaction coefficient w.r.t. q (denoted by ∆),

which we define as the importance of the number of providers that return results. The role

of this coefficient is to weight the average of consumer’s intentions. We formally define this

satisfaction coefficient as follows.

Definition 1: CONSUMER SATISFACTION COEFFICIENT Let x denote the number of

providers that return results for a query (x = ||
̂̂
Pq||), the satisfaction coefficient concerning

the allocation of a query q is defined as follows,

∆x
q =

∣∣∣∣∣∣∣∣

1 − γ

1 − γ · x
n

if γ < 1

1 if γ = 1 ∧ x = n
0 if

(
γ = 1 ∧ x 6= n

)
∨ x = 0

(1)

It is worth noting in Equation 1 that when the criticality of a query takes the value of 1 and

the number of providers returning results is the same as that required by the consumer, the

satisfaction coefficient takes 1. In contrast, if γ = 1 and the number of results is smaller than

that required by the consumer, the satisfaction coefficient always takes zero. We illustrate

the behavior of the satisfaction coefficient in Figure 1. Observe that as the query criticality

increases and the number providers producing results decreases, the satisfaction coefficient

decreases. This leads to a decrease of consumer’s satisfaction, which is defined as the average

of the consumer’s intentions concerning the set of providers that return results times the

satisfaction coefficient (see Definition 2)
Definition 2: CONSUMER SATISFACTION FOR A SINGLE QUERY Given an incoming

query q, the satisfaction of q.c concerning the allocation of q is given by,

δs(c,
̂̂
Pq) = ∆||

ccPq||
q ·

1

n
·
∑

p∈
ccPq

(
−→
CIq[p] + 1)

/
2

6

 1
 2

 3
 4

 5
 6 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 0.2
 0.4
 0.6
 0.8

 1

sa
ti

sf
ac

ti
on

 c
oe

ff
ic

ie
nt

providers criticality

Fig. 1. Number of providers returning results vs. query criticality, when a consumer requires 6 providers.

The δs(c,
̂̂
Pq) values are between 0 and 1. The closer the value from 1 is, the greater the

satisfaction of a consumer is.

B. Provider Satisfaction

A provider that has not failed can evaluate, by means of its satisfaction, if the mediator

allocates queries according to its intentions. Conversely to a consumer, the fact that a query

has high criticality, or not, does not influence the satisfaction of a provider. In turn, the fact

that a provider performs a query and its results are not returned to the consumer may hurt

its satisfaction (depending on its cost). What can hurt a provider’s satisfaction is: (1) to be

required to treat a query it does not desire to perform; (2) to be rejected for the treatment

of an interesting query. Notice that showing its unhapiness for these cases is crucial for a

provider so that it can be prioritized in the near future to get what it prefers; (3) to perform

a query as backup for nothing. This is because a provider is usually selfish. Thus, spending

computing resources to perform queries from which it obtains no benefit does not meet its

intentions at all. As a consequent, a relevant provider may have one of three possible states

after the allocation of a given query. We formalize this in the following definition.

Definition 3: PROVIDER SATISFACTION FOR A SINGLE QUERY Given an incoming query

q, let P ok
q denote the set of providers that did not fail in the time interval required to perform

q and p be a provider in Pq ∩ P ok
q . The satisfaction of p concerning q is given by,

δs(p, P̂ r
q ,
̂̂
Pq) =

∣∣∣∣∣∣∣∣

(−→
PIq[p] + 1

)
/2 if p ∈

̂̂
Pq(

−
−→
PIq[p] + 1

)
/2 if p ∈ (Pq\P̂

r
q) ∩ P ok

q

1/
(
2 +

−−→
PCq[p]

)
if p ∈

(
P̂ r

q \
̂̂
Pq

)
∩ P ok

q

Each line of the above definition corresponds to one of the three possible cases discussed

early. Notice that the third line translates the cost values into the interval]0...0.5], which

means that a provider always has low satisfaction when working for nothing. The provider’s

satisfaction values are in the interval [0...1].

IV. GLOBAL SATISFACTION

The main goal of replicating queries is to meet consumers demand and hence satisfy

consumers. This is clearly a positive aspect of query replication. However, in the presence of

autonomous participants, backup providers (those running query replicas) can see their results

not be returned to the consumer if no primary provider fails. This means that backup providers

utilize their resources for nothing, which may significantly dissatisfy them. This is the negative

7

aspect of replicating queries when participants are autonomous. This is why we introduce

the global satisfaction notion, whose goal is to compare both aspects so as to determine if it

is a good idea to replicate a query. One may think that global satisfaction may be achieved

by each participant being satisfied on average. This, however, is not possible as participants

usually compute their satisfaction after query allocations, or even after receiving results,

while decisions to replicate queries are done before allocating queries. We thus consider a

global satisfaction notion that takes place before query allocations and hence it depends on

the possibility that a participant fails.
To define global satisfaction, we therefore must consider all the possible cases of failure,

which requires some work in probabilities. Thus, in the following, we first characterize,

in Section IV-A, the probability that a query be successfully treated. We then provide, in

Section IV-B, a global satisfaction definition that consider the intentions of participants as

well as their failure probability.

