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A Non-Orthogonal SVD-based Decomposition for Phase Invariant
Error-Related Potential Estimation

Ronald Phlypo, Nisrine Jrad, Sandra Rousseau and Marco Congedo

Abstract— The estimation of the Error Related Potential from
a set of trials is a challenging problem. Indeed, the Error
Related Potential is of low amplitude compared to the ongoing
electroencephalographic activity. In addition, simple summing
over the different trials is prone to errors, since the waveform
does not appear at an exact latency with respect to the trigger.
In this work, we propose a method to cope with the discrepancy
of these latencies of the Error Related Potential waveform
and offer a framework in which the estimation of the Error
Related Potential waveform reduces to a simple Singular Value
Decomposition of an analytic waveform representation of the
observed signal. The followed approach is promising, sincewe
are able to explain a higher portion of the variance of the
observed signal with fewer components in the expansion.

Index Terms— Hilbert transform, Singular Value Decomposi-
tion (SVD), phase plane, analytic signal, Error Related Potential
(ErrP)

I. INTRODUCTION

The estimation of a single waveform from a mixture of this
waveform and (noisy) background activity is a challenging
task with impact in a wide range of applications. When
the waveform is triggered by an external stimulus and
multiple observations are available, the waveform can be
distinguished from the ongoing background activity thanks
to the property of time locking. Under the hypothesis that
the background activity does not result from an interaction
with the stimulus, the former guarantees that summing over
the different observations marginalizes over the background
activity and thus uncovers the waveform. In this work we
will focus on these so-called phase locked waveforms in the
specific case of Event-Related Potentials.

Event-Related Potentials (ERP) are local potential fields
that emerge from the solicitation of a cortical neural pop-
ulation in order to disambiguate the interpretation of an
observed event, generally called the trigger or stimulus.
The ERP, as a response to these stimuli, is considered to
be composed of half waves (i.e. negative or positive half
periods of sinusoidal like signals) each having a specific
temporal latency with respect to the stimulus onset. However,
in practice we often do not observe these wave forms at exact
latencies but rather at small variations around a mean latency
value. The latter phenomenon gains in importance when the
stimulus response elicits higher level cognitive processing.
This is the case in the Error Related Potential (ErrP) based
on a feedback of the result to the participant. The feedback
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indicates whether the participant answered correctly in a
preceding cognitive task, e.g., memorization. If the feedback
is in conflict with the participant’s expectation, transient
changes (half waves) in the potential field of the electroen-
cephalogram (EEG) may be observed. It is suggested that in
case the feedback requires cognitive processing (comparison
between the expected outcome and the feedback), latencies
as well as their inter-trial variabilities augment.

Since the ErrPs are not observed in isolation but in the
presence of ongoing background activity, a straightforward
processing of the observations is to align multiple trials with
respect to the trigger onset and taking a (weighted) sum
over the trials. By summing over different trials, the ErrP
waveform is reinforced whilst the background activity – un-
correlated with the trigger onset – asymptotically approaches
its (supposed) zero-mean value. Whilst this method is by far
out the simplest approach to the estimation of the ErrP wave-
form, it is prone to errors inherent to the summing operation.
Firstly, the sum is taken over all trials, without distinguishing
between informative and non-informative trials. This default
could be overcome by choosing optimal weights, e.g., as
a function of the trial’s signal-to-noise ratio [1]. Secondly,
and more important, the summing suffers from the inter-
trial variabilities of the latencies over different trials[2].
Indeed, it can be shown that simple summing introduces
non-negligible errors, especially when the number of trials
is relatively low [3], [4].

In this work, we opt for a representation of the signal as
a waveform. We allow for transformations of the waveform
such as rotation in the phase plane and amplitude scaling [5]
rather than time shift and stretch [4]. This offers considerable
benefits in that we have a linear transformation. In addition,
we empirically show that the variance of the observations is
captured in less components with respect to a plain principal
component analysis.

II. METHODS

Notational Conventions

All signals considered are supposed to be continuous in
time. When calculations are performed, they are taken over
a time limited window after being sampled. We will not,
generally, explicit this sampling process in our calculations
and suppose that the effect of sampling can be neglected.
This is the case for ErrP waveforms since their frequency
band of interest is band limited (3 − 8Hz) with an upper
frequency generally far below half the sampling frequency
(typically 250, 500 or 1000Hz).



We will denote byℜ andℑ the real part, respectively the
imaginary part of a complex number or vector. A column
vector will be denoted asx = (x1, x2, . . . xN )T and a matrix
constructed from temporal samples of a vector signal asX =
{x(t)}t. All other notations should be clear from the context.

A. Analytic Waveform Representation of a Signal

The Hilbert transform is used here to obtain the analytic
waveform representation of a signal. To obtain the Hilbert
transform[H(x)](t) of a continuous real time signalx(t) ∈
R, one convolvesx(t) with the non-causal infinite impulse
response filterh(t) = (πt)−1. This filter is not integrable and
one may use the Cauchy Principal Value (PV ) However, in
practice, we will make use of the following identities:

∀fp :

{

[H(cos)](2πfpt+ φ) = sin(2πfpt+ φ)
[H(sin)](2πfpt+ φ) = − cos(2πfpt+ φ)

Suppose that the signal can be arbitrarily well approximated
by its Fourier series expansion1

x(t) =
∑

p

ap cos(2πfpt) + bp sin(2πfpt) ,

then – since the Hilbert transform is defined by a linear
operator – it follows that[H(x)](t) =

∑

p ap sin(2πfpt) −
bp cos(2πfpt) and thus the analytic signal

x̃(t) = x(t) + ı [H(x)](t)
=

∑

p(ap − ı bp)[cos(2πfpt) + ı sin(2πfpt)] .

