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Abstract

This paper evaluates and compares the performance of two approaches for locating
an agent in a mobile agent environment. The first approach dynamically creates a
chain of forwarders to locate a moving agent whereas the second one relies on a cen-
tralized server to perform this task. Based on a Markov chain analysis, we compute
the performance of each scheme (time to reach an agent, number of forwarders) and
compare them first with simulations and second with experimental results obtained
by using ProActive, a Java library. Depending on the system parameters we identify
the best scheme and observe that over a LAN the server yields the best performance
whereas the forwarders yield the best performance over a MAN.

Key words: Mobile code, migration, centralized server, forwarders, Markov chain.

1 Introduction

The Internet has allowed the creation of huge amounts of data located on many
different machines. Performing complex operations on some data requires that
the data be transferred first to the machine on which the operations are to
be executed. This transfer may require a non-negligible amount of bandwidth
and may seriously limit performance if it is the bottleneck. However, instead
of moving the data to the code, it is possible to move the code to the data, and
perform all the operations locally. This simple idea has led to a new paradigm
called code-mobility [17]. In this paradigm, a mobile object – sometimes called
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an agent – is given a list of destinations and a series of operations to perform on
each one of them. The mobile object will visit all of the destinations, perform
the requested operations and possibly pass the result on to another object.
Any machine willing to receive an agent must provide an agent-platform which
is a placeholder where the agent is executed.

Code mobility has recently received a lot of attention because of its wide ap-
plication to fields ranging from e-commerce (e.g. looking for the lowest fare
on many different sites) to data mining [6]. Mobility can be implemented as a
service provided by an operating system [14]; however this severely limits its
usefulness in a heterogeneous environment such as the Internet. Another solu-
tion is to use a library which provides an application with all of the necessary
features [1,3,8,9,11,16,18].

Any mobility mechanism must first provide a way to migrate code from one
host to another. It must also ensure that any communication posterior to a
migration will not be impaired by it, namely that two objects should still be
able to communicate even if one of them has migrated. Such a mechanism is
referred to as a routing mechanism or even as a location mechanism since it
often relies on the knowledge of the location of the objects to ensure com-
munications. Two location mechanisms are widely used: the first one uses a
centralized (location) server which keeps track of the location of mobile ob-
jects, whereas the second one relies on special objects – called forwarders –
whose role is to forward a message to the mobile object. A more careful de-
scription of these approaches will be given later on.

Mobility raises several concerns, among them security [5] (of both the mo-
bile agent and the host sheltering it) and performance issues [4,7]. In [7] the
complexity of using forwarders is extensively studied whereas [4] addresses
fault-tolerance properties in forwarder-based mechanisms. In this paper we
will only focus on performance issues and, more specifically, on the cost of
communication in presence of migration. To the best of our knowledge, this is
the first time that such an analysis is performed. In [11] the authors only give
intuitive criteria on how to select the proper location scheme under certain
circumstances. Our analysis can be used to select the best scheme based on its
response time. It also allows us to compute the average number of forwarders,
which is useful to study the fault-tolerance of forwarding schemes [4].

In this work we develop Markovian models of the forwarders and of the lo-
cation server as implemented in ProActive [16], a Java library that provides
all the necessary primitives for code mobility. Closed-form expressions for var-
ious performance measures are derived, including the time needed to reach
an agent and the mean number of forwarders. These expressions are in turn
used to evaluate the cost of location under various network conditions and
for different applications. For the purpose of validation, we have developed
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for each mechanism both an event-driven simulator and a benchmark that
uses ProActive. Simulations and experiments conducted over a LAN and a
MAN have validated both models and have shown that no scheme performs
uniformly better than the other, thereby justifying the present research.

The paper is organized as follows: preliminary definitions are introduced in
Section 2; the forwarding scheme is presented and evaluated in Section 3 and
the centralized server scheme is investigated in Section 4. Simulated and ex-
perimental results are reported in Section 5 as well as a theoretical comparison
between both approaches. Concluding remarks are given in Section 6.

2 Definitions and notation

In this section we introduce several random variables (rvs) that we will use to
construct our models. Throughout the paper a mobile object will indifferently
be called a mobile agent or simply an object or an agent.

The i-th message is sent by the source to the agent at time ai and the com-
munication is over at time di := ai + τi. The rv τi – referred to as the (i-th)
communication time – is a scheme-dependent quantity that will be defined
later on for each mechanism (forwarders and centralized server). In the time-
interval (di, ai+1) no message is generated by the source. Let wi+1 := ai+1 − di

be the length of this time-interval and assume that w1 := a1 and that no
message is generated in [0, a1).

The j-th migration of the mobile occurs at time mj > 0 and it requires the
mobile pj units of times to reach its new location. During a migration period
the agent is unreachable. The mobile then spends uj+1 units of time at its
jth location, time during which it can be reached by a message, and then
initiates a new migration. We set u1 := m1 and assume that the mobile does
not migrate in [0,m1) (see Figure 1).

message generation communication period

w1
Source t

τ2τ1 w2 w3 τ3

a1 d3d1 a2 d2 a30

migration initiation

Agent t
u2p1 p2 u3 p3 u4u1

m2 m3 m4m10

Fig. 1. A time diagram including all rvs relative to the source and to the agent.

The following assumptions will be enforced throughout the paper:

A1 The input sequences {wi, i ≥ 1}, {pj, j ≥ 1} and {uk, k ≥ 1} are assumed
to be mutually independent renewal sequences of rvs such that wi, pj and uk
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are exponentially distributed rvs with parameters λ > 0, δ > 0 and ν > 0,
respectively.

3 The forwarders

3.1 Description

Forwarding techniques were first introduced in distributed operating systems
like DEMOS/MP [15] for finding mobile processes. The mechanism is straight-
forward: on leaving a host, a process leaves a special reference, called a for-

warding reference which points toward its next location. As the system runs,
chains of forwarders are built. A consequence of this mechanism is that a caller
does not usually know the location of the callee. A special built-in mechanism
called short-cutting allows the update of the address as soon as a communi-
cation takes place. When a forwarded message reaches a mobile object, the
latter communicates its new location to the caller. As a result, all subsequent
requests issued by this caller will not go through the existing forwarders –
which are shortcut.

