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Abstract. We present a novel approach to automated distributed or-
chestration of Web services tied with security policies. The construction
of an orchestration complying with the policies is based on the resolu-
tion of deducibility constraint systems and has been implemented for the
non-distributed case as part of the AVANTSSAR Validation Platform.
The tool has been successfully experimented on several case-studies from
industry and academia.
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1 Introduction

Composability, one of the basic principles and design-objectives of Service-
oriented Architecture (SOA) expresses the need for providing simple scenarios
where already available services can be reused to derive new added-value services.
SOA in its SOAP Web services incarnation based on XML messaging and relying
on a rich stack of related standards provides a flexible yet highly interoperable
solution to describe and implement a variety of e-business scenarios involving
different services possibly bound to complex security policies. Therefore auto-
mated solutions should be considered for composition to realize scalability since
the composed service can be very complex either to discover or even to describe,
especially if some security constraints are to be respected.

Mainly two approaches to Web service composition have been considered,
namely orchestration and choreography [25]. In the former a unique business
process, called a Mediator, aggregates the existing services, while in the latter
each service is responsible for implementing its part of the composed service.

We present in this paper a scalable Web service composition approach re-
lying on the notion of partner corresponding to an organization. Each partner
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in a composition implements its own part of the orchestration. In this setting
standard orchestration is a special case in which only one partner is involved,
whereas choreography is another case in which there is one partner per available
service. Several related “distributed orchestration” notions have been advocated
for in the literature (e.g. [4]). However in inter-organizational business processes
it is crucial to protect sensitive data of each organization providing a compo-
nent service in some orchestration, and our main motivation is to advance the
state of the art by taking into account the security policies while computing an
orchestration.

Contributions First, we present a formal framework to model Web services, their
security policies and their intercommunication. We consider a rich structure for
Web services’ messages including ciphered texts to ensure non-disclosure poli-
cies. We show that in this setting the distributed orchestration problem appears
to be non trivial even for linear workflows. Second, we propose an algorithm
to solve the distributed orchestration problem in this setting. Our decidability
result relies on advanced symbolic constraint solving techniques. Finally the pa-
per reports a freely available prototype implementation of the automatic Web
services composition approach for the non-distributed case. This prototype is
one of the few automatic tools (like [29,12]) that are able to orchestrate Web
services.

Related work A common approach to static [8] (or syntactic [27]) Web services
compositions is Orchestration. Web services orchestration [24] deals with a cen-
tral entity called orchestrator or mediator that operates as a glue between the
Client and the community of available services.

Most works on service composition rely on a behavior model [11], i.e. where
services are considered as stateful and used by the Client according to some sce-
nario. The behavior is usually presented as a Kripke structure, where transitions
are labeled with services’ operations [22]. Here we will give a small overview of
related works.

A composition based on conversations (where a conversation is a sequence
of messages exchanged by peers) was presented in [9]. The available services
are represented by a finite set of message classes, a finite set of abstract peers
(services) and a finite set of directed channels. Each channel consists of two
endpoints and a set of message classes allowed to be sent over this channel. The
composition problem amounts then to find a Mealy machine for each peer such
that the set of possible conversations that can be seen by an external observer
is equivalent to some given conversation specification.

Another work on the same lines is [7]. The authors proposed a way to syn-
thesize and verify cryptographic protocols given a set of multiparty sessions that
represent possible conversations between the participants. Given multiparty ses-
sions represented as directed graphs whose nodes are labeled with roles and edges
labeled with message descriptor and two sets of typed variables: the first states
the variables in which a role from the source node can write, and the second —
from which the destination role can read. They first build the projection for each



role and then reinforce it by adding security layer in order to guarantee integrity
and secrecy properties. Moreover, a prototype of the compiler implementing this
approach generates interfaces and implementations for the generated protocols
in ML.

Note that these approaches aim to generate implementations of the partic-
ipants with given behavior, while in this paper we focus on how to compose
automatically existing ones in order to synthesize a service that is able to satisfy
a given client.

In the Roman Model [11], the available services are specified as finite state
machines. In [22] the author extends the service model from deterministic [6]
to non-deterministic state machines allowing shared memory. Moreover, the ap-
proach allows one to find a finite orchestrator generator that can derive a set of
all possible orchestrations. Note that in all these works services accept only data
from a finite domain. This has motivated an extension called COLOMBO [5] of
Web services composition which deals with messages from infinite domains. The
composition problem is equivalent to finding a Mediator service which uses mes-
sages to interact with the available services and the Client such that the overall
behavior of the mediated system faithfully simulates the behavior of given goal
service. However, even in this model the Mediator is not able to handle the
cryptographic primitives (e.g. decrypt an encrypted message).

In many cases a single entity (device, organization) is not able to orchestrate
the Web services due to the lack of resources (e.g. absence of data requested
by available services) or because of access limitations: some services are lim-
ited to a protected private network. But if partner organizations are involved in
the orchestration, every party can contribute to satisfy client requests. In dis-
tributed or decentralized orchestration (e.g. [23] and [22,26] for other alternative
approaches), each partner can invoke his available services and also communicate
with other partners. In this way a Mediator is distributed between the partners,
but still we have a dedicated one to communicate with the Client. However even
in cooperation mode sensitive data should not be propagated beyond the or-
ganizational border (a company will not share secrets with partners). This is
why communication between partners must be restricted. We will show below
how distributed orchestration is still possible in such constrained setting. For
the non-distributed case and without implementation some initial ideas were
presented in [14].

