Learning to Recommend Links using Graph Structure and Node Content

Antonino Freno 1 Gemma Garriga 1, * Mikaela Keller 1
* Auteur correspondant
1 MOSTRARE - Modeling Tree Structures, Machine Learning, and Information Extraction
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe
Abstract : The link prediction problem for graphs is a binary classification task that estimates the presence or absence of a link between two nodes in the graph. Links absent from the training set, however, cannot be directly considered as the negative examples since they might be present links at test time. Finding a hard decision boundary for link prediction is thus unnatural. This paper formalizes the link prediction problem from the flexible perspective of preference learning: the goal is to learn a preference score between any two nodes---either observed in the network at training time or to appear only later in the test---by using the feature vectors of the nodes and the structure of the graph as side information. Our assumption is that the observed edges, and in general, shortest paths between nodes in the graph, can reinforce an existing similarity between the nodes feature vectors. We propose a model implemented by a simple neural network architecture and an objective function that can be optimized by stochastic gradient descent over appropriate triplets of nodes in the graph. Our first preliminary experiments in small undirected graphs show that our learning algorithm outperforms baselines in real networks and is able to learn the correct distance function in synthetic networks.
Type de document :
Communication dans un congrès
Neural Information Processing Systems Workshop on Choice Models and Preference Learning, Dec 2011, Granada, Spain. 2011
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00641419
Contributeur : Mikaela Keller <>
Soumis le : mardi 15 novembre 2011 - 17:00:11
Dernière modification le : jeudi 11 janvier 2018 - 01:49:32
Document(s) archivé(s) le : lundi 5 décembre 2016 - 10:54:12

Fichier

lp-v0.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00641419, version 1

Collections

Citation

Antonino Freno, Gemma Garriga, Mikaela Keller. Learning to Recommend Links using Graph Structure and Node Content. Neural Information Processing Systems Workshop on Choice Models and Preference Learning, Dec 2011, Granada, Spain. 2011. 〈hal-00641419〉

Partager

Métriques

Consultations de la notice

448

Téléchargements de fichiers

529