An illustration of the short-cutting feature is given in Figure 2: a message is
sent by the source to the last known location of the agent (Host B). Since the
agent is no longer at this location, the message is then forwarded to the host
that was next visited by the agent (Host C). Again, the agent has already
moved when the message reaches Host C and the message is forwarded to
the next visited host (Host D) where the agent is finally located. A location
message is then sent by the agent (located at host D) to the source and the
next message will be sent by the source to Host D.

Host B

Agent

Host DHost C

Source

Host A

2. Forwarding 3. Forwarding

1. Request

Forwarder

Step 1

Host B

Agent

Host DHost C

Source

Host A

Step 2

4. Reply

5. New Location

Fig. 2. The short-cutting feature in the forwarding mechanism.

In order to keep the same semantic as with a static program (i.e. with no mobile
object) one has to introduce constraints. Mainly, communications through a
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chain of forwarders should be synchronous, i.e. the caller stays blocked during
the communication time. With these assumptions we can now describe the
protocol in use:

• Upon migration, a mobile object leaves a forwarder on the current site;
• This forwarder is linked to the mobile object on the remote host;
• No communication can occur when the object is migrating;
• When receiving a message, the forwarder sends it to the next hop (possibly

the mobile object);
• Any successful communication places the mobile object one hop away of the

caller.

The above protocol is implemented in various Java libraries (MOA [11], ProAc-

tive [16] and Voyager [18]) except for the short-cutting feature that is triggered
by the agent at the end of the message processing.

3.2 A Markovian analysis of the forwarders

In this section we will evaluate the performance (number of forwarders in Sec-
tion 3.2.1 and response time 3.2.2) of the mechanism introduced in Section 3.1
through a Markovian analysis. We will assume that a mobile object does not
return to a previously visited site where there is still an active forwarder, i.e. it
does not migrate twice (or more) to a particular site between two consecutive
epochs di (see Section 2). Hence, there can be no loops within a chain. It is
clear that under these conditions the length of a chain can extend to infinity
if the number of hosts is infinite.

A forwarding mechanism is well represented by the chains of forwarders that
it produces. In an application a chain of forwarders connects a single source
to a single agent and its dynamic is not affected by other objects; there will
be as many chains as there are pairs source-agent. It suffices then to study the
behavior of one chain to evaluate the performance of the forwarders approach.
To study the dynamics of a chain, one should take into account the state of a
chain and the states of the source and the agent at its endpoints. Notice that
this doesn’t place any assumption on the number of objects (source or agent)
in the application.

From the description given in Section 3.1, it can be seen that at any time the
system is in one of the following states (see Figure 3):

• States (i, 0, 0), i ≥ 1, indicate that the agent is available (i.e. not migrating)
and located i hops away from the source, and that no message is traveling;

• State (1, 0, 1∗) indicates that the agent is available and located one hop away
from a message, and the latter has never been through any forwarder;
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• State (1, 0, 1) indicates that the agent is available and located one hop away
from a message, the latter having already gone through at least one for-
warder;

• States (i, 0, 1), (i ≥ 2) indicate that a message is traveling, the agent is
available and located i hops away from the message;

• States (i, 1, k), i ≥ 1, indicate that the agent is migrating and that before
the initiation of its migration it was located i hops away from the source
if no message is traveling (k = 0) or it was located i hops away from the
message if a message is traveling (k = 1);

• State (0, 1, 1) indicates that a message that has gone through at least one
forwarder and the agent are at the same location but that the agent is
migrating (i.e. the agent has initiated a migration just before the arrival of
the message);

• State (0, 0, 1) indicates that the message has reached the agent after having
traveled through at least one forwarder and that the agent is currently
communicating its new position to the source.

State (1, 0, 1∗) takes into account the fact that if a new message reaches the
agent after exactly one hop and that the agent has not initiated a migration
before the arrival of the message then the cycle is over and the source can
transmit a new message; otherwise, the agent will have to communicate its
location to the source once the message will have reached it.

Under the enforced assumption

A2 The traveling time of a message from one host (possibly the source) to the
next one (possibly the agent) is an exponential rv with parameter γ > 0.
The successive traveling times are assumed to be mutually independent and
independent of the input sequences {wi}i, {pi}i and {ui}i introduced in
Section 2,

and assumption A1 4 , it is easily seen that the sojourn time in each state is
exponentially distributed and that any state can be reached from any other
state in a finite number of steps. In other words, the process defined above is
an irreducible Markov process on E := {(0, 0, 1), (0, 1, 1), (1, 0, 1∗), (i, j, k), i ≥
1, j, k = 0, 1}.

The transition rates are indicated in Figure 3: a transition with rate λ indicates
that a new message has been generated; a transition with rate ν indicates that
the agent has initiated a migration; a transition with rate δ indicates the end
of a migration; a transition with rate γ indicates that the message has reached
the next host on its route (possibly the agent).

4 Assumptions A1 and A2 are mainly made for sake of mathematical tractability.
We have however observed in our experiments that our models are fairly robust to
deviations from these assumptions – see Section 5.
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3, 0, 02, 1, 02, 0, 01, 1, 01, 0, 0

1, 0, 1∗

3, 0, 12, 1, 12, 0, 11, 1, 11, 0, 10, 1, 10, 0, 1

ν

ννν δδδ

γ γ γ γ γγ

ν νδ δν

λ
γ

λ λ λλγ

Fig. 3. System states and transition rates in the forwarding mechanism.