Paper organization In Section 2 we introduce some basic notions and present an
example of non-distributed Web services orchestration; Section 3 starts with an
example of distributed orchestration, then our formal model is explained, and
ends with presenting our method for solving distributed orchestration problems.
Section 4 reports our implementation for the non-distributed case.

2 The AVANTSSAR Approach

In this section we present an approach used in AVANTSSAR Orchestrator, a
tool for automatic orchestration of Web services.



2.1 Web service model

Web services can be described at two levels: (i) The profile, a precise description
of the interface exposed by a service in terms of a set of operations it provides,
their corresponding in-bound and out-bound message patterns and possibly their
security policies. From the point of view of standards, this information corre-
sponds to the WSDL part of the service specification. (ii) The behavior, or the
use-case scenario of the interface exposed by the service, e.g. a sequencing in the
calls of the operations provided by the service. This is typically covered by the
BPEL part of the service specification.

We use first-order terms to describe the profile of a Web service as they
capture an interesting fragment of the XML Schema and WS-SecurityPolicy.
On the other hand, for the behavior part of a Web service we use a transition
system capturing its workflow logic. For the sake of simplicity we will assume only
linear workflows (i.e. sequential workflows without branching) in this section.

We consider an abstraction of Web services as sequences of actions, where
an action is either receiving or sending of a message pattern. We write ?r for
a reception of message r, and !s for an emission of message s. We call a finite
sequence of actions a strand [17]. To simplify we consider only normal strands, i.e.
starting from a ? action, ending by a ! action and alternating ? with ! actions.
They can be viewed as synchronous Web services, that is where each request
imply an immediate reply.

The execution of consecutive receive-send actions ?r. !s in a normal strand
together with the corresponding send and receive actions of the caller is called an
invocation of a synchronous service. We express message patterns (like s and r)
as first-order terms. More precisely, we consider an infinite set of free constants
C and an infinite set of variables X . Given a signature F (i.e. a set of function
symbols with arities) we denote by T(F ,X ) the set of terms over F ∪ C ∪ X
defined recursively as follows: (i) C ∪ X ⊆ T(F ,X ) (ii) ∀f ∈ F ∀t1, . . . , tn ∈
T(F ,X ) implies f(t1, . . . , tn) ∈ T(F ,X ), where n is the arity of f . Given a term
t we denote by Sub (t) the set of its subterms defined recursively as follows: (i)
t ∈ Sub (t) (ii) t = f(t1, . . . , tn) implies

⋃

i=1,...,n Sub (ti) ⊆ Sub (t). We denote
by Vars (t) the set of variables occurring in term t, i.e. Vars (t) = Sub (t) ∩ X .
The set of ground terms (or messages) over F is denoted by T(F) and defined as
T(F) = {t ∈ T(F ,X ) : Vars (t) = ∅}. A substitution σ is a mapping from X to
T(F ,X ); a ground substitution is a mapping from X to T(F). The application
of a substitution σ to a term t (resp. a set of terms E) is denoted tσ (resp. Eσ)
and is equal to the term t (resp. E) where all variables x have been replaced
by the term xσ. The list of predefined symbols and their meanings are given in
Table 1.

Security policies (e.g. WS-SecurityPolicy standard’s integrity or confidential-
ity assertions) are expressed in message patterns. Consider for instance a service
that receives any value X and returns the result of function f on this value. This
service is specified by the normal strand ?X. !f(X). Now if the security policy
requires that incoming messages should be encrypted with the public key KS



Table 1. Predefined functional symbols

Term Description

enc (t1, t2) t1 encrypted with symmetric key t2
aenc (t1, t2) t1 encrypted with asymmetric public key t2
pair (t1, t2) t1 concatenated with t2
priv (t2) corresponding private key for public key t2
sig (t1, priv (t2)) signature of message t1 with key priv (t2)

Table 2. Dolev-Yao deduction rules

Composition rules Decomposition rules

t1, t2 → enc (t1, t2) enc (t1, t2) , t2 → t1
t1, t2 → aenc (t1, t2) aenc (t1, t2) , priv (t2) → t1
t1, t2 → pair (t1, t2) pair (t1, t2) → t1
t1, priv (t2) → sig (t1, priv (t2)) pair (t1, t2) → t2

of that service then the corresponding strand associated to the service will be
? aenc (X,KS) . !f(X) instead.

2.2 Web service orchestration

Following [6,5] we call a Mediator a service that adapts and dispatches requests
from a client to the community of available services. We state the orchestration
problem as follows: given a set of available services (represented as strands), a
client (also represented as a strand) and an initial knowledge of a Mediator (a
service to be composed), one must find a feasible (with regard to elementary
Dolev-Yao operations, see Table 2, that the service can execute internally) com-
munication between the Mediator, Client and available services, such that all
requests of the Client are satisfied by the Mediator service.

Orchestration example Assume there is a demand on translating texts from
French to English. It is known that the texts were obtained by automatically
recognized hand-written documents and thus contain some misspells. The client’s
need is to send a text in French and receive back an English translation of the
preliminary corrected text, i.e. the client specification is: !t. ?en(corr(t)).