For a limited time signal,ap and bp can be obtained from
its discrete Fourier transform, since[F(x)](fp) = 1

2 (ap −
ı bp), ∀fp > 0, and[F(x)](0) = a0, (b0 = 0). We thus obtain
the analytic waveform from the Fourier transform[F(x)](t)
of x(t) by considering

[F (x̃)] (f) =







0 , ∀f < 0,
[F (x)] (f) , f = 0
2× [F (x)] (f) , ∀0 < f ≤ Fs/2.

(1)

whereFs is the sampling frequency.
Back in the time domain we find that the real part of

our analytic waveform representationℜ{x̃} (t) is precisely
the initially observed signalx(t). We may also identify
ψ(t) = tan−1 ℑ{x̃}(t)

ℜ{x̃}(t) with the instantaneous phase and
ω(t) = ∂ψ(t)/∂t with the instantaneous frequency of
the waveform. In other words, we may think of the an-
alytic signal representation as a (global2) time-frequency
representation of our signal. A local signal representation
of the signal x(t) as a waveform would thus look like
x̃(t) = |x̃(t)|eıψ(t) = |x̃(t)|eı(2πf(t)t−φ(t)), where |x̃(t)| is
also called the instantaneous amplitude or envelope of the
waveform.

1For a sampled signal this approximation is exact if the frequenciesfp
are chosen aspFs/P for p ∈ {0, 1, 2, . . . , P − 1}, where P are the
number of available samples. In many cases the number of frequencies can
be considerably reduced without compromising this approximation.

2The representation is global, since the Fourier series coefficients are
obtained from the complete time series. Thelocal character of the waveform
is thus defined in terms of global parameters.

B. Choosing the Best Waveform Representation

With the above Hilbert transform in mind, we can now
proceed to the estimation of the error related potential
waveform given a collection of signal observationsx(t) ∈
R
N . Consider first an instantaneous mixture model, where

some underlying latent signalss(t) ∈ RM are related to the
observationsx(t) by a constant through time, but unknown
linear orthogonal transformA ∈ RN×M , i.e. x(t) = As(t).
We consider that for some givenM ≤ N , the setS = {s(t)}t
explains best the set of observationsX = {x(t)}t with
respect to theL2-norm. In other words,

(A, s) = arg min
(Q,b)

∑

t

‖x(t)−Qb(t)‖22 , (2)

whereQ ∈ RN×M , andQTQ = IM , the identity matrix in
R
M×M . The solution to the minimization problem of Eq. (2)

can be found by taking the singular value decomposition
(SVD) of X asX = UΣVT . A andS can then be identified
with the firstM columns of the matrixU, respectivelyVΣT .

In a similar way, we may calculate the SVD of̃X =
{x̃(t)}t as X̃ = ŨΣ̃ṼH , where the singular values on the
diagonal ofΣ̃ are real3. Our set of observed signalsx(t)
can thus be approximated asx(t) = ℜ{x̃} (t) ≈ ℜ{Ãs̃}(t),
where Ã and {s̃(t)}t can be identified with the firstM

columns ofŨ andṼΣ̃
T

, respectively. The set of generating
waveforms̃s(t) = {s̃m(t)}Mm=1 now is composed of analytic
signals. In addition to the amplitude scaling found inA, we
now also allow for a phase shift of the waveform by allowing
for complex entries inÃ. We may write equivalently

x(t) =

N
∑

m=1

ℜ{[ũm (σ̃mṽm)](t)} =

N
∑

m=1

ℜ{[ãm s̃m](t)} ,

(3)
where ãm is them−th column ofÃ. Taking the influence
of s̃m(t) on x̃n(t), we then find that

x̃n(t) = |ãnm| |s̃m(t)|e−ı(ψ(t)+∠ãnm) ,

which corresponds to an amplitude scaling and a phase shift
of s̃m(t)

The reconstruction of the observed signal is perfect, i.e.,
the equality holds in Eq. (3), since forM = N

x̃(t) = x(t) + ı [H(x)](t)

= ℜ
{

Ãs̃
}

(t) + ı ℑ
{

Ãs̃
}

(t) .

Despite the fact that the decomposition ofx̃(t) is unitary, we
no longer have an orthogonal decomposition of the observed
signal partx(t). In what follows we will directly illustrate
the benefits of this method with respect to the estimation of
error related potentials.

3The singular values can always be chosen real. If they were not to be
real, it suffices to multiply them-th singular valueσm by rm = σ⋆

m/|σm|
and multiplying the corresponding columns ofŨ and Ṽ correspondingly
by (r′m)−1 and (r′′m)−1, with r′mr′′m = rm. Remark that this gives us
an infinity of solutions forŨ and Ṽ. But this infinite solution set is an
equivalence class for the initial problem. As a consequence, we may choose
whatever representative.


