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Conditions de complémentarité pour l’apparition

et la disparition de la phase gazeuse

Résumé : La migration d’hydrogène produit par la corrosion des sites de
stockages souterrains des déchets nucléaires avec dissolution de l’hydrogène est
formulée comme un ensemble d’équations aux dérivées partielles non-linéaires
avec des conditions de complémentarité non-linéaires. Cet article montre com-
ment appliquer une stratégie moderne et efficace, la méthode de Newton-min,
pour résoudre ce problème de géosciences. En particulier, les expériences numériques
montrent que la méthode de Newton-min se révéle efficace et converge quadra-
tiquement pour ce problème.

Mots-clés : Milieu poreux, écoulement diphasique, dissolution, stockage pro-
fond de déchets nucléaires, problème de complémentarité non-linéaire, fonction
non-lisse, Newton-min
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1 Introduction

The couplex-Gas benchmark [22] was proposed by Andra (French National In-
ventory of Radioactive Materials and Waste) [3] and the research group MoMaS
(Mathematical Modeling and Numerical Simulation for Nuclear Waste Man-
agement Problems) [21] in order to improve the simulation of the migration
of hydrogen produced by the corrosion of nuclear waste packages in an un-
derground storage. This is a system of two-phase (liquid-gas) flow with two
components (hydrogen-water). The benchmark generated some interest and en-
gineers encountered difficulties in handling the appearance and disappearance
of the phases. The resulting formulation [15] is a set of partial differential equa-
tions with nonlinear complementarity constraints. Even though they appear in
several problems of flow and transport in porous media like the black oil model
presented in [8] or transport problems with dissolution-precipitation [17, 7, 19],
complementarity problems are not usually identified as such in hydrogeology
and, to circumvent the solution of complementarity conditions, problems are
often solved by reformulating the problem as in [6, 1, 2]. However the solution
of complementarity problems is an active field in optimization [5, 10, 13] and
we draw from the know-how of this scientific community. A similar path is
followed bin papers like [20, 12, 18]. The application of a semi-smooth Newton
method [14, 16], sometimes called the Newton-min algorithm, to solve nonlin-
ear complementarity problem is described. We will demonstrate through a test
case, the ability of our model and our solver to efficiently cope with appearance
or/and disappearance of one phase.

In the section 2, we introduce the formulation of the problem and in the
section 3 we describe the numerical method. In the section 4, we present and
discuss a numerical experiment.

RR n° 7803



4 I. Ben Gharbia & J. Jaffré

2 Problem formulation

This section gives a precise formulation of the mathematical model for the ap-
plication that was outlined in the introduction. We consider a problem where
the gas phase can disappear while the liquid phase is always present.

2.1 Fluid phases

Let ℓ and g be the respective indices for the liquid phase and the gas phase.
Darcy’s law reads

qi = −K(x)ki(si)(∇pi − ρig∇z), i = ℓ, g, (1)

where K is the absolute permeability. For each phase i = ℓ, g, si is the satura-

tion and ki =
kri(si)

µi
is the mobility with kri the relative permeability and µi

the viscosity (assumed to be constant). The mobility ki is an increasing function
of si such that ki(0) = 0, i = ℓ, g. Assuming that the phases occupy the whole
pore space, the phase saturations satisfy

0 6 si 6 1, sℓ + sg = 1.

The phase pressures are related through the capillary pressure law

pc(sℓ) = pg − pℓ > 0,

assuming that the gas phase is the non-wetting phase. The capillary pressure
is a decreasing function of the saturation sℓ.

In the following, we will choose sℓ and pℓ as the main variables since we
assume that the liquid phase cannot disappear for the problem under consider-
ation.

2.2 Fluid components

We consider two components, water and hydrogen, identified by the indices
j = w, h. The mass density of the phase is

ρi = ρiw + ρih, i = ℓ, g.

From Mw and Mh, the water and hydrogen molar masses, we define the molar
concentration of phase i:

ci = ciw + cih, cij =
siρ

i
j

M j
, j = w, h, i = ℓ, g. (2)

The molar fractions are

χi
h =

cih
ci
, χi

w =
ciw
ci
, i = ℓ, g. (3)

Obviously,
χi
w + χi

h = 1, i = ℓ, g. (4)

We assume that the liquid phase may contain both components, while the gas
phase contains only hydrogen, that is the water does not vaporize. In this
situation we have

Inria



Complementarity constraints for gas phase appearance and disappearance 5

ρgw = 0, ρg = ρgh, χg
h =

cg
h

cg
= 1, χg

w = 0.