The available services are

1. SpellChecker: a service that corrects spelling (e.g. using the semantically clos-
est word from list of possible options). Its model: ?T. ! pair (corr(T ), n(T )) ,
where T is a text, corr(T ) is the corrected text, n(T ) is a number of correc-
tions done.

2. Translator: a service producing an automatic translation of given text from
French to English. Its security policy requires all incoming messages to be
encrypted with its public key. The specification is: ? aenc (M,Ktr) . !en(M),
where M is a text, en(M) is a translation of M into English and Ktr is a
public key of the Translator.
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SpellChecker
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Fig. 1. Illustration for the orchestration example

We assume that the Mediator initially knows only a public key of the Trans-
lator Ktr. The question is how to satisfy the Client’s request? The problem is
illustrated in Fig. 1.

2.3 Reduction of Orchestration to Protocol State Reachability

The example shows that an orchestration problem can be reduced to checking
whether there is a reachable state where the Client has received a reply on his
request. Our idea is to adopt techniques from security protocol analysis, and thus
to open the possibility of reusing existing tools, in order to solve the orchestration
problem expressed as a reachability problem. The Mediator is a new service (that
we try to generate) that organizes the communications between the given services
and the Client in such a way, that the Client reaches a final acceptable state.
The Mediator is conceptually similar to the Intruder [16] of Dolev-Yao model
of cryptographic protocols: the Dolev-Yao intruder tries to communicate with a
honest agent, by playing some roles or faking some messages in order to reach
an unsafe (or attack) state, e.g. when the honest agent sends a message from
which the intruder is able to infer a secret key. We show some correspondence
between entities of WS Orchestration and Protocol Analysis problem:

Services











Available service/Client ∼ Protocol role

Mediator ∼ Intruder

Final state ∼ Attack state











Protocols

Tool CL-AtSe [30,28] for finding attacks on protocols is placed at the core
of AVANTSSAR Orchestrator. Let us survey the technique that underlies CL-
AtSe on the example of § 2.2. First, the tool selects a linear order on service
invocations and client calls that is compatible with their individual workflow.
Suppose the following sequence has been selected:













{Ktr, t} ⊲ T

{Ktr, t, pair (corr(T ), n(T ))} ⊲ aenc (M,Ktr)

{Ktr, t, pair (corr(T ), n(T )) , en(M)} ⊲ en(corr(t))











(1)
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(3)

Fig. 2. A constraint system (T,M are variables) describing a possible orchestration.

1. Receive a request from the Client;
2. Invoke SpellChecker;

3. Invoke Translator;
4. Send a response to the Client.

Then, the tool generates a system of deducibility constraints from the spec-
ification of the services and the selected interleaving (see Fig. 2). A constraint
is a couple denoted by E ⊲ t, where E is a set of terms and t is a term. A
ground substitution σ is a solution of the constraint E ⊲ t, if tσ ∈ Der (Eσ),
where p ∈ Der (T ) means that ground term p is derivable from set of ground
terms T : formally Der (T ) is the smallest set T ′ containing T and such that for
all u, v ∈ T ′ and w such that u, v → w or v → w for some rule in Table 2 then
w ∈ T ′. Likewise, a ground substitution σ is a solution of a constraint system S
iff σ is a solution of every constraint in S.

Now we explain how the constraint system displayed in Fig. 2 is built. First
the intruder receives t from the Client, i.e. his knowledge becomes {Ktr, t}. Sec-
ond, in order to send a request to SpellChecker, the intruder must deduce some
T from his knowledge (Constraint 1). Third, when he obtains the response, he
adds it to his knowledge and tries to build a request acceptable by the Trans-
lator, i.e. that matches the expected pattern (Constraint 2). Finally, when he
receives the response from the Translator, he tries to deduce the response for
the Client (Constraint 3).

The constraint systems built by this procedure are well-formed, that is the
sets on left-hand side of constraints are increasing (knowledge monotonicity prop-
erty), and each variable appears first in the right-hand side of some constraint
(variable origination property). A lot of work was done on the resolution of the
constraints of this type (e.g [13,10]).

The unique solution of the constraint system in Fig. 2 is a substitution
{T 7→ t;M 7→ corr(t)}, that can be interpreted as follows: first Mediator sends
to the SpellChecker t (text received from the Client), then he receives a re-
sponse: pair (corr(t), n(t)). As the Mediator can decompose a pair he extracts
the needed first part (corr(t)) and encrypt it with Ktr. The result is sent to the
Translator that replies with en(corr(t)), the message expected by the Client.
Thus, Mediator can forward it and complete.

We have demonstrated some abilities of the Mediator. In this simple example
it decomposed a concatenated message to throw away a part that is not needed
(here, number of corrections done) and encrypted a message with necessary
public key in order to adapt it in such way that the resulting message will be
accepted by the service, since the service’s policy is satisfied.



In the next example we show how several mediators may collaborate. In
order to solve the analogous problem in these settings, a technique for resolution
of well-formed constraints is not enough. Since we have to take into account
knowledges of several different composers working in parallel, the constraint
systems obtained in this case will probably violate the knowledge monotonicity
property, and thus will not be well-formed.

3 Distributed orchestration under security constraints

We extend the previous section and we show how to reduce the distributed
orchestration problem to the resolution of deducibility constraints. The main
difference is that the resulting constraints are not well-formed.

For the distributed orchestration we will consider multiple cooperating me-
diators, called partners. We distinguish one of them (still called Mediator) who
communicates with the client, while all others do not. The partners are free to
invoke available services, but the cooperation between them is restricted by com-
munication patterns and non-disclosure policy conditioned by inter-organizational
relationships (no sensitive data must be propagated to other organizations).

3.1 Distributed orchestration example

Suppose that the available services are not free and can serve only registered
users (for the reason of simplicity we suppose that the Translator and the
SpellChecker have a unique registered user each). Moreover, the Mediator has no
credential to log in and use the Translator service, but it has an account for the
SpellChecker (note that both Translator and SpellChecker are still reachable).

Fortunately, there is a partner who has an account for the Translator and
can help to satisfy the client’s requests (see Fig. 3), but does not want to reveal
his credentials to the Mediator.

The corresponding specification of the Translator is:

? aenc (pair (pair (usrtr, pwdtr) ,M) ,Ktr) . !en(M),

where usrtr is a login of the registered user and pwdtr is the corresponding
password; Ktr is a public key of the Translator.

And the corresponding specification of the SpellChecker is:

? aenc (pair (pair (usrsc, pwdsc) , T ) ,Ksc) . ! pair (corr(T ), n(T )) ,

where usrsc is a login of the registered user and pwdsc is the corresponding
password; Ksc is a public key of the SpellChecker.

We suppose that Mediator and Partner share a symmetric key k and all
communications between them are encrypted with the shared key.

The problem is, again, to find a feasible communication scenario between
all the parties, such that (i) all requests of the Client are satisfied and (ii) no
partner can extract a sensitive data of another partner from a message received
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Fig. 3. Illustration for the distributed orchestration problem example































{Ktr,Ksc, usrsc, pwdsc, k, t} ⊲ aenc (pair (pair (usrsc, pwdsc) , T ) ,Ksc)

{Ktr,Ksc, usrsc, pwdsc, k, t, pair (corr(T ), n(T ))}⊲ enc (X, k)

{Ktr,Ksc, usrtr, pwdtr, k, enc (X, k)} ⊲ aenc (pair (pair (usrtr, pwdtr) ,M) ,Ktr)

{Ktr,Ksc, usrtr, pwdtr, k, enc (X, k) , en(M)} ⊲ enc (Y, k)

{Ktr,Ksc, usrsc, pwdsc, k, t, pair (corr(T ), n(T )) , enc (Y, k)}⊲ en(corr(t))































Fig. 4. A constraint system (T,M,X, Y are variables) describing a possible distributed
orchestration.

from the latter. In our example we can consider pwdsc and pwdtr as sensitive
for the Mediator and Partner correspondingly. Later, in § 3.2 we will present a
non-disclosure condition which is sufficient to ensure (ii).

We can solve this problem if the number of interactions (i.e. invocations or
send/receive pairs) is bounded. Suppose for simplicity that we can use every
available service at most once, and that we allow one round of communication
between the Mediator and the Partner (Mediator sends request and the Partner
replies).

Again, as in previous example, we have to choose an interleaving of Client’s
and Partners’ actions and invocations of available services (note that the number
of all possible interleavings is finite).

Assume the selected interleaving is:

1. Client → Mediator
2. Mediator ↔ SpellChecker
3. Mediator → Partner

4. Partner ↔ Translator
5. Partner → Mediator
6. Mediator → Client

where A → B stands for “A sends and B receives”, and A ↔ B stands for “B
is invoked by A”. The corresponding constraint system is depicted in Fig. 4.



We can see that the obtained constraint system is not well-formed, and thus,
the existing above mentioned solving methods (except [20]) are not applicable.
The reason is that the property called knowledge monotonicity does not hold.
This is due to the fact that there are multiple entities (partners) whose knowledge
we must take into account, while in the case of non-distributed orchestration
there exists the only entity (the Mediator) whose knowledge is expressed in LHS
of the constraints.

Another remark: we cannot treat the constraint system in a modular manner,
i.e. consider separately a subsystem of constraints for each partner, since the
obtained constraint systems are not independent as they share variables. If we
do not take into account this fact and solve them separately, then we will be
probably unable to join the solutions, since they can be “incompatible”, i.e. a
solution for one subsystem implies one value for a variable, while a solution
for another may imply another value for the same variable. Moreover, these
subsystems are even not well-formed, since in general they will not satisfy the
variable origination property.

One of the possible solutions, that can be automatically built (§ 3.3), of this
constraint system is σ = {T 7→ t,M 7→ corr(t), X 7→ corr(t), Y 7→ en(corr(t))} .
Mediator gets text t from the Client, sends it encrypted together with his login
data to the SpellChecker, then from the reply he extracts the corrected version
corr(t) of the text, sends it to the Partner, who concatenates it together with
his translator login/password and sends it encrypted to the Translator. Partner
forwards the obtained response to the Mediator who returns it to the Client.

Note that neither Xσ nor Y σ contains login information of the Mediator or
the Partner.

3.2 Formal model

In this section we introduce a model for the distributed orchestration. Note
that the standard (non-distributed) orchestration is the special case with the
unique mediator. Informally, the distributed orchestration problem is stated as
follows: given a community of the available services, a Client, a set of partners
each with some initial knowledge and a set of communication channels between
the partners, find a feasible communication scenario between partners, available
services and the Client, such that the Client reaches its final state.

In this communication scenario the circulated messages have to be sent on
a set of predefined channels and they have to follow some message patterns
defined per each channel. Moreover some non-disclosure policies imposed on the
communications are specified as a set of sensitive atomic data per each partner,
which should not be extractable from messages sent to other partners.

To ensure the latter we will consider a stronger property: we don’t allow any
occurrence of sensitive data as a subterm of these messages. Indeed, as deduction
rules in Table 2 do not produce new atoms, a partner is unable to extract any
sensitive data from a message that does not contain it. In this way the partners
are guaranteed not to directly reveal their confidential information to other ones,
but this information still can be used to invoke the available services.



Note that in order to directly solve the problem with non-disclosure policies,
one should consider more complex techniques that are able to cope with satis-
fiability of constraint systems that includes also a negation (term t should not
be deducible from set of terms E). Unfortunately we are not aware of any such
results.

Orchestration problem input We assume we are given:

– A set of available services S = {S1, . . . , Sn}. Available service Si represented
by its name and a normal (for the sake of simplicity) strand, i.e. Si = 〈i, Ai〉,
where Ai =?r1. !s1. . . . . ?rei . !sei .

– A client C. We can think of the client as a stand-alone available service
〈0, A0〉, but A0 is a strand which is not necessarily normal.

– A set of partners P = {P1, . . . , Pk} (P1 is a Mediator) and for each partner
Pi, a set of sensitive atoms Ni that he does not want to share with partners.
Partner Pi is represented by its name i, his current knowledge Ki and a set
of sensitive atomic values Ni ⊆ Sub (Ki), i.e. Pi = 〈i,Ki, Ni〉.

– A set of communication channels C = {C1, . . . , Cu} between partners. Com-
munication channel Ci is a tuple 〈i, j, p〉, where i and j are names of partners
Pi and Pj correspondingly and all messages sent from Pi to Pj must match
pattern p. We assume that pattern p does not contain sensitive atoms as
subterms, i.e. Sub (p) ∩Ni = ∅.

– An upper bound on the number of interactions m.

We assume that the sets of variables used to describe each available service
(and in the Client) are pairwise disjoint, i.e. Vars (Si) ∩ Vars (Sj) = ∅, if i 6= j

and for all i, Vars (Si) ∩Vars (C) = ∅.

Execution model We define a non-disclosure condition (or non-disclosure pol-
icy) according to what we have already announced before: a sensitive atom of
a partner never occurs as a subterm of a message emitted by him, but we will
impose this policy only on messages emitted by one partner to another, while
the communication with available services is free from this condition. We define
a non-disclosure condition (or non-disclosure policy) H as a set of equations
{

Sub (mi) ∩Nji

?
= ∅

}

i=1,...,l
, where mi is a term and Nji is a set of sensitive

atoms. We will say that a ground substitution σ is a solution of (or satisfies) H
iff for all i = 1, . . . , l an equality Sub (miσ) ∩Nji = ∅ holds.

We present a configuration as a tuple 〈{S1, S2, . . . , Sn} , C, {P1, . . . , Pk} ,S,H〉,
i.e. set of available services, client, set of partners, constraint system and non-
disclosure condition to be satisfied. We define a set of transitions in Fig. 5 that
allow to pass from one configuration to another.

Transition 4 expresses that Partner Pi = 〈i,Ki, Ni〉 can invoke available
service Sj = 〈j, Aj〉, iff he is able to build a message (ground term) that is
compatible with the expected pattern. The reply of Sj will become a part of
the partner’s knowledge. Similarly for the message exchange of the Mediator P1



〈{〈

j, ?r. !s.A′

j

〉}

∪ S′, C, {〈i,Ki, Ni〉} ∪ P ′,S,H
〉

〈{〈

j, A′

j

〉}

∪ S′, C, {〈i,Ki ∪ {s} , Ni〉} ∪ P ′,S ∪ {Ki ⊲ r} ,H
〉 (4)

〈S, 〈0, !s.A′〉, {〈1,K1, N1〉} ∪ P ′,S,H〉

〈S, 〈0, A′〉, {〈1,K1 ∪ {s} , N1〉} ∪ P ′,S,H〉
(5)

〈S, 〈0, ?r. A′〉, {〈1,K1, N1〉} ∪ P ′,S,H〉

〈S, 〈0, A′〉, {〈1,K1, N1〉} ∪ P ′,S ∪ {K1 ⊲ r} ,H〉
(6)

〈S,C, {〈i,Ki, Ni〉 , 〈j,Kj , Nj〉} ∪ P ′,S,H〉 [if 〈i, j, p〉 ∈ C; q = refresh(p)]

〈S,C, {〈i,Ki, Ni〉 , 〈j,Kj ∪ {q}, Nj〉} ∪ P ′,S ∪ {Ki ⊲ q} ,H ∪ {Sub (q) ∩Ni
?
= ∅}〉

(7)

where refresh(t) is a term equal to t where all variables are replaced with fresh ones.

Fig. 5. Transition system

and the Client C, except that the Client can initiate a sending (5,6). A partner
Pi = 〈i,Ki, Ni〉 can send a message to a partner Pj , iff there exists a channel
Cij = 〈i, j, p〉 ∈ C between them such that partner Pi can build a message
compatible with pattern p and this message will not contain sensitive data from
Ni as a subterm (7). Note that in this setting services cannot be reused second
time, but we are free to add several instances for services to problem input.

A sequence of length l of configurations starting with initial one 〈S, C,P, ∅, ∅〉
and obtained by applying transitions from Fig. 5 is called symbolic execution SE

of length l.
An execution E is a pair 〈SE, σ〉 of a symbolic execution SE and ground

substitution σ, such that for the last configuration
〈

S
l, Cl,Pl,Sl,Hl

〉

of SE the
Sl and Hl are satisfied by σ. We can see that an execution E defines message
flow, and thus the sequence of actions performed by every Partner.

Distributed orchestration problem statement Given a problem input as
described above is there an execution E = 〈SE, σ〉 of length l ≤ m such that at
the end the sequence of actions of the Client is empty, i.e. the last configuration
of SE is

〈

S
l, 〈0, ∅〉 ,Pl,Sl,Hl

〉

?

3.3 Solving the distributed orchestration problem

We reduce the distributed orchestration problem to the satisfiability of a de-
ducibility constraint system under non-disclosure of sensitive data condition and
then discuss a decision procedure under the hypothesis of bounded number of
interactions.

Since one can build finitely many different symbolic executions for a fixed
problem input, we can guess a symbolic execution with its final configuration
〈

S
l, Cl,Pl,Sl,Hl

〉

where the Client has no more actions to perform (i.e. Cl =
〈0, ∅〉). And then, building the desired execution is equivalent to finding such a
ground substitution σ that satisfies both Sl and Hl.



We refer to [3] for the technique for solving constraint systems within Dolev-
Yao deduction system. Under non-restrictive assumption that in the problem
input there exists at least one atomic value which is not sensitive to any of
partners, and the assumptions stated in § 3.2 hold, we can easily adapt the
mentioned technique in such way that the following theorem holds:

Theorem 1. Satisfiability of deducibility constraint system within Dolev-Yao
deduction system under non-disclosure condition is in NP.

And thus,

Corollary 1 The problem of distributed orchestration is decidable and in NP.

Note also that having a desired execution E = 〈SE, σ〉, and thus a sequence
of actions performed by the Partners as well as their initial knowledges, we can
extract a prudent implementation of the Partners as services (see details in [15]).

4 Implementation

We report only an implementation for standard (non-distributed) orchestration
introduced in Section 2. As mentioned above, being a special case of the dis-
tributed orchestration, standard orchestration can be handled using simpler con-
straint solving procedure since in that case one has only to handle well-formed
constraints. To this end we use CL-AtSe tool [30]. We are not aware of tools that
can be reused to implement the distributed orchestration.

4.1 Input and Output Language

The available services, the Client and the resulting Mediator are described in
ASLan language [1], a formal language for specifying trust and security prop-
erties of services, their associated policies, and their composition into service
architectures. A service’s behavior in ASLan is defined as a set of transitions,
its initial state and possibly a finite set of Horn clauses typically used to de-
fine an authorization logic; and messages to be exchanged (with applied security
policies) as first order terms.

For example, a TimeStamper service can be represented as the following
transition:

step step_0(TS,Dummy_Time ,Dummy_M ,Time ,M):=

state_timestamper(TS ,1,Dummy_Time ,Dummy_M).

iknows(M)

=[ exists Time]=>

state_timestamper(TS ,1,Time ,M).

iknows(pair(M, pair(Time , crypt(inv(kts), pair(apply(md5 ,

M), Time)))))



where state_timestamper represents a state of TimeStamper service. The mes-
sage exchange is modeled by iknows facts. The transition means that if the
TimeStamper being in state state_timestamper(TS,1,Dummy_Time,Dummy_M) receives
message M, he will generate a new Time value (=[exists Time]=>), pass to state
state_timestamper(TS,1,Time,M) and reply with message pair(M, pair(Time,

crypt(inv(kts), pair(apply(md5, M), Time)))). In other words, this service re-
ceives a message, stores it (encoded in his state) and reply with a time stamp of
the received message. Note that ASLan supports functional symbols equivalent
to ones from Table 1.

The global state of the transition system is given by a set of facts that are
true. A transition can fire, if it has an instance (where all the variables are
replaced with ground terms) such that all the facts of its left-hand side (LHS)
are true. As a result, the facts of the LHS are removed from the current state
and the facts of the RHS are added. The only exception is the iknows facts which
are considered as persistent.

Since we are looking for an orchestration, all the messages emitted by the
services or the Client or received by them should come to/from the Mediator.
Thus, every iknows fact (as it models the communication) once produced by
the transition comes to the knowledge of the Mediator. And vice versa, iknows
facts that are consumed by the services or the Client should be produced by the
Mediator.

4.2 AVANTSSAR Platform

The Orchestrator is part of the AVANTSSAR Platform [1], an automated tool-
set for validating trust and security aspects of service-oriented architectures (see
Fig. 6). The overall objective of the platform is to generate from an orchestration
problem a solution that meets some given security requirements (e.g., secrecy,
authentication).

The AVANTSSAR platform also offers the possibility to check whether an
orchestrated service (e.g. generated by the Orchestrator tool) is vulnerable to an
active Dolev-Yao intruder. For that the modeler inputs some security properties,
e.g. some message confidentiality requirement, before starting the orchestration
generation. Some automatic validation tools (like [30] and others, see [1]) will
check whether the property is satisfied by the generated orchestration. The Or-
chestrator solves the orchestration problem, and then the solution (with the
properties to be validated) are transferred to the AVANTSSAR Validator.

If the specification meets the validation goals then the orchestration solution
is considered as safe w.r.t. the user’s requirements, otherwise a verification report
including the violation proof is returned. In the latter case the Orchestrator is
able to backtrack and try an alternative solution. This is illustrated in Fig. 6 by
the returning-arrow from the Validator to the Orchestrator.

To summarize the platform performs as follows: (i) it generates an orchestra-
tion (a Mediator); (ii) it verifies security properties on it; (iii) if the orchestration
is vulnerable, it generates a new Mediator and jumps to (ii).
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Fig. 6. The AVANTSSAR Validation platform

Table 3. AVANTSSAR Orchestrator benchmark

Input problem Mediator generation

Case study Number of Number of Number of Number of Running
available services transitions Horn Clauses generated transitions time

CRP 4 25 17 17 4.1 sec.
DCS 3 18 0 22 4.6 sec.
PB 2 20 2 4 1.7 sec.

5 Conclusion

The automatic composition of Web services is a challenging task on the under-
standing that all the aspects of Web services have to be taken into account.
We presented a novel approach for automatic distributed orchestration of Web
services under security constraints generalizing the non-distributed case as well
as tackling the Web services choreography.

Whereas there are a lot of theoretical works on the automatic composition of
Web services, only a few are ended with the implementation. We described a tool
that allows one to automatically orchestrate Web services taking into account
in the same time their workflow, messaging and security.

We have successfully tested the tool on several industrial case studies (see
Table 3), like Digital Contract Signing (DCS) and Public Bidding (PB) which
are originated from commercial products of the OpenTrust company and Car
Registration Process (CRP), a case study proposed by Siemens AG.

The Orchestrator is deployed and available at http://avantssar.loria.

fr/OrchestratorWI/. It was implemented in OCaml and Java and its source
contains of more than 20’000 lines of code.

http://avantssar.loria.fr/OrchestratorWI/
http://avantssar.loria.fr/OrchestratorWI/


References

1. Automated Validation of Trust and Security of Service-Oriented Architectures,
AVANTSSAR project. http://www.avantssar.eu.

2. Network of Excellence on Engineering Secure Future Internet Software Services
and Systems, NESSoS project. http://www.nessos-project.eu.

3. T. Avanesov, Y. Chevalier, M. Rusinowitch, and M. Turuani. Satisfiability of
General Intruder Constraints with and without a Set Constructor. Research Report
RR-7276, INRIA, 05 2010. http://hal.inria.fr/inria-00480632/en/.

4. Luciano Baresi, Andrea Maurino, and Stefano Modafferi. Towards distributed bpel
orchestrations. ECEASST, 3, 2006.

5. D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella. Automatic
Composition of Transition-based semantic Web Services with Messaging. In Proc.
31st Int. Conf. Very Large Data Bases, VLDB 2005, pages 613–624, 2005.

6. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Auto-
matic Composition of e-Services that export their Behavior. In Proc. 1st Int. Conf.
on Service Oriented Computing, ICSOC 2003, volume 2910, 2003.

7. K. Bhargavan, R. Corin, P.M. Deniélou, C. Fournet, and J.J. Leifer. Cryptographic
protocol synthesis and verification for multiparty sessions. In 2009 22nd IEEE
Computer Security Foundations Symposium, pages 124–140. IEEE, 2009.

8. A. Bucchiarone and S. Gnesi. A survey on services composition languages and
models. In in Proceedings of International Workshop on Web Services Modeling
and Testing (WS-MaTe2006), pages 51–63, 2006.

9. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: a new approach
to design and analysis of e-service composition. In WWW, pages 403–410, 2003.

10. S. Bursuc, S. Delaune, and H. Comon-Lundh. Deducibility constraints. In
ASIAN’09, volume 5913 of LNCS, pages 24–38, Seoul, Korea, Dec. 2009. Springer.

11. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella,
and Fabio Patrizi. Automatic service composition and synthesis: the roman model.
IEEE Data Eng. Bull., 31(3):18–22, 2008.

12. J. Camara, J.A. Martin, G. Salaun, J. Cubo, M. Ouederni, C. Canal, and E. Pi-
mentel. Itaca: An integrated toolbox for the automatic composition and adaptation
of web services. ICSE ’09, 0:627–630, 2009.
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A Tool architecture

The Orchestratortakes as input an ASLan file with a specification of the avail-
able services and either a specification of the Client or a partial specification
of the Mediator3. The Orchestrator output is a file that contains the ASLan
specification of the Mediator and the community of available Web services.

Figure 7 depicts the architecture of the Orchestrator. Sub-tools Client2Client
and Goal2Client are used to preprocess the input for CL-AtSe (as it was orig-
inally created to tackle protocol insecurity problem). Client2Client assumes
the presence of the Client specification, while Goal2Client assumes that a par-
tial specification of the Mediator is given from which it produces a generic Client
specification; it also produces some additional information (like a table of vari-
ables renaming that was done during generation of the Client) used later by the
Trace2ASLan.

Then CL-AtSe is called. It is a key component of the Orchestrator. Given
an ASLan specification, it generates a trace — the sequence of communication

3 The input also contains validation goals which do not concern the Orchestrator. See
§ 4.2 for details.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
www.avispa-project.org/
http://sra.itc.it/projects/astro/
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Fig. 7. Tool architecture

events (send/receive) between a Mediator (played by the intruder) and the avail-
able services (that can be used in the composition) — such that a final state of
the Client is reached. A detailed description of the tool can be found in [30] and
[1].

Finally, Trace2ASLan takes as input (i) the trace returned by CL-AtSe, de-
scribing the Mediator, (ii) the initial ASLan specification, and possibly (iii)
auxiliary files produced by Goal2Client. It returns the initial ASLan specifica-
tion augmented with the ASLan specification of the Mediator (and possibly a
putative Client). The former is extracted from the trace which is a sequence of
communication events in the form “A sends to B message m” and corresponds
to a prudent implementation of the Mediator which informally means that it
checks its input as thoroughly as possible (for a formal definition, see [15]).

B Digital Contract Signing case study

We describe in the following an experiment we had with the Orchestrator tool on
the Digital Contract Signing case study (DCS). DCS describes two parties that
have secure access to a trusted third party Web site, a Business Portal (BP),
in order to digitally sign a contract. First, BP generates an electronic document
corresponding to the terms of agreement between the two parties. Then, the first
party accesses BP using a Web browser, views the contract and signs it using a
digital certificate. BP verifies the generated signature and stores it. The second
party, in turn, connects to the BP Web site, checks the status of the existing sig-
nature and then co-signs the contract after viewing it. Once the signatures have
been completely verified by the business portal, the signers are notified. Then,
the contract is archived for long-term conservation. The BP’s internal system is
Web service enabled. It delegates the processing of proof elements (signatures,
signed documents, timestamps) to a Security Server (SS) using SOAP messages.

Three available trusted services are in the disposal of SS: a Time Stamper
(TS), a Public Key Infrastructure (PKI), that returns information about the
validity of a given certificate and an Archiver (ARC), an external storage facility.

The orchestration problem here is to generate a Mediator that emulates
SS: satisfy BP’s requests while relying on the community of available services
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(namely TS, PKI and ARC). Figure 8 represents the solution generated by the
tool.

Indeed, the generated Mediator service (SS) expects an initialization message
to start the digital signature procedure and acknowledge the reception. Then BP
invokes SS to get the signature policy for the first signer. Then BP transfers the
contract signed by the first signer to SS which should check the signature and
produce an assertion about its validity that BP expects back as a response. Then
SS is asked to time stamp the signature and provide the corresponding assertion.
To obtain the time stamp, SS must invoke the trusted TS. After this SS is asked
to check whether the certificate used by the signer was not revoked, and if it was
not, to return the corresponding assertion. Indeed, SS contacts PKI and tries to
derive the needed assertion from its response. If SS succeeds the first round of
the signature procedure is successfully ended. Similar steps are needed to collect
the second signer’s data before SS is asked by BP to archive the documents and
proofs collected during the signature procedure. Therefore SS invokes ARC with
the appropriate message, the latter acknowledges the reception and finally SS
calls back BP to signal the successful end of the signature procedure.

Assertions produced by SS are claims made by some issuer and stating some
property for the parameters they transport. An equivalent in the Web Service
standards stack is SAML [21] assertions, which we simply model using first-order
terms. The presence of an assertion in some received message by BP represent an
additional constraint to the orchestration problem since SS will have to provide
it. In this case-study one of the assumptions was that BP trusts SS as issuer for
the assertions it required for example about the validity of one signer’s certificate.
To produce this assertions SS have to contact an internal service: the Assertions
Provider (AP) which permits to provide the good assertion only if a positive
answer about the validity of the certificate is given by a trusted third-party
(here PKI). AP plays a role similar to the trust engine in rely-guarantee method
introduced in [18]. Note that the calls to AP are abstracted in Fig. 8 by the
returning arrows to SS.

We underline here the expressiveness of assertions for the considered orches-
tration problem, since they can describe for example the need to use only certain
schema for the time stamps, or only PKI’s offering the Online Certificate Sta-
tus Protocol (OCSP) versus those using the classical Certificate Revocation List
(CRL). This can be easily done by tuning the AP service behavior to match the
wanted expectancies.

C Short proof recall of Theorem 1

Proof (Short recall). Suppose a constraint system S is satisfiable with substitu-
tion σ that also satisfies non-disclosure condition H. By applying some trans-
formation on σ we can obtain another solution δ of S such that for any variable
x, xδ is bounded by P (size (S)), where P is a polynomial. And since the check
t ∈ Der (E) for ground t and set of ground terms E is polynomial, we obtain an
NP procedure for the satisfiability of constraint systems.



We also note that the used transformation does not change atoms of a sub-
stitution if they appear in S, but only ones that are not by replacing them with
some fixed atom α. And as we assumed an existence of an atom a0 which is not
sensitive by any of Partners, we can put α = a0 and thus, δ will also satisfy H
(under assumption we gave in § 3.2 concerning communication channels).

D Some message sequence charts
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Fig. 9. Solution for the orchestration example (§ 2.2)
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Fig. 10. Solution for the distributed orchestration example (§ 3.1)
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