Let pi,j,k be the stationary probability that the process is in state (i, j, k) ∈ E . If
the Markov process is ergodic then the stationary probabilities are the unique
strictly positive solution of the Chapman-Kolmogorov (C-K) equations [10]

(λ + ν) p1,0,0 = γ (p0,0,1 + p1,0,1∗) (1)

(λ + ν) pi,0,0 = δ pi−1,1,0 i = 2, 3, . . . (2)

(λ + δ) pi,1,0 = ν pi,0,0 i = 1, 2, . . . (3)

δ p0,1,1 = γ p1,1,1 (4)

(δ + γ) p1,1,1 = ν (p1,0,1 + p1,0,1∗) + λ p1,1,0 + γ p2,1,1 (5)

(δ + γ) pi,1,1 = ν pi,0,1 + λ pi,1,0 + γ pi+1,1,1 i = 2, 3, . . . (6)

(ν + γ) p1,0,1∗ = λ p1,0,0 (7)

p0,0,1 = p1,0,1 (8)

(ν + γ) p1,0,1 = δ p0,1,1 + γ p2,0,1 (9)

(ν + γ) pi,0,1 = δ pi−1,1,1 + λ pi,0,0 + γ pi+1,0,1 i = 2, 3, . . . . (10)

such that
∑

(i,j,k)∈E pi,j,k = 1. We will not try to solve equations (1)-(10) ex-
plicitly. Instead, we will use the standard z-transform approach to characterize
the ergodicity condition and the invariant measure of the Markov process. To
this end, define for |z| ≤ 1

f(z) :=
∞
∑

i=1

zipi,0,0; g(z) :=
∞
∑

i=1

zipi,1,0; h(z) :=
∞
∑

i=0

zipi,0,1; k(z) :=
∞
∑

i=0

zipi,1,1

the z-transform of the stationary probabilities {pi,0,1}i≥0, {pi,1,0}i≥1, {pi,1,1}i≥0

and {pi,0,0}i≥1, respectively. Last, introduce F (z) := p1,0,1∗+f(z)+g(z)+h(z)+
k(z) (|z| ≤ 1) the z-transform of the stationary probabilities {pi,j,k, (i, j, k) ∈
E}. F (z) is determined in the following proposition (proof in Appendix A):

Proposition 3.1 (z-transform of the Markov process)

The Markov process depicted in Figure 3 is ergodic if and only if 1/γ < 1/ν +
1/δ. In steady-state, the elements of F (z) are given by
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f(z) =
z γ(λ + δ)(λ + ν)(γ + ν)

ν(ν + λ + γ) a(z)
p1,0.1; g(z) =

z γ(λ + ν)(γ + ν)

(ν + λ + γ) a(z)
p1,0,1 (11)

h(z) =−
z2 δγ

b(z)
p0,1,1 +





δ(ν − γ)z2 − γ(ν + δ)z + γ2

b(z)

−
z3δγ[λ a(z) + (γ + ν)(λγ + (λ + δ)(λ + ν))]

(ν + λ + γ) a(z) b(z)



p1,0,1 (12)

k(z) =
γ (γ − z (γ + ν))

b(z)
p0,1,1 −

γ (λ + ν)(γ + ν)(λγ + (λ + δ)(λ + ν))

(ν + λ + γ) a(z) b(z)
z2 p1,0,1(13)

p1,0,1∗ =
λγ

ν (ν + λ + γ)
p1,0,1 (14)

p0,1,1 =

δν
δ+ν

(

1
ν

+ 1
δ
− 1

γ

)

1 +
[

δν
δ+ν

(

1
ν

+ 1
δ
− 1

γ

)

+ (λ+ν)(γ+ν)(γ+λ)
λν(ν+λ+γ)

] [

(γ−z0 (γ+ν)) (ν+λ+γ) a(z0)
(λ+ν)(γ+ν)(λγ+(λ+δ)(λ+ν)) z2

0

] (15)

p1,0,1 =

δν
δ+ν

(

1
ν

+ 1
δ
− 1

γ

) (

(γ−z0 (γ+ν)) (ν+λ+γ) a(z0)
(λ+ν)(γ+ν)(λγ+(λ+δ)(λ+ν)) z2

0

)

1 +
[

δν
δ+ν

(

1
ν

+ 1
δ
− 1

γ

)

+ (λ+ν)(γ+ν)(γ+λ)
λν(ν+λ+γ)

] [

(γ−z0 (γ+ν)) (ν+λ+γ) a(z0)
(λ+ν)(γ+ν)(λγ+(λ+δ)(λ+ν)) z2

0

] (16)

with a(z) := −δνz + (λ + δ)(λ + ν), b(z) := δνz2 − γ(γ + ν + δ)z + γ2 and

z0 := γ
(

γ + ν + δ −
√

(γ + ν + δ)2 − 4νδ
)

/(2νδ). �

3.2.1 The expected number of forwarders

In this section we compute the expected number of forwarders in steady-state
between the agent and the message (resp. the source if there is no message).
Let q(i) be the probability that the agent is located i ≥ 1 hops away from a
message (resp. from the source if there is no message), which corresponds to
a situation where there are exactly i − 1 forwarders in the system. Clearly,

q(i) = pi,0,0 + pi,1,0 + pi,0,1 + pi,1,1 + 1(i = 1)p1,0,1∗ i = 1, 2, . . .

and the mean number N of forwarders is given by

N =
∞
∑

i=1

(i−1) q(i) = f ′(1)+g′(1)+h′(1)+k′(1)+p1,0,1∗−(1−p0,0,1−p0,1,1) (17)

where φ′(1) denotes the derivative of φ(z) at point z = 1. From Proposition
3.1 and (8) we find that

N =
δ2(γ2 − γν + ν2)(1 − p1.0.1)

γ(δ + ν)(γ(δ + ν) − δν)
+

(

νγ(γ + λ)(γ + ν)

λ2(ν + λ + γ)
−

γ2 − ν2

ν

)

δp1,0,1

γ(δ + ν) − δν

where p1,0,1 is given in (16). The average number of forwarders is expected to
grow when δ or ν increases and it should back off when λ or γ increases which
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is illustrated in Figure 4. The crosses in each graph correspond to the same
values of the model parameters: λ = 1, ν = 10, δ = 20, γ = 50. In Figure 4, the
plots for δ = 40s−1 (lower graph at the left) and γ = 9s−1 (lower graph at the
right) depict the behavior of our model when the ergodicity condition is close
to being violated. In that situation, the expected number of forwarders grows
to infinity. As shown in [4] N can be used to evaluate the fault-tolerance of
the protocol. This issue is not addressed here.

0
2

4
6

1 2 3 4 5 6 7 8 9 10E
xp

ec
te

d 
nu

m
be

r 
of

 f
or

w
ar

de
rs

λ (s-1)

×

1

2
5

ν = 10 s-1

Mean hop time 1/γ = 20 ms, mean migration duration 1/δ = 50 ms

0
2

4
6

1 2 3 4 5 6 7 8 9 10

ν (s-1)

×

λ = 1 s-1

2

5
10

4
7

10
13

10 15 20 25 30 35 40 45 50E
xp

ec
te

d 
nu

m
be

r 
of

 f
or

w
ar

de
rs

γ (s-1)

×

10

20
30

δ = 40 s-1

Mean inter-message time 1/λ = 1 s, mean inter-migration time 1/ν = 0.1 s

4
7

10
13

10 15 20 25 30 35 40

δ (s-1)

×

γ = 9 s-1
10

12
50

Fig. 4. The expected number of forwarders.

3.2.2 The expected communication time

In this section we determine the expected communication time. The commu-
nication time is the time needed to a message to reach the mobile object, to
which we must add the time it takes to the mobile object to send its new
position to the source in case the message has to go through at least one for-
warder. If the message reaches the mobile object after exactly one hop then
there is no need to the mobile object to send its position to the source since the
source knows it; in this case, the communication terminates once the message
has reached the object, thereby justifying the definition of the communication
time given above.

At the end of a communication the agent is not migrating, the source idles and
it is one hop away from the agent. This corresponds to state (1, 0, 0). At this
time, the source stays idle for an exponentially distributed duration with mean
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1/λ. After this idling period a new communication is initiated and the system
can be in any one of the following states: (1, 0, 1∗), (i, 0, 1) for i ≥ 2, or (i, 1, 1)
for i ≥ 1. Define Ti,j,k with i ≥ 1, j = 0, 1, k = 1 or with (i, j, k) = (1, 0, 1∗), as
the expected communication time given that a message was generated when
the system was in state (i, j, k) just after the generation of the message.

The expected communication time TF (subscript F refers to “Forwarders”) is
given by

TF = qF (1, 0, 1∗) T(1,0,1∗) +
∞
∑

i=2

qF (i, 0, 1) T(i,0,1) +
∞
∑

i=1

qF (i, 1, 1) T(i,1,1)

where qF (i, j, k) denotes the probability of reaching state (i, j, k) given that
the process initiated in state (1, 0, 0). It actually represents the probability
that a communication starts when the system moves from state (i, j, 0) to
state (i, j, k). With the help of Figure 3 we find that (with r := δν

(λ+δ)(λ+ν)
< 1)

qF (1, 0, 1∗) =
λ

λ + ν
; qF (i, 0, 1) =

λ(λ + δ)

δν
ri; qF (j, 1, 1) =

λ

δ
rj

with i ≥ 2 and j ≥ 1, so that

TF =
λ

λ + ν
T1,0,1∗ +

λ(λ + δ)

δν
(G(r) − r T1,0,1 − T0,0,1) +

λ

δ
(H(r) − T0,1,1)

with G(z) :=
∑∞

i=0 zi Ti,0,1 and H(z) :=
∑∞

i=0 zi Ti,1,1. It remains to determine
the generating functions G(z) and H(z) at z = r. To this end we will use the
following recursive equations that follow from the Markovian description of
the protocol displayed in Figure 3:

T1,0,1∗ =
1

ν + γ
+

ν

ν + γ
T1,1,1; T0,0,1 =

1

γ
; T0,1,1 =

1

δ
+ T1,0,1

Ti,0,1 =
1

ν + γ
+

ν

ν + γ
Ti,1,1 +

γ

ν + γ
Ti−1.0,1 i = 1, 2, . . .

Ti,1,1 =
1

δ + γ
+

δ

δ + γ
Ti+1,0,1 +

γ

δ + γ
Ti−1,1,1 i = 1, 2, . . .

which yields

(ν + γ (1 − z)) G(z) − ν H(z) =
1

1 − z
+

ν

γ
− νT0,1,1

−δ G(z) + (δ + γ (1 − z)) zH(z) =
z

1 − z
−

δ

γ
+ γz T0,1,1.

Solving for G(z) and H(z) gives
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G(z) =
1

D(z)

(

(δ + ν) z

1 − z
+

ν

γ
(1 − z)(γz − δ) + γz + ν(γz − δ) zT0,1,1

)

H(z) =
1

D(z)

(

(δ + ν) z

1 − z
+ (γ + δ) z − (γ2 z2 − γ(γ + ν) z + δν)T0,1,1

)

with D(z) := (z − 1) (γ2 z2 − γ(γ + ν + δ) z + δν). Finally,

TF =
1

α(λ)

[

((λ + δ)(λ + ν) − γν) T0,1,1 −
(λ + δ)(λ + ν + δ)

δ

−
(λ + δ)(λ + ν)(λ(λ + ν) + ν(γ + ν)) + δγνλ

λ (λ + ν)(γ + ν)

]

(18)

with α(λ) := (λ+ δ)(λ+ ν)− γ(λ+ ν + δ). It remains to identify the constant
T0,1,1 in (18). This can be done by noticing that α(λ) has a single non-negative

zero λ0 := (γ − ν − δ +
√

(γ + ν + δ)2 − 4δν)/2. In order for TF to be well-

defined for all non-negative values of λ, the coefficient of 1/α(λ) in (18) must
vanish when λ = λ0, which gives us an extra relation from which we can
determine T0,1,1. We obtain T0,1,1 = (γ(λ0 + ν + δ) + δ λ0)/(γδλ0). A routine
application of l’Hopital’s rule gives TF when λ = λ0.

4 Centralized server

4.1 Description

An alternative to the forwarders approach for locating a mobile object is to
use a location server. Such a server keeps track of the location of mobile
objects in a database. Servers like this are widely used in the Internet. For
instance, the Domain Name Server [12] uses a hierarchically organized servers
to associate location (IP address) to symbolic name. For sake of simplicity, we
will consider here a single centralized server, although many different schemes
can be conceived to improve speed and reliability. We will also assume that
each object (source or mobile agent) knows the location of this server.

The idea behind location server is simple: each time a mobile object migrates,
it informs the server of its new location. Whenever the source wants to reach
the mobile, it sends a message to the last known location of the mobile; if
this communication fails, then the source sends a location request to the
server. We now give a careful description of the protocol used by the source
and the mobile object to communicate with the server:

• The Mobile Object
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Fig. 5. One possible scenario in the centralized approach from the source point of
view.

Step 1: Performs the migration;
Step 2: Sends its new location to the server.

• The Source
Step 1: Issues a message to the mobile object with the recorded location.

Upon failure goes to Step 2;
Step 2: Queries the server to have the current location of the mobile object;
Step 3: Issues a message to the mobile object with the location provided

by the server. Upon failure, returns to Step 2.

The above protocol is implemented in various Java libraries (MOA [11] and
ProActive [16]). It is rather straightforward, the only issue being when the
agent is migrating while the source receives a reply from the server. This situ-
ation is illustrated in Figure 5: the server does not give the correct location of
the agent to the source since the agent has initiated a migration in the mean-
time. As a result, the source will have to send a second location request to
the server (event no. 9) before finally being able to reach the agent (event no.
11).

Regarding the service policy, there exist several different schemes that can be
implemented. In ProActive [16], the performance of the server has been opti-
mized so that it does not act as a bottleneck. The buffer at the server is com-
pletely partitioned in the sense that each pair source-agent possesses its own
queue. The server polls these different queues and attends the queue having
the oldest query. Within each queue, there is a priority scheduling mechanism
that gives priority to update requests over location requests. If a queue
contains several update requests then only the newest is processed and the
others are destroyed. The service policy is non-preemptive since ProActive is
a Java library (the execution of a Java method cannot be stopped). As a conse-
quence an update request under processing cannot be preempted by a more
recent one, which may harm the performance of the protocol. (Notice that
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only the queue that is attended by the server may have two update location

requests, all other ones having at most one single pending update request.)
Fortunately, it has been observed that this event is very rare in practice. An-
other consequence of this scheme is that upon serving a location request,
the server has to check whether the corresponding queue contains an update

request coming from the object in which case the location request is sent
back to the queue; otherwise, it sends the position of this object (as found in
the database) to the source. Finally, communications in ProActive between
the server and the different sources are synchronous. Therefore, a source that
has sent a location request cannot perform any other task before it gets a
reply from the server, which implies there is at most one pending location

request per source at the server.

4.2 A Markovian analysis of the server

An exact modeling of the centralized approach would consist in modeling
the system as a polling server with vacations. In this section, we develop an
approximate model that considers a single queue – thereby a single source
communicating with a single agent – where the processing speed of the server
is reduced to account for the contention due to the potential presence of sev-
eral agents/sources. This queue may have at most a single location request

and two update requests. By arguing that it is highly unlikely that a coming
update request finds an update request (from the same agent) being pro-
cessed, we will assume that there can be at most one pending update request

at the queue or, in other words, that an update request under processing is
preempted by a more recent one (cf. Section 4.1). The latter restriction can
easily been removed at the expanse of enlarging the state-space (which would
yield a 29.6% increase in the number of states).

We assume that the set of assumptions A1 holds (cf. Section 2). Note, however,
that in this context pj will represent the sum of the j-th traveling time of the
agent to its new host and the travel time of the associated update request

to the server site. We further assume that the traveling times between the
source and the presumed location of the mobile object (resp. between the
source and the location server) are i.i.d. exponentially distributed rvs with
parameter γ1 > 0 (resp. γ2 > 0). Finally, we assume that the service times
– regardless of the query type – are i.i.d. exponentially distributed rvs with
parameter µ > 0 (notice that if there are only one source and one agent in an
application µ would be the server processing speed). All these rvs are assumed
to be mutually independent.

We model the system behavior by a finite-state Markov process whose transi-
tion diagram and rates are given in Figure 6. A state has the representation
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(i, j, k) with i ∈ {A,B, . . . , G}, j ∈ {0, 0∗, 1, 1∗} and k ∈ {0, 1, 1∗, 2}, where
the 2-dimensional vectors A,B, . . . , G are defined in Figure 6.

More precisely, the vector i = (i1, i2) represents the state of a queue at the
server, namely, the type of the messages in the queue, with il ∈ {0, λ, ν} the
type of the message that occupies the l-th position in the queue (l = 1, 2). By
convention, il = 0 (resp. il = λ, il = ν) indicates that the l-th position is not
occupied (resp. the l-th position is occupied by a location request, the l-th
position is occupied by an update request). Recall that update requests

have non-preemptive priority over a location request and that an arriving
update request that finds one update request will destroy it at once.

The component j ∈ {0, 0∗, 1, 1∗} in the state description (i, j, k) represents the
state of the object: j = 1 (resp. j = 1∗) indicates that the object is migrating
and that the source knows (resp. does not know) the location of the host that
the object is leaving; similarly, j = 0 (resp. j = 0∗) indicates that the object
is not migrating and that the source knows (resp. does not know) its location.

Finally, the component k ∈ {0, 1, 1∗, 2} in the state description (i, j, k) repre-
sents the state of the source: k = 0 if the source has no activity, k = 1 if it
has sent a message to the object, k = 1∗ if the message sent by the source has
reached the host that the object is leaving, and k = 2 if the source has sent
a location request to the server. The latter only occurs if the presumed
location of the active object is no longer valid.

The system enters state (A, 0, 0) just after the end of a communication (defined
as the instant when a message has reached the agent). It remains in that
state for an exponentially distributed duration with mean 1/λ, and then a
new message is generated by the source. The time that elapses between the
generation of a new message by the source and the next visit to state (A, 0, 0)
is the communication time (i.e. quantities τi’s introduced in Section 2). In
other words, the successive communication times {τi}i are initialized when
k goes from 0 to 1, and are stopped when k goes from 1 to 0. Each time a
communication fails, a request is issued to the server and k switches from 1
to 2. As soon as the server replies, k switches back to 1 and the message is
re-issued by the source to the location of the object returned by the server.

Under the above description/assumptions, the process depicted in Figure 6
is an irreducible finite-state Markov process on the state-space F , where F
is the set of all states indicated in Figure 6 (F contains 27 elements). Let
p = {pi,j,k, (i, j, k) ∈ F} be the stationary probability of this Markov process
(p exists since an irreducible finite-state Markov process is ergodic). If Q
denotes the infinitesimal generator of this Markov process (whose elements
can easily be identified from Figure 6), then we know (see e.g. [10]) that p is
the unique solution of the system of linear equations p.Q = 0, p.1 = 1, which
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Fig. 6. System states and transition rates in the centralized approach.

can be solved by using a routine numerical procedure.

4.2.1 The expected communication time

We are interested in finding the expected communication time, denoted as TS

(subscript S refers to “Server”). Recall that a communication begins when the
source – after an idling period with mean 1/λ – sends a message to the active
object and terminates when the object is reached. It is seen from Figure 6
that a message may only be generated when the system is in 6 distinct states
– all states where k = 0. As soon as k = 1 a message is generated. Hence,
a communication may start only when the system is in one of the following
states: (A, 0, 1), (A, 1, 1), (A, 0∗, 1), (A, 1∗, 1), (B, 0∗, 1) or (B, 1∗, 1).

Let Ti,j,k denote the expected time to hit state (A, 0, 0) starting from state
(i, j, k). The expected response time TS of the system is given by

TS =
∑

j=0,1

(

qS(A, j, 1) TA,j,1 + qS(A, j∗, 1) TA,j∗,1 + qS(B, j∗, 1) TB,j∗,1

)

(19)

where qS(i, j, 1) denotes the probability that the communication is initiated
when the system is in state (i, j, 1). With Figure 6 it is seen that [2]

qS(A, 0, 1) =
λ

λ + ν
; qS(A, 1∗, 1) =

νµ(2λ + δ + µ + ν) qS(B, 0∗, 1)

(λ + δ)(λ + ν)(µ + λ + δ)

qS(A, 0∗, 1) =
µ qS(B, 0∗, 1)

λ + ν
; qS(B, 0∗, 1) =

νδ

(λ + ν + µ)(λ + δ + ν)

qS(A, 1, 1) =
νλ

(λ + δ)(λ + ν)
; qS(B, 1∗, 1) =

ν qS(B, 0∗, 1)

µ + λ + δ
.

(20)
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It remains to compute the hitting times Ti,j,k. They are easily identified from
the infinitesimal generator matrix Q as follows (see pp. 113-114 in [13])

TA,0,0 = 0 and
∑

i,j,k

q(i′,j′,k′),(i,j,k)Ti,j,k = −1 for (i′, j′, k′) 6= (A, 0, 0) (21)

where q(i′,j′,k′),(i,j,k) are the elements of the generator matrix Q. In order to
simplify (21), let us introduce MA,0,0 as the minor of the matrix Q obtained
by removing the row and the column corresponding to state (A, 0, 0). Let
T = {Ti,j,k, (i, j, k) ∈ F − {(A, 0, 0)}} be the vector of hitting times, except
TA,0,0 (which is equal to 0). Equation (21) then reads

MA,0,0 · T = −1. (22)

Solving for (22) and using the group of equations (20) yields TS.

5 Validation and comparison

5.1 Validation through simulations

The theory developed in Sections 3 and 4 relies on several assumptions. Mainly,
idle times for a source and for an agent, migration durations, communications
latencies and service times (centralized approach only) were all assumed to be
exponential rvs and independent from each other. In this section we under-
take validation of the Markovian models presented in Sections 3 and 4 against
results obtained from event-driven simulators of both schemes. We have run
each simulator several times having one assumption violated at a time, and
one time having all assumptions violated. This way we can observe the ro-
bustness of the corresponding model and the impact of each assumption on
its performance. In the simulations, we have considered a single agent and a
single source.

In order to test realistic distributions for the rvs in hand we have collected
measurements on a LAN and a MAN and fitted the resulting data to well-
known distributions. Except for the service times which are approximately
constant, all other (network-dependent) parameters are well represented by a
Weibull distribution. The distributions of the communication rate λ (inverse
of the average idle times for the source) and the migration rate ν (inverse of
the average idle times for the agent) depend only on the application. To test
the robustness of the models against each assumption, we have run simulations
where all random variables are exponential except one whose distribution is
either deterministic (case of idle times and service times) or Weibull (case of
migration durations and travel times). At last, we have run the simulators
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Table 1
Sample mean and percentiles of the relative error provided by the models. Default
values for forwarders: λ = 1, ν = 10, δ = 11, γ = 45, default values for server:
λ = 1, ν = 10, δ = 15, γ1 = 115, γ2 = 75, µ = 2325.

Simulation Mean 25 50 75 90 95

Forwarders

deterministic idle times for source λ ∈ [1, 10] 7.7 6.5 8.8 9.6 10.3 10.5

deterministic idle times for agent ν ∈ [1, 10] 1.6 0.3 1.4 2.4 3.5 4.2

Weibull migration durations δ ∈ [8, 25] shape 4 8.3 4.3 8.2 10.4 14.7 16.3

Weibull travel times γ ∈ [33.8, 69.8] shape 11 2.7 1.0 2.2 3.9 6.4 7.1

All together λ, ν ∈ {1, 3, 5, 7, 9} 14.1 4.9 10.0 20.6 32.4 38.3

Server

deterministic idle times for source λ ∈ [1, 10] 14.9 15.1 16.3 17.1 17.1 17.2

deterministic idle times for agent ν ∈ [1, 10] 2.4 2.2 2.2 2.6 4.1 4.8

Weibull migration durations δ ∈ [12, 19] shape 2.5 12.3 11.7 12.2 13.5 14.8 15.5

Weibull travel times γ1 ∈ [90.0, 130.8] shape 1.8 1.3 0.6 1.5 1.8 2.1 2.3

Weibull travel times γ2 ∈ [56.2, 93.7] shape 1.8 0.9 0.3 0.6 1.3 2.2 2.7

deterministic service times µ ∈ [500, 2500] 1.5 0.6 1.5 2.2 2.9 3.5

All together λ, ν ∈ {1, 3, 5, 7, 9} 14.1 6.1 10.5 17.0 30.0 40.1

having all random variables being non-exponential. In these runs, the only
assumptions not violated are the ones concerning the independence of the
processes in hand.

Table 1 reports the sample mean and the percentiles of the relative error
(expressed in percent) between simulated results and theoretical expected re-
sponse times as predicted by both models. Our observations are summarized
below:

(1) Both models are very robust against deterministic idle times for the agent
(see lines 2 and 7 in Table 1) and Weibull travel times (see lines 4, 9 and
10).

(2) The model of the location server is very robust against deterministic
service times (largest error observed is 3.7%). See line 11.

(3) The models are more sensitive to the distribution of the idle times for
source (see lines 1 and 6) and the migration durations (see lines 3 and
8). Still, the largest relative error stays under 17.2%.

(4) The performance of the models is fair when all the assumptions concern-
ing the distribution of the rvs are violated. In half of the simulations the
relative error on the response time is less than 10.5% and its mean is
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equal to 14.1% in both models (see lines 5 and 12).

The robustness of the models against correlated processes will be addressed
in the next section.

5.2 Validation through experiments

In order to further validate the models, we have conducted extensive experi-
ments over a LAN and a MAN. All benchmarks were written using the ProAc-

tive library [16] which provided us with all the necessary mobile primitives.
The network was composed of various Pentium II and Pentium III machines
running Linux (2.2.18) and Sun SPARC running SunOS interconnected with
a 100Mb/s switched LAN or a 7Mb/s MAN (four machines were used overall).
We used Java 1.2.2 Green threads in all experiments.

For each approach, the testbed was composed of a single mobile object and a
single source. Idle times for the source (resp. the agent) are exponentially dis-
tributed with rate λ (resp. rate ν). Parameters λ and ν can be modified from
one session to another session. All the other model parameters (δ, γ, γ1, γ2, µ)
are system-dependent and cannot be changed. Hence, among all the assump-
tions that we made to construct the models, only 2 assumptions are not vi-
olated (the ones concerning the input sequences {wi, i ≥ 1} and {uk, k ≥ 1}
(see Section 2)). Indeed, migration durations, communications latencies and
service times were found to have Weibull distributions both on a LAN and a
MAN. Further, assumptions on the independence of these processes are not
likely to be valid under real conditions. Migration durations and travel times
are particularly correlated in real life.

Figure 7 reports both the experimental and theoretical expected response
times obtained for a LAN (4 upper graphs) and for a MAN (4 lower graphs).
Graphs on the left (resp. on the right) display the expected response time as
a function of the communication rate λ (resp. of the migration rate ν) for λ
(resp. ν) ranging from 1s−1 to 10s−1, for 3 different values of the migration
rate ν (resp. communication rate λ) (1, 5 and 10). For each value of the pair
(λ, ν), the empirical values of δ and γ (resp. δ, γ1, γ2 and µ) were plugged
into the expression of TF (resp. TS) given in (18) (resp. (19)) in case the
forwarding mechanism (resp. the centralized mechanism) was used. Observe
that analytical and experimental response times are very close to each other
over almost all experiments.

For each network configuration (LAN or MAN), the performance of the models
are collected in Table 2 in means of order statistics and the sample mean of
the relative error between analytical results and experimental values. Results
in Table 2 indicate that the theoretical models behave fairly well. Their overall
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Fig. 7. Validation with experiments over a LAN and a MAN.

performance are very close to each other (see lines 3 and 6 in Table 2). However,
both models are more robust when applied on a LAN (see lines 1 and 4 in
Table 2) than when applied on a MAN (see lines 2 and 5 in Table 2).

The model of the server has been validated for one source-agent pair. We
still need to perform experiments including multiple sources and/or agents in
order to complete the validation of the model. Beside validation, we can use the
experimental results to compare the performance of the location mechanisms.
Looking at the 4 upper graphs in Figure 7 (experiments on a LAN), it appears
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that the location server scheme has a lower response time if compared to
the forwarders scheme. Unexpectedly, we observe the opposite in the 4 lower
graphs in Figure 7 (experiments on a MAN), where the forwarders scheme
achieves the smallest communication time. It looks like the location server
scheme performs the best only over high speed networks. When communication
latencies increases (and subsequently the migration durations), the forwarding
technique surpasses the centralized technique in performance.

5.3 A theoretical comparison of both approaches

As already mentioned, many parameters are network-dependent so that an
experimental comparison of both approaches is necessarily limited to a few
scenarios. No such limitations occur when comparing them by using the the-
oretical results obtained in Sections 3 and 4. We will focus on the expected
response time given by each approach and, more precisely, on their difference
∆T , namely, ∆T = TF − TS where TF and TS are given in (18) and (19), re-
spectively. Four cases have been investigated corresponding to different values
of the model parameters. Unless otherwise mentioned, the parameters have
the values listed in Table 3. Each entry in Table 3 is the average value ob-
tained over all experiments reported in Section 5.2. Notice that the ergodicity
condition was always verified in our experiments. This can easily be explained
by the fact that the migration of an agent over the network is achieved by
sending several messages from the old site to the new one. Thus we always
have 1/δ > 1/γ. In each case we have identified regions where ∆T = 0, which
corresponds to situations where both schemes yield the same expected re-
sponse (communication) time. When ∆T > 0 (resp. ∆T < 0) the location
server (resp. forwarding) scheme gives the best performance. Figure 8 displays
the sign of ∆T in all four cases that we have investigated.

Figure 8(a) shows that under LAN conditions (resp. MAN conditions) (refer
to 1st line (resp. line 2) in Table 3 for self-contained information), the cen-

Table 2
Sample mean and percentiles of the relative error in both mechanisms.

Experiment Mean 25 50 75 90 95

Forwarding 100Mb/s LAN 7.3 2.1 5.7 10.8 17.0 20.3

mechanism 7Mb/s MAN 12.1 2.3 7.8 19.0 25.9 35.0

overall 9.7 2.2 7.1 15.4 22.1 26.3

Centralized 100Mb/s LAN 4.6 2.3 4.3 6.2 8.5 10.4

approach 7Mb/s MAN 13.9 6.2 11.3 21.5 28.3 33.0

overall 9.6 3.7 6.5 13.4 23.4 28.3
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tralized technique (resp. the forwarders technique) performs the best almost
everywhere. This is what we have observed in Section 5.2. However, what we
could not foresee in the experiments is that for some migration rates (e.g.
ν = 35) the forwarders scheme is better only for intermediate values of the
communication rate (λ = 9 . . . 19 for instance). This is also observed in Figures
8(b) and (d) for fixed values of δ and µ.

In Figure 8(c) we observe that for extremely low service rate (µ less than
16s−1), the forwarders technique becomes better than the centralized tech-
nique. Notice that there should be around 80 active queues at the server
(µ = 2325 in our LAN experiments) in order to have service rates per queue
as low as 30. Surprisingly enough, increasing the communication rate λ while
keeping unchanged the migration rate ν does not have the same effect on the
frontier ∆T = 0: for ν = 1, an increase in λ from 1 to 5 shifts the frontier
to the left (lower service rate) whereas the same increase in λ but for ν = 5

Table 3
Values used for theoretical comparison.

Network δ(s−1) γ(s−1) γ1(s
−1) γ2(s

−1) µ(s−1)

LAN 10.9 45.6 115.6 76.3 2325

MAN 1.6 12.3 36.7 12.1 938
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shifts the frontier to the right (higher service rate). (A shift to the right (resp.
to the left) enlarges the region where forwarders are better (resp. the server
is better).)

Figure 8(d) displays the frontiers ∆T = 0 for several values of the migration
rate ν and for µ ∈ [10, 2500] and λ ∈ [1, 50]; the travel times and the migration
durations correspond to a LAN (values in Table 3). When ν increases the line
∆T = 0 shifts to the right (higher service rate) enlarging the region where
forwarders are better because as the migration rate increases the performance
of the server degrades more rapidly than the performance of the forwarders.

To conclude this section, we would like to stress the fact that selecting the
best location scheme is not as intuitive as it could look in the first place. Our
study of the sign of ∆T has pointed out several unexpected effects when the
value of some parameter is changed.

6 Concluding remarks

We have proposed simple Markovian analytical models for evaluating the per-
formance of two approaches for locating mobile objects. One approach uses
forwarders to enable communication between a source and a mobile object; in
the other approach communications are ensured by a centralized server. Our
models have been validated through simulations and extensive experiments
over a LAN and a MAN. In all the experiments that we have conducted, we
have observed that the server yields the best performance over a LAN and
the forwarders are more efficient over a MAN. Using the theoretical expected
response times of both schemes, we have identified the best location scheme
under a wide variety of conditions. At last, note that our contribution in the
field of code mobility is twofold. First, we have identified the best location
scheme depending on the network conditions. Our conclusions are not that
intuitive and they were made possible thanks to our rigorous approach. Sec-
ond, we have shown that modeling such mechanisms is possible using rather
simple techniques, thereby leaving the door open to the performance analysis
of similar schemes.

Acknowledgements: The authors would like to thank D. Towsley for con-
structive comments on a preliminary version of this paper.
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A Proof of Proposition 3.1

We first derive (11). From (2) and (3) we obtain

pi,0,0 =

(

δν

(λ + δ)(λ + ν)

)i−1

p1,0,0; pi,1,0 =

(

δν

(λ + δ)(λ + ν)

)i−1
ν

λ + δ
p1,0,0

for i ≥ 1, so that

f(z) =

[

z (λ + δ)(λ + ν)

(λ + δ)(λ + ν) − z δν

]

p1,0,0; g(z) =

[

z ν(λ + ν)

(λ + δ)(λ + ν) − z δν

]

p1,0,0.

(A.1)
From (1) and (7)-(8) we find

p1,0,0 =
γ(γ + ν)

ν(ν + λ + γ)
p1,0,1. (A.2)

Introducing (A.2) into (A.1) gives (11). On the other hand, we find (14) from
(A.2) and (7). We now address the computation of h(z) and k(z). From (4)-
(10) we find

[z(γ + ν) − γ] h(z) = zν[p1,0,1 − zp1,0,1∗ ] − γ[p1,0,1 + z2p1,0,1∗ ] + zλf(z) + z2δk(z)

[z(γ + δ) − γ] k(z) = γ(z − 1)p0,1,1 + zλg(z) + zνh(z) − zν[p1,0,1 − zp1,0,1∗ ].

Solving for this system of linear equations in the unknowns h(z) and k(z)
yields (12) and (13). The constants p0,1,1 and p1,0,1 involved in (11)-(13) are
determined as follows: h(z) and k(z) are well-defined in the unit disk as long
as b(z) does not vanish for |z| ≤ 1 (since a(z) 6= 0 for |z| ≤ 1). Since b(z) as
a unique zero z = z0 in the unit disk (given in Proposition 3.1) we conclude
that the coefficient of 1/b(z) in h(z) and in k(z) must vanish when z = z0.
This gives rise to two linear relations between p0,1,1 and p1,0,1 that are actually
identical. We therefore need another relation between p0,1,1 and p1,0,1 which is
nothing but the normalizing condition F (1) = 1. We can then solve for p0,1,1

and p1,0,1.

It remains to establish the stability condition. The normalizing condition will
be satisfied iff.

p0,1,1 +
(λ + ν)(γ + ν)(γ + λ)

λν(ν + λ + γ)
p1,0,1 =

δν

δ + ν

(

1

ν
+

1

δ
−

1

γ

)

(1 − p1,0,1)

which implies that 1/γ < 1/ν + 1/δ is a necessary condition for stability. It is
also a sufficient condition since, when it holds, one can find a unique strictly
positive and normalized solution to the C-K equations, that are given by the
coefficients of the z-transform F (z).
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