For the liquid phase, we assume that the water is the solvent and the hydrogen
is the solute and that the quantity of hydrogen dissolved in the liquid is small,
that is clh ≪ clw. So we have

χℓ
h ≈ cℓh

cℓw
=

Mw

Mhρℓw
ρℓh.

A third main unknown will be χℓ
h, in addition to sℓ and pℓ.

2.3 Conservation of mass

We introduce the molecular diffusion flux for the diffusion of hydrogen in the
liquid phase

jℓh = −φMhsℓcℓD
ℓ
h∇χℓ

h (5)

where Dℓ
h is a molecular diffusion coefficient.

Conservation of mass applied to each component, water and hydrogen, gives

∂

∂t
(φρℓwsℓ) + div(ρℓwqℓ − jℓh) = Qw,

∂

∂t
(φsℓρ

ℓ
h + φsgρ

g
h) + div(ρℓhqℓ + ρghqg + jℓh) = Qh.

(6)

We assume also that the gas is slightly compressible, that is ρg = Cgpg with Cg

the compressibility constant, and that the liquid phase is incompressible, that
is ρℓw is constant.

2.4 Nonlinear complementarity constraints

Next, we apply Henry’s law which says that, at a constant temperature, the
amount of a given gas that dissolves in a given type and volume of liquid is
directly proportional to the partial pressure of that gas in equilibrium with that
liquid.

In the presence of the gas phase, Henry’s law reads Hpg = ρℓh, where
H = H(T )Mh with H(T) is the Henry law constant, depending only on the
temperature.

There are two possible cases : the gas phase exists: 1 − sℓ > 0, Henry’s
law applies and H(pℓ + pc(sℓ)) − ρℓh = 0, or the gas phase does not exist,
sℓ = 1 and H(pℓ + pc(1)) − ρℓh > 0 which says that for a given pressure pℓ the
concentration ρℓh is too small for the hydrogen component to be partly gaseous,
or conversely for a given concentration ρℓh the pressure pℓ is too large for the
hydrogen component to be partly gaseous.

These cases can be written as complementary constraints

(1 − sℓ)
(

H(pℓ + pc(sℓ))− ρℓh
)

= 0, 1− sℓ > 0, H(pℓ + pc(sℓ))− ρℓh > 0.
(7)

Finally we end up with a system of nonlinear partial differential equations (con-
servation equations (6) and Darcy laws (1)) with the nonlinear complementarity
constraints (7) describing the transfer of hydrogen between the two phases, the
unknowns being sℓ, pℓ, and χℓ

h. This formulation has the advantage of being
valid whether the gas phase exists or not [15].

RR n° 7803



6 I. Ben Gharbia & J. Jaffré

3 Discretization and solution method

We use a first order Euler implicit scheme for time discretization and cell-
centered finite volumes for space discretization. We denote by N , the number
of degrees of freedom for sℓ, pℓ and χℓ

h which is equal to the number of cells.
We introduce

• x ∈ R
3N , the vector of unknowns for sℓ, pℓ, χ

ℓ
h,

• H : R3N → R
2N , the discretized conservation equations,

• F : R3N → R
N , the discretized function 1− sℓ,

• G : R3N → R
N , the discretized function H(pℓ + pc(sℓ))−

Mhρℓw
Mw

χℓ
h.

Then at each time step the problem can be written in compact form

H(x) = 0,

F(x)⊤G(x) = 0, F(x) > 0, G(x) > 0,
(8)

where the inequalities have to be understood component-wise.

3.1 A non-smooth system using the Minimum function

It is well known that complementarity conditions, consisting of equations and
inequalities, can be expressed equivalently by an equation via a complementarity
function [10](C-function). Let

ϕ : R
N × R

N → R
N

(a, b) 7→ min(a, b)

be the minimum function, in which the min operator acts component-wise.
This is a C-function, in the sense that it satisfies

ϕ(a, b) = 0 ⇐⇒ a > 0, b > 0, a⊤b = 0. (9)

Other typical scalar C-functions [10] are

• the Fisher-Burