S. Amari, Information Geometry of Multiple Spike Trains, p.987
DOI : 10.1007/978-1-4419-5675-0_11

J. J. Atick, Could information theory provide an ecological theory of sensory processing? Network: Computation in 990

B. B. Averbeck, P. E. Latham, and A. Pouget, Neural correlations, population coding and computation. Nat Rev 15 The retina: an approachable part of the brain, J.E. Dowling, 10121987.
DOI : 10.1038/nrn1888

R. Fernandez and G. Maillard, Chains with complete connections : General theory, uniqueness, loss of memory and 1014 mixing properties, J. Stat. Phys, vol.118, pp.3-4555, 2005.

G. D. Field and E. J. Chichilnisky, Information Processing in the Primate Retina: Circuitry and Coding, Annual Review of Neuroscience, vol.30, issue.1, 1016.
DOI : 10.1146/annurev.neuro.30.051606.094252

E. Ganmor, R. Segev, and E. Schneidman, The architecture of functional interaction networks in the retina. The 1018 journal of neuroscience, pp.313044-3054, 2011.

E. Ganmor, R. Segev, and E. Schneidman, Sparse low-order interaction network underlies a highly correlated and 1020 learnable neural population code, p.96799684, 2011.

W. S. Geisler, Visual Perception and the Statistical Properties of Natural Scenes, Annual Review of Psychology, vol.59, issue.1, pp.167-192, 2008.
DOI : 10.1146/annurev.psych.58.110405.085632

W. S. Geisler, J. S. Perry, and A. D. Ing, Natural systems analysis. Human Vision and Electronic Imaging XIII, pp.8060-8060, 1023.

H. Georgii, Gibbs measures and phase transitions De Gruyter Studies in Mathematics:9. Berlin 1025 23. I.I. Gikhman and A.V. Skorokhod. The Theory of Stochastic Processes, 1979.

T. Gollisch and M. Meister, Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina, Neuron, vol.65, issue.2, pp.150-164, 1027.
DOI : 10.1016/j.neuron.2009.12.009

J. M. Hammersley, P. Clifford, A. L. Jacobs, G. Fridman, R. M. Douglas et al., Markov fields on finite graphs and lattices. unpublished, 1971. 1029 26 Ruling out and 1030 ruling in neural codes, Proc Natl Acad Sci, issue.14, pp.1065936-1065977, 2009.

E. T. Jaynes, Information Theory and Statistical Mechanics, Physical Review, vol.106, issue.4, p.620, 1957.
DOI : 10.1103/PhysRev.106.620

G. Keller, Equilibrium States in Ergodic Theory, 1998.
DOI : 10.1017/CBO9781107359987

K. Koch, J. Mclean, M. Berry, I. , P. Sterling et al., Efficiency of Information Transmission by Retinal Ganglion Cells, Current Biology, vol.14, issue.17, pp.1523-1553, 2004.
DOI : 10.1016/j.cub.2004.08.060

K. Koch, J. Mclean, R. Segev, M. A. Freed, M. J. Berry et al., How Much the Eye Tells the Brain, Current Biology, vol.16, issue.14, pp.1428-1462, 2006.
DOI : 10.1016/j.cub.2006.05.056

B. G. Lindsey, K. F. Morris, R. Shannon, and G. L. Gerstein, Repeated patterns of distributed synchrony in neuronal 1038 assemblies, Journal of Neurophysiology, vol.78, pp.1714-1719, 1997.

.. N. Logothetis, Vision: A Window on Consciousness, Scientific American, vol.281, issue.5, pp.44-51, 1999.
DOI : 10.1038/scientificamerican1199-68

G. Maillard, Introduction to chains with complete connections, 1041.

O. Marre, S. Boustani, Y. Frégnac, and A. Destexhe, Prediction of Spatiotemporal Patterns of Neural Activity from Pairwise Correlations, Physical Review Letters, vol.102, issue.13, p.138101, 2009.
DOI : 10.1103/PhysRevLett.102.138101

URL : https://hal.archives-ouvertes.fr/hal-00444939

L. Martignon, G. Deco, K. Laskey, M. Diamond, W. Freiwald et al., Neural Coding: Higher-Order Temporal Patterns in the Neurostatistics of Cell Assemblies, Neural Computation, vol.26, issue.11, pp.2621-2653, 2000.
DOI : 10.1016/0006-8993(70)90079-X

L. Martignon, H. Von-hasseln, S. Grün, A. Aertsen, and G. Palm, Detecting higher-order interactions among the spiking events in a group of neurons, Biological Cybernetics, vol.373, issue.1, pp.69-81, 1995.
DOI : 10.1007/BF00199057

R. Masland, The fundamental plan of the retina, Nature Neuroscience, vol.42, issue.9, 2001.
DOI : 10.1038/nn0901-877

R. H. Masland and P. R. Martin, The unsolved mystery of vision, Current Biology, vol.17, issue.15, pp.577-82, 2007.
DOI : 10.1016/j.cub.2007.05.040

D. N. Mastronarde, Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X-and Y-cells

M. Meister, J. Pine, and D. A. Baylor, Multi-neuronal signals from the retina: acquisition and analysis, Journal of Neuroscience Methods, vol.51, issue.1, pp.95-106, 1052.
DOI : 10.1016/0165-0270(94)90030-2

S. Nirenberg, S. M. Carcieri, A. L. Jacobs, and P. E. Latham, Retinal ganglion cells act largely as independent encoders, 1054.

I. E. Ohiorhenuan, F. Mechler, K. P. Purpura, A. M. Schmid, Q. Hu et al., Sparse coding and high-order 1056 correlations in fine-scale cortical networks, Nature, issue.7, pp.466617-621, 2010.

B. A. Olshausen and D. J. Field, Natural image statistics and efficient coding, Network: Computation in Neural Systems, vol.7, issue.2, pp.333-342, 1996.
DOI : 10.1088/0954-898X_7_2_014

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Panzeri and S. R. Schultz, A Unified Approach to the Study of Temporal, Correlational, and Rate Coding, Neural Computation, vol.80, issue.10, 1059.
DOI : 10.1088/0954-898X/8/2/003

J. W. Pillow, L. Paninski, V. J. Uzzell, E. P. Simoncelli, and E. J. Chichilnisky, Prediction and Decoding of Retinal Ganglion Cell Responses with a Probabilistic Spiking Model, Journal of Neuroscience, vol.25, issue.47, pp.11003-11013, 2005.
DOI : 10.1523/JNEUROSCI.3305-05.2005

A. Pouget, P. Dayan, and R. Zemel, Information processing with population codes, Nature Reviews Neuroscience, vol.1, issue.2, pp.125-157, 1065.
DOI : 10.1038/35039062

R. L. Rockhill, F. J. Daly, M. A. Macneil, S. P. Brown, and R. H. Masland, The diversity of ganglion cells in a 1069 mammalian retina, J Neurosci, vol.22, issue.9, pp.3831-3874, 2002.

R. W. Rodieck, Maintained activity of cat retinal ganglion cells, J Neurophysiol, vol.30, issue.5, pp.1043-71, 1967.

Y. Roudi, E. Aurell, and J. A. Hertz, Statistical physics of pairwise probability models, Frontiers in Computational Neuroscience, vol.3, 1072.
DOI : 10.3389/neuro.10.022.2009

Y. Roudi and J. Hertz, Mean field theory for non-equilibrium network reconstruction, Phys. Rev. Lett, vol.106, issue.048702, 1074.

Y. Roudi and J. A. Hertz, Mean field theory for non-equilibrium network reconstruction. arXiv, p.11, 1076.

Y. Roudi, S. Nirenberg, and P. E. Latham, Pairwise maximum entropy models for studying large biological systems: 1077 when they can work and when they can't, PLOS Computational Biology, vol.5, issue.5, 2009.

Y. Roudi, J. Tyrcha, and J. A. Hertz, Ising model for neural data: Model quality and approximate methods for extracting 1079 functional connectivity, Physical Review E, p.51915, 2009.