A. Probabilities of Success

As we assume that faults are not correlated, the probability that a participant i fails in a

time unit is fi, where fi denotes the failure probability of a participant i. Let tpq denote the

time required by a provider p to perform a query q. Consequently, the probability Ai
q that a

participant i does not fail in a discrete time interval tpq is:

Ai
q = (1 − fi)

tp
q

Given this, what is important for a consumer is to know the probability that its query

be successfully treated, i.e. performed by at least q.n providers. We formally define this as

follows:

SPn
q (P̂ r

q) =
∑

P ok
q ⊆ bP r

q

||P ok
q ||≥n

(∏

p∈P ok
q

Ap
q

∏

p∈ bP r
q \P ok

q

(1 − Ap
q)
)

(2)

Similarly, it is important for a provider to know the probability that its results be returned

to consumers. For this, a provider p has to know the probability that no more than n − 1
(denoted by h) better ranked providers in P̂ r

q successfully treat a query. Formally,

Sh
q (P̂ r

q) =
∑

P ok
q ⊆ bP r

q

||P ok
q ||≤h

(∏

p∈P ok
q

Ap
q

∏

p∈ bP r
q \P ok

q

(1 − Ap
q)
)

(3)

In the same spirit, but from a more general point of view, we define the probability that

the results produced by a provider
−→
R q[a] and x − 1 other providers in P̂ r

q be returned to

consumer q.c as,

Sa
q (P̂ r

q , x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

ccPq⊆ bP r
q

||
ccPq||=x

−→
Rq [a]∈

ccPq

(∏

p∈
ccPq

Ap
q

∏

p∈ bP r
q \

ccPq

(1 − Ap
q)
)

if x < q.n

∑

ccPq⊆ bP r
q

||
ccPq||=x

−→
Rq [a]∈

ccPq

(∏

p∈
ccPq

Ap
q

∏

p=
−→
Rq [j]

j≤max(k)
−→
Rq [k]∈

ccPq

p/∈
ccPq

(1 − Ap
q)
)

else
(4)

8

B. Global Satisfaction Definition

We can now define global satisfaction with respect to the way in which the mediator

allocates queries. Informally, we define global satisfaction as follows. Given a query q, global

satisfaction denotes the most possible satisfaction that consumer q.c and providers in Pq may

have if q is allocated to a given set P̂ r
q . Intuitively, global satisfaction denotes the sum of

satisfaction of the relevant providers plus the satisfaction of the consumer. Unfortunately,

possible failures of both the consumer and providers make this more complicated. For a

relevant provider that does not fail, we consider the following three cases:

1) A provider is allocated a query and its results are returned to the consumer. For this,

it is necessary that the consumer does not fail and that no more than h (i.e., n − 1)

better ranked providers be alive. In this case, the satisfaction of a provider is based on

its intention, if the consumer does not fail, or the cost of treating the query, otherwise.

2) A provider is allocated a query replica and its results are not returned to the consumer.

This happens if at least n better ranked providers do not fail. In this case, the satisfaction

of a provider is based on the cost of treating the query.

3) A provider is not allocated a query. Here, the satisfaction of a provider is based on its

negative intention. For the consumer, we simply need to consider the probability that

each relevant provider has to successfully return results.

Putting everything together, we formally define the global satisfaction in Definition 4,

where ∆j
q is the satisfaction coefficient that allows us to take into account the criticality of a

query q based on the number j of providers returning results (Definition 1 of Section III-A).

Definition 4: GLOBAL SATISFACTION Given an incoming query q, the global satisfaction

Θ(P̂ r
q) of allocating q to a set P̂ r

q is defined as follows,

Θ(P̂ r
q) =

r∑

j=1

(
A
−→
Rq [j]
q ·

(
Ac

q · Sn−1
q (P̂ j−1

q) ·
−→
PIq[

−→
R q[j]] +

(
1 − Ac

q

)
· Sn−1

q (P̂ j−1
q) ·

−−→
PCq[

−→
R q[j]] +

(
1 − Sn−1

q (P̂ j−1
q)

)
·
−−→
PCq[

−→
R q[j]]

))
+

||Pq||∑

j=r+1

A
−→
Rq [j]
q · −

−→
PIq[

−→
R q[j]] +

Ac
q ·

n∑

j=0

(
∆j

q ·
1

n
·

r∑

a=1

(
Sa

q (P̂ r
q , j) ·

−→
CIq[

−→
R q[a]]

))

It is clear that the term “global satisfaction” can have a much broader interpretation and

may be linked to many other points, e.g. the quality of results. Exploring all the different

facets that the satisfaction term might have is well beyond the scope of this paper. However,

anticipating Section V, the algorithms we propose are quite general and can be used with

any satisfaction definition.

V. AUTOMATIC QUERY REPLICATION ALGORITHMS

Given the global satisfaction definition we presented in previous section, one can imagine

that the main goal of the system is to maximize the global satisfaction, i.e., to allocate an

incoming query to those providers that increase the global satisfaction. However, looking

for global satisfaction may have surprising bad results because this approach prioritizes the

9

most adequate participants to the system. Looking for improving individual satisfaction so

as to prioritize less satisfied participants is then a better way to proceed. Furthermore, as

participants are usually selfish, the mediator also tries to improve system performance when

ranking providers.

Therefore, we propose two new algorithms that respect the strategy of the mediator to

allocate queries. The first algorithm, called SbQR (standing for Satisfaction-based Query

Replication), implements a typical query replication strategy: it aims at creating some query

instances in addition to those asked by consumers so that consumers receive results from

their required number of providers. The second algorithm, called SbQR+, implements a more

elaborated strategy: it considers the query instances required by consumers and decides if

more or less instances must be created. Intuitively, for high workloads, SbQR+ prioritizes

highly critical queries by creating less query instances (for low critical queries) than required

by consumers. A key feature of both two algorithms is their simplicity, yet powerful, that

allows for an easy implementation in any new or existing distributed information system. We

discuss in detail both algorithms in the following two sections.

A. SbQR Algorithm

Satisfaction-based Query Replication (SbQR for short) aims at increasing — as far as this

does not decrease the global satisfaction — the probability that consumers receive results

from the number of providers they require. For this, SbQR replicates incoming queries by

considering global satisfaction, that is, it only replicates a query when this yields an increase

in global satisfaction. A salient feature of SbQR is that it decides on-line which queries

should be replicated and at which rate, based on both participants satisfaction and failure

probability. Algorithm 1 shows how SbQR works for a given query. The idea is simple: it

creates as many backup providers as long as global satisfaction increases. In more details,

given a query q, SbQR compares the global satisfaction of the first q.n relevant providers

(i.e. the
−→
R q[1...n] providers) with the global satisfaction of the

−→
R q[1...n+1] providers. If the

global satisfaction of
−→
R q[1...n + 1] is greater, SbQR compares then such global satisfaction

with that of
−→
R q[1...n + 2] and repeats the operation until it finds a set

−→
R q[1...n + i] whose

global satisfaction is higher than
−→
R q[1...n+ i+1]. However, in special cases — for example,

when a consumer prefers all providers at equal and providers have positive intentions towards

queries —, SbQR could finish by allocating the query to all providers, which might impact

the performance of applications. To avoid this, SbQR thus stops this process as soon as the

probability that at least q.n providers successfully treat the query (Equation 2) is higher than

a given threshold T . Instead of having a fixed threshold value for all queries, we take into

account the criticality of queries so that the value of T be higher for critical queries. We

formally define T in equation below (where max and min are the minimum values that T
can take: these values are in the interval [0...1[).

T = γ · (max−min) + min

In other words, SbQR looks for the local maximum of global satisfaction as far as threshold

T is not reached. Notice that SbQR allows the mediator to satisfy participants in the long

run by respecting the ranking provided by the mediator.

EXAMPLE. We illustrate in Figure 2(a) the principle of SbQR when looking for such local

maximum w.r.t. a query q where consumer q.c requires results from 6 providers (q.n = 6).

Assume that q has a medium criticality (γ = 0.5) and that the 6th best ranked provider has a

10

Algorithm 1: SbQR

Input : q,
−→
R q ,

−→
CIq ,

−→
PIq ,

−→
PCq , T

Output: bP r
q

begin1

r = q.n;2

while
`
r < |

−→
R q | ∧ Θ(bP r

q) < Θ(bP r+1
q) ∧ SPn

q (bP r
q) < T

´
do3

r + +;4

return bP r
q ;5

end6

!"#$"%&'()*%&"

+*,#-(.#/%.#

!
0
12()#"3

!
"#
$
%
"&
'
%
()
'
*%
+
()
#
,

- ./ .0...1 2223! 4 .5

67#8)9:7&;%,<

(a) SbQR case.

! "# $ %

!"#$"%&'()*%&"

+*,#-(.#/%.0.

!
1
234()#"5

&
'(
)
*
'+
,
*
-.
,
/*
0
-.
(
1

2 !3 !$!!!# 4445! 6 !"

78(9.:;8+<*1=

(b) SbQR+ case.

Fig. 2. Finding local maximum around q.n (with q.n = 6).

higher probability of failure. Suppose now that the 7th, 8th, and 9th ranked providers have

a low positive intention to perform q. Also, suppose that c has a medium and high positive

intention to receive results from the 7th and 8th, respectively, ranked providers, but that it

has a negative intention towards the 9th ranked provider. In this case, SbQR decides to create

2 backup queries because provider
−→
R q[8] denotes the local maximum.

B. SbQR+ Algorithm

We now consider the query replication from a more general point of view. That is, we not

only analyze if backup queries must be created, as in the previous section, but also if the

number of query instances asked by consumers — parameter q.n for a query q — can be

reduced so as to increase the global satisfaction. This is quite useful for heavy workloads

when replicating queries may significantly impact the performance of applications. Then, the

idea is to allocate low critical queries to less providers than those required by consumers in

order to keep computing resources for highly critical queries. To do so, we propose SbQR+,

an algorithm that looks for the local maximum of global satisfaction by also analyzing global

satisfaction when reducing the number of instances of queries.

We show the SbQR+ process in Algorithm 2. SbQR+ has the following two properties:

(1) it never creates more backup queries than SbQR, and (2) it exactly operates as SbQR
when q.n = 1. One can say that the instances of a query should not be reduced when its

criticality is 1 since, according to the satisfaction definition of a consumer (see Section III-A),

the satisfaction of a consumer (regarding the job made by the mediator) falls to zero if its

query is allocated to less than the desired number of providers. However, as SbQR, SbQR+
also works for providers and thus, in some cases, providers may benefit from the reduction of

instances of a query. Besides, a consumer may be satisfied with the received results, even if

it is not the desired number. In any case SbQR+ always allocates at least one query instance

so that queries be treated (i.e. q.n ≥ 1).

EXAMPLE. To exemplify the principle of SbQR+ when looking for a local maximum w.r.t.

11

Algorithm 2: SbQR+

Input : q,
−→
R q ,

−→
CIq ,

−→
PIq ,

−→
PCq , T

Output: bP r
q

begin1

bP+
q = SbQR(q,

−→
R q ,

−→
CIq ,

−→
PIq ,

−→
PCq , T)2

r = q.n;3

while
`
r > 1 ∧ Θ(bP r

q) < Θ(bP r−1
q)

´
do4

r −−;5

bP−

q = bP r
q ;6

if
`
Θ(bP−

q) < Θ(bP+
q)

´
then return bP+

q ;7

else return bP−

q ;8

end9

a query q with q.n = 6, we consider again the example of previous section. But, this time we

assume that q has a low criticality (γ = 0.1). As, besides creating backup queries, SbQR+
also strives to reduce query instances if necessary, we consider those providers with a better

rank than 6 (see Figure 2(b)). For these better ranked providers, suppose that the 5th and 3th
ranked providers have both a negative intention to perform q because of overload and that the

4th has a high positive intention to perform q. On the other side, suppose that c has a high

positive intention towards all three providers. In this case, even if q.n = 6, SbQR+ allocates

q to the
−→
R q[1...n − 2] providers because

−→
R q[4] represents the highest local maximum. This

allows SbQR+ to devote computing resources to highly critical queries.

C. Global Satisfaction Computation

Both two algorithms SbQR and SbQR+ compare the global satisfaction of two sets of

relevant providers so as to allocate the query to the set having the highest global satisfaction.

To know which set of providers has the highest global satisfaction, one should compute the

global satisfaction of both sets. At first glance, this comparison is complicated and may be

long to realize. However, sets of providers are built according to the query allocation strategy

(i.e., using vector
−→
R) and hence the difference among two compared sets is always only one

provider. Thus, we can reduce the global satisfaction comparison to the study of the impact of

adding a provider from a given set of providers, which results in a significant simplification

of the global satisfaction comparisons. We formalize this comparison in Theorem1.

Theorem 1:

Θ(P̂ r+1
q) − Θ(P̂ r

q) = A
−→
Rq [r+1]
q ·

(
Ac

q · Sn−1
q (P̂ r

q) ·
−→
PIq[

−→
R q[r + 1]] +

(1 − Ac
q) · Sn−1

q (P̂ r
q) ·

−−→
PCq[

−→
R q[r + 1]] +(

1 − Sn−1
q (P̂ r

q)
)
·
−−→
PCq[

−→
R q[r + 1]] +

−→
PIq[

−→
R q[r + 1]]

)
+

Ac
q ·

n∑

j=0

(
∆j

q ·
1

n
·
(r∑

a=1

(
Sa

q (P̂ r+1
q , j) − Sa

q (P̂ r
q , j)

)
·
−→
CIq[a] +

Sr+1
q (P̂ r+1

q , j) ·
−→
CIq[

−→
R q[r + 1]]

))

Proof: (Theorem 1) Omitted for space reasons.

12

D. Discussion

We pointed out so far that there may exist several definitions of satisfaction and that

one may see the quality of results as an intuitive definition of satisfaction. However, in our

context, it is not possible to include satisfaction regarding answers, This is for two reasons:

(i) the evaluation of participants for a particular answer is private and, (ii) by convention, our

proposal takes place before providers produce queries results (i.e. before query allocations)

and hence we do not have any information about the results produced so far. Instead, we

propose algorithms that are quite general and independent of the way in which satisfaction is

computed. We can thus adapt the satisfaction definition to fit any particular application.

This also applies to the intentions of participants, where participants may consider any

information they have, such as personal experiments, reputation of participants, response

time, and load. However, it is worth noting that the behavior of the system strongly depends

on the way participants compute their intentions. For instance, if providers do not care about

their preferences and compute their intentions by only considering their load, the system will

ensure short response times.

Given the behavior of both algorithms, the reader may think that consumers can take the

best providers for themselves by specifying that each of their queries is critical. Indeed,

they can freely do so because of their autonomy. However, this is far from the truth. This

is because this strategy does not allow consumers to differentiate what is critical for them

from what is not. For low query loads, this has not a deep impact since every query can be

replicated. For high query loads, as far as they do not tell what is important for them, they

simply let other participants to choose which query is replicated and which is not. Absolutely

this is not what consumers expect to see. Furthermore, if all consumers set the criticality to

the same value, the criticality of queries would be completely neutralized and not considered

at all by our algorithms.

Moreover, the scoring function used by the mediator to produce vector
−→
R is usually based

on specific demands, which are given by the application challenges that one wants to solve. As

a consequence, a large number of specific query allocation methods with different behaviors

may exist. For example, the score function of a query load balancing method is designed for

those applications whose goal is to ensure good system performance. To deal with all this

diversity, our algorithms treat the ranking function as a black box by preserving the ranking

order of providers when finally deciding which providers are allocated a query. This allows

us in turn to preserve the strategy chosen by the mediator to allocate queries. As a result,

one can apply our approach in any kind of application.

VI. EXPERIMENTAL STUDY

To validate our algorithms, we compare them with the two most popular baseline algo-

rithms. The first one is replicateAll [11], used for example in BOINC, which systematically

generates one replica by allocating each incoming query q to q.n + 1 providers. The second

one, used in many systems, consists to not replicate at all so that re-allocation has to deal

with all problems, which we call none. We carry out our experimental validation with four

main objectives: (i) to evaluate how well, from a satisfaction point of view, our algorithms

operate in the presence of autonomous participants; (ii) to evaluate the impact on performance

of backup queries generated by our algorithms; (iii) to evaluate how our algorithms operate

in environments where participants have no preference; and (iv) to analyze if our algorithms

can adapt to different querys’ criticality and to different probabilities of participants failure.

13

A. Experimental Setup

Let us first point out that the definition of a synthetic workload for environments where

participants have special interests towards queries is an open problem. In [15] the authors

discuss the need for benchmarks of scenario-oriented cases, which are similar to the case we

consider, but this remains an open problem. Although, it is possible to consider real-world

data over long periods of time from a specific application, we decided to generate a much

more general workload that can be applied to different applications and environments in order

to thoroughly validate our results.

We implemented SbQA [18], which computes vector
−→
R , and then implemented SbQR,

SbQR+, and replicateAll algorithms on top of SbQA. Without loss of generality, we

followed [18] to define participants’ intentions. That is, providers consider their preferences,

utilization, and satisfaction to compute their intentions, and consumers only consider their

preferences. We do not detail this computation because it is orthogonal to the problem we

address in this paper. We followed [21] to generate the experimental system. We generated a

network with 150 consumers and 300 providers who compute their satisfaction as presented

in Sections III-A and III-B, respectively, and consider a single mediator. We generated 10%

of providers with low-capacity, 60% with medium, and 30% with high. The high-capacity

providers are 3 times more powerful than medium-capacity providers and still 7 times more

powerful than low-capacity providers. We divided the set of providers into three classes

according to the interests of consumers: consumers that have high-interest (60% of providers),

medium-interest (30% of providers), or low-interest (10% of providers). At first glance, one

may think that these number of participants is not representative for large-scale systems.

But, we assume that all 300 providers are able to perform any incoming query, which is

representative number found in practice.

As consumers do not directly compete among them to get results from providers, it really

does not matter how many they are. What impacts performance it is the workload they

produce. This is why, instead of varying the number of participants, we vary the workload.

We strongly believes that systems with much more participants will have the same relative

performance. Notice that, the workload we generate is only with respect to the number of

queries issued by consumers. Any backup query generated by the algorithms we test is added

to such workload. We generated two classes of queries that high-capacity providers perform

in 1.3 and 1.5 seconds, respectively. We assumed that queries arrive in a Poisson distribution.

We assumed that participants have the same network capacities and that each of them has

a failure probability per second of 0.03. This is a high failure probability, but we want to

stress the system so as to conduct our experiments under difficult situations.

We initialized the satisfaction of participants with a value of 0.5. Then, during experiments,

participants made an average of their satisfaction over the last 150 issued queries (for

consumers) and the 400 queries that have passed through providers. Queries have a criticality

generated at random between 0.3 and 1 and should be answered by six different providers

(i.e., q.n = 6). Moreover, we considered that it is up to a provider p to estimate the time

it needs to answer each incoming query q and gives it to the mediator. Finally, we ran 10
times each experiment and report the average of these results.

B. Results with Autonomous Participants

In these experiments, we assume that participants compute their preferences and queries

cost uniformly at random in the intervals [−1, 1] and [−1, 0], respectively. We compute this

at random for two reasons: we cannot control the environment of participants; we strive to

simulate highly heterogeneous preferences of participants.

14

(a) Created backup queries.

0.3 min

0.4

0.5

0.6

0.7

0.8

0.9

1 max

20 40 60 80 100

A
ve

ra
ge

 C
ri

ti
ca

li
ty

Workload (% of the total system capacity)

none
repAll
SbQR

SbQR+

(b) Avg. criticality (γ) of backup queries.

0

1

2

3

20 40 60 80 100

U
n

c
o

n
tr

o
lle

d
 M

is
s
in

g
 R

e
s
u

lt
s
 (
%

 w
.r
.t

.
in

c
o

.
q

u
e
ri
e
s
)

Workload (% of the total system capacity)

none
repAll
SbQR
SbQR+

(c) Queries with missing results.

0.3 min

0.4

0.5

0.6

0.7

0.8

0.9

1 max

20 40 60 80 100

A
ve

ra
ge

 C
ri

ti
ca

li
ty

Workload (% of the total system capacity)

none
repAll
SbQR

SbQR+

(d) Avg. γ of queries with a missing result.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
es

p
o

n
se

 T
im

es
 (

in
 s

ec
o

n
d

s)

Workload (% of the total system capacity)

none
repAll
SbQR

SbQR+

(e) Response times.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 20 30 40 50 60 70 80 90 100

A
v

er
ag

e
S

at
is

fa
ct

io
n

Workload (% of the total system capacity)

none
repAll
SbQR

SbQR+

(f) Average consumers’ satisfaction.

Fig. 3. Results with queries requiring six providers and for different workloads.

In Figure 3(c), we observe that for low workloads replicateAll has (around 0.01%) less

queries with missing results than the other algorithms. However, we observe in Figure 3(a)

that it replicates 20 times more queries. The disadvantages of replicateAll becomes clear

in Figure 3(c) when the workload is higher than 60%: the number of queries with missing

results for high workloads is twice as with our algorithms since providers are more loaded and

queries are blinded-replicated. This does not happen with our algorithms, which automatically

adapt the query replication rate to the workload. This is because providers take care of their

load while expressing intentions. It is worth noting that SbQR+ voluntarily aborts ∼1% of

low-critical queries for high query loads in order to prioritize high-critical queries. This is

why it misses a very low percent of results for high query loads. Figure 3(a) clearly illustrates

that our algorithms create much less backup queries as the workload increases. Furthermore,

we observe in Figure 3(b) that our algorithms mainly replicate critical queries. This trend is

more important as the workload is higher, in particular for SbQR+. The great advantage is

that the number of missing results SbQR+ has for non-critical queries is similar to the ones

of the none case, while it ensures more results for highly critical queries (see Figure 3(d)).

15

(a) Created backup queries.

0.3 min

0.4

0.5

0.6

0.7

0.8

0.9

1 max

20 40 60 80 100

A
v

er
ag

e
C

ri
ti

ca
li

ty

Workload (% of the total system capacity)

none
repAll
SbQR

SbQR+

(b) Average criticality of backup queries.

0

1

2

3

20 40 60 80 100

U
n

c
o

n
tr

o
lle

d
 M

is
si

n
g

 R
e
su

lt
s

(%
 w

.r
.t

.
in

c
o

.
q

u
e
ri
e
s)

Workload (% of the total system capacity)

none
repAll
SbQR
SbQR+

(c) Queries missing Results.

0.3 min

0.4

0.5

0.6

0.7

0.8

0.9

1 max

20 40 60 80 100

A
v

er
ag

e
C

ri
ti

ca
li

ty

Workload (% of the total system capacity)

none
repAll
SbQR

SbQR+

(d) γ of queries with a missing result.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
es

p
o

n
se

 T
im

es
 (

in
 s

ec
o

n
d

s)

Workload (% of the total system capacity)

none
repAll
SbQR

SbQR+

(e) Response times.

2

4

6

8

20 40 60 80 100B
ac

k
u

p
 Q

u
er

ie
s

(%
 w

.r
.t

.
in

co
.

q
u

er
ie

s)

Workload (% of the total system capacity)

low-critical SbQR
low-critical SbQR+
high-critical SbQR

high-critical SbQR+

(f) Backup queries for 2 criticality levels.

Fig. 4. Results with queries requiring six providers, with participants having no preferences, and for different workloads.

It is worth noting that, in the SbQR+ case, the number of aborted queries — those

which were allocated to less providers than those required — increases with the workload.

SbQR+ voluntarily aborts lowly critical queries (see Figure 3(d)) to prioritize highly critical

queries (see Figure 3(b)). As a result, the number of queries with missing results (because

of provider failure) increases much more slowly (see Figure 3(c)). Figure 3(f) clearly

shows that consumers appreciate this, where satisfaction is defined as in Section III-A.

Furthermore, aborting lowly critical queries allows SbQR+ to guarantee short response times

(see Figure 3(e)). Notice that, even if SbQR has slightly longer response times than when

doing no replication (the none case), it significantly outperforms replicateAll. During our

experiments, we observed that the smaller the number of required results (n), our algorithms

are much better than replicateAll. For example, when n = 2, replicateAll starts to have

have problems with workloads higher than 40% while our algorithms remain stable.

C. Results with Passive Participants

One may wonder if the previous results are impacted by the preferences of participants. To

clarify this doubt, we now assume that participants are fully devoted to the system, such as

16

nodes in a cluster. To establish this, we neutralize both preferences and costs of participants

by respectively setting all of them to 1 and 0.

We illustrate the results in Figures 4(a) - 4(e). Interestingly, we observe in Figure 4(a)

that our algorithms create much more backup queries than in previous results, especially for

those queries having a high criticality (see Figure 4(b)). This is because participants have

now no preference towards either queries nor other participants and hence the system only

considers the criticality of queries. As a result, such an increase in the number of backup

queries is reflected by having almost the same number of missing results as replicateAll for

low workloads, and as the none case for high workloads (see Figure 4(c)). Let us however

highlight in these results that SbQR+ voluntary aborts more queries than it misses due to

providers failure. This proves its capacity to deal with provider failures. Now, we observe in

Figure 4(d) that our algorithms also improve their performance by preserving more critical

queries. These results clearly illustrate the aim of our algorithms at mainly replicating highly

critical queries. Finally, we can see in Figure 4(e) that, even though SbQR and SbQR+ create

more backup queries, their ensured response time is only degraded by 70 milliseconds on

average. All this proves their efficiency even in systems with non-autonomous participants.

D. Varying Criticality of Queries

To analyze the sensitivity of our algorithms to different criticities of queries, we run

two series of experiments: (i) with lowly critical (criticality of 0), and (ii) with highly

critical queries (criticality of 1). The criticality of queries neither impacts the performance

of replicateAll nor that of the none systems, because they do not consider this criteria.

This is why we only show the results for our algorithms. For these experiments, we assume

again autonomous participants and hence they compute their preferences and query costs as

in Section VI-B.

Figure 4(f) illustrates the number of created backup queries for different workloads. These

results confirm the fact that our algorithms tend to replicate less queries as the workload

increases in order to not overload providers. We can also see the sensitivity of our algorithms

to the criticality of queries by creating more backup queries for the highly critical queries.

We confirm that, as stated in Section V-B, SbQR+ never replicates more queries than SbQR.

In fact, as the workload increases, the number of queries replicated by SbQR+ is much

smaller than those replicated by SbQR. Once more again, this is because providers quickly

become overloaded and thus begin expressing negative intentions — which are considered

by SbQR+ to reduce the number of required providers.

E. Varying Probability of Providers Failure

We finally run our algorithms in systems where providers have quite different probabilities

of failure per second: 0.006 (low probability), 0.05 (medium probability), and 0.1 (high

probability). We assume that queries arrive with a criticality of 1 and that consumers ask for

a single answer per query, i.e., n = 1. We chose these values because it is with these values

that providers failure impacts the more. Since n = 1 and because of the properties of SbQR+
(see Section V-B), the results we present here are valid for both of our algorithms. Let us say

that results from these experiments are quite similar to those already observed in previous

sections. For this and for space reasons, we just present the most important. In Figure 5,

we can see that, as the failure probability of providers increases, more backup queries are

created by our algorithms to ensure that consumers get answers for their queries. However,

when providers become overutilized, our algorithms decrease the number of backup queries.

This proves the high sensitivity of our algorithms to the probability of providers failure. We

17

10

20

30

20 40 60 80 100B
ac

ku
p

Q
ue

ri
es

 (
%

 w
.r

.t.
 in

co
. q

ue
ri

es
)

Workload (% of the total system capacity)

low-probability
medium-probability

high-probability

Fig. 5. Backup queries created for different workloads and two different probabilities of providers failure.

could observe during our experiments that our algorithms have in average less queries with

missing results than none and replicateAll. We also observed our algorithms to better satisfy

participants than other algorithms. For low workloads, consumers feel better satisfied with

replicateAll, but the difference is quite small (see Figure 3(f)).

VII. RELATED WORK

Query replication approaches can be classified in two models: passive or active query

replication. In passive query replication, also known as primary-backup [5], primary providers

actively perform queries and regularly checkpoint their state to backup providers [2], which

are either waiting for a checkpointing message or saving a checkpointing message. In case

a primary provider fails, a backup provider takes over the role of the primary provider by

reading the last checkpointed state in order to recover a state that existed before the primary

provider’s failure. In this way, the failure can be masked to consumers, but they can experience

a long delay in getting results [25]. Furthermore, this model is in general inappropriate in

the presence of autonomous participants, because it inherently assumes that providers are

homogeneous from a functionality and data point of view and thus provide the same results.

In active query replication, also called state-machine [22], both primary and backup

providers play the same role: they actively perform queries and, unlike in the passive

replication model, there is no centralized control. Active replication does not require

checkpointing messages to maintain backup queries and is thus appropriate for distributed

systems with autonomous participants. Several solutions have been proposed based on this

model. For example, [23] proposes a query allocation algorithm that maximizes the reliability

of heterogeneous systems. [10] proposes a scheduling algorithm to achieve fault tolerance in

multiprocessor systems. But, these two algorithms can only tolerate a single provider failure,

while large distributed systems suffer from many more providers failures. [9] proposes an

algorithm using a set of scheduling heuristics that actively replicates each incoming query a

fixed number of times, say r, thereby producing schedules that tolerate r providers failure.

However, these active query replication solutions replicate each incoming query, which may

quickly utilize all computing resources in the system.

Recently, probabilistic approaches have been proposed to deal with failures without

replicating each incoming query. For instance, in [1] each processing node and communication

link is associated with a failure rate. The authors then tackle the problem of scheduling a

task graph with deadline constraints and guaranteeing the best possible reliability. However,

this work assumes a constant probability of failure for nodes and considers parallel and

homogeneous computers. In [3], authors address the problem of scheduling a set of queries,

which are characterized with the same probability of failure, to a set of processors. Given

18

a set of queries and the set of relevant providers, a precise analysis can determine whether

replication is required to either guaranteeing high reliability or a minimal set of processors

for dealing with a set of queries. However, the authors consider multiprocessor systems and

thus make strong assumptions that do not apply to distributed systems with autonomous

participants. An advantage of probabilistic approaches though is that, as in our proposal, no

assumption on the number of tolerated failures is made. In contrast to our algorithms, these

probabilistic solutions assume that providers have the same probability of failure, the same

capacity to perform queries, and no intentions at all. None of these assumptions is realistic

in large-scale distributed systems.

Our algorithms significantly differ from previous work in four main points. First, to the

best of our knowledge, this is the first work that uses a probabilistic approach to replicate

queries in large-scale distributed systems. Second, in addition to the failure probability of

providers, they consider the failure probability of consumers. This consideration is quite

important, because repeated consumer failures may cause dissatisfaction of those providers

that perform their queries. This is because such providers waste their computing resources

for producing results that are finally not returned to the consumer. Third, our algorithms

go further than simply considering failure probabilities: they also consider both participants’

satisfaction and queries’ criticality to set the query replication rate. This allows our algorithms

to only replicate those queries that increase participants’ satisfaction. Finally, we consider

query replication in its generality: besides replicating queries to tolerate failures, we consider

the fact that consumers may also replicate queries to deal with Byzantine providers.

VIII. CONCLUSION

In this paper, we focused on active query replication in the presence of autonomous

participants. In this context, a way to avoid having several participants to voluntarily leave

the system is to satisfy their interests. However, basic query replication techniques can

decrease system performance and dissatisfy providers. This is because they quickly overload

the system for high query loads and do not consider participants interests at all. Thus, system

architects/developpers are usually faced to the problem of deciding whether replicating queries

is beneficial to the performance of their systems. Usually, system architects/developpers

decide before-hand how to recover from provider failures: (i) by systematically generating

one (or more) query replica(s) for any incoming query (the replicateAll approach); or (ii) by

re-allocating queries after provider failures (the none approach). Our main goal, in this paper,

is to free system architects/developpers from all these messy details. For this, we revisited

query replication from a satisfaction and probabilistic point of view. To our knowledge, this

is the first work that analyzed query replication from a satisfaction point of view.

In summary, we made the following main contributions. First, we extend the satisfaction

model presented in [18] to take faulty participants and query criticality into account. Second,

we introduced a new global satisfaction notion that characterizes: (i) the criticality of

queries for consumers, (ii) the failure probability of participants, and (iv) the satisfaction

of participants. Third, we proposed two simple, yet powerful, query replication algorithms

to deal with participant failures while considering participants satisfaction, which we called

SbQR and SbQR+. Both algorithms decide on-the-fly whether a query should be replicated

and at which rate such that system performance is not decreased and participants satisfaction

is increased. Two salient features of these algorithms is that: they replicate only those queries

that allow increasing global satisfaction, and; they make no assumption on how many provider

19

failures might occur at any time. SbQR+ differs from SbQR in that it may voluntarily fail

to allocate as many replicas as required by consumers for their low critical queries so as to

keep computing resources for critical ones.

Our experimental results demonstrated that our algorithms significantly outperform, from

the performance and satisfaction points of view, the two most popular baseline branch of

algorithms: (i) those that (it systematically generates one replica for any incoming query

(replicateAll) and (ii) those that only re-allocates queries after provider failures (none). The

results showed that our algorithms correctly adapt on-the-fly the query replication rate to the

criticality of queries and the failure probabilities of participants. This allows our algorithms

to ensure good system performance and high participants satisfaction at any point in time.

In particular, the results also show that while replicating systematically all queries suffers

from serious performance problems. Our results also showed that while SbQR is the most

adequate to guarantee the number of query instances required by consumers, SbQR+ is the

best choice to increase participants satisfaction and prioritize highly critical queries.

REFERENCES

[1] I. Assayad, A. Girault, and H. Kalla. A Bi-Criteria Scheduling Heuristics for Distributed Embedded Systems Under

Reliability and Real-Time Constraints. In DSN, 2004.

[2] M. Balazinska, H. Balakrishnan, S. R. Madden, and M. Stonebraker. Fault-Tolerance in the Borealis Distributed

Stream Processing System. TODS, 33(1):1–44, 2008.

[3] V. Berten, J. Goossens, and E. Jeannot. A Probabilistic Approach for Fault Tolerant Multiproc. Real-Time Scheduling.

In IPDPS, 2006.

[4] R. Bhagwan, S. Savage, and G. M. Voelker. Understanding Availability. In IPTPS, 2003.

[5] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. chapter The Primary-Backup Approach, pages 199–216. ACM

Press, 1993.

[6] M. Castro, M. Costa, and A. Rowstron. Performance and Dependability of Structured Peer-to-Peer Overlays. In DSN,

2004.

[7] B. Chandramouli, C. Bond, S. Babu, and J. Yang. Query Suspend and Resume. In SIGMOD, 2007.

[8] S. Ghosh, R. Melhem, and D. Mossé. Fault-Tolerant Scheduling on a Hard Real-Time Multiprocessor System. In

IPDPS, 1994.

[9] A. Girault, H. Kalla, and Y. Sorel. An Active Replication Scheme that Tolerates Failures in Dist. Embedded Real-Time

Syst. In DSN, 2003.

[10] K. Hashimoto, T. Tsuchiya, and T. Kikuno. Effective Scheduling of Duplicated Tasks for Fault-Tolerance in

Multiprocessor Systems. IEICE Trans. on Information and Systems, E85-D(3), 2002.

[11] J. Kim, H. Lee, and S. Lee. Replicated Process Alloc. for Load Distri. in Fault-Tolerant Multicomp. IEEE Computers,

46(4), 1997.

[12] D. Kossmann. The State of the Art in Distributed Query Processing. ACM Computing Surveys, 32(4):422–469, 2000.

[13] L. Ni and A. Harwood. A Comparative Study on Peer-to-Peer Failure Rate Estimation. In ICPADS, 2007.

[14] F. Pentaris and Y. Ioannidis. Query Optimization in Distributed Networks of Autonomous Database Systems. TODS,

31(2), 2006.

[15] S. Pieper, J. Paul, and M. Schulte. A New Era of Performance Evaluation. IEEE Computer, 40(9), 2007.

[16] H. Qu, A. Labrinidis, and D. Mosse. UNIT: User-centric Transaction Management in Web-Database Systems. In

ICDE, 2006.

[17] J.-A. Quiane-Ruiz, P. Lamarre, S. Cazalens, and P. Valduriez. Scaling Up Query Allocation in the Presence of

Autonomous Participants. In DASFAA, 2011.

[18] J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez. A Self-Adaptable Query Alloc. Framework for Dist. Inf. Syst.

VLDBJ, 18(3), 2009.

[19] E. Rahm and R. Marek. Dynamic Multi-Resource Load Balancing in Parallel DB Syst. In VLDB, 1995.

[20] M. Roussopoulos and M. Baker. Practical Load Balancing for Content Req. in P2P Networks. Distributed Computing,

18(6), 2006.

[21] S. Saroiu, P. K. Gummadi, and S. D. Gribble. Measuring and Analyzing the Characteristics of Napters and Gnutella

Hosts. Multimedia Systems, 9(2):170–184, 2003.

[22] F. Schneider. Distributed Systems, chapter Replication Management Using the State-Machine Approach, pages 169–

197. ACM Press, 1993.

[23] S. Shatz, J.-P. Wang, and M. Goto. Task Alloc. for Maximizing Reliability of Dist. Com. Syst. IEEE Computers,

41(9), 1992.

[24] G. Wolf et al. Query Processing Over Incomplete Autonomous Databases. In VLDB, 2007.

[25] H. Yu and A. Vahdat. The Costs and Limits of Availability for Replicated Services. In SOSP, 2001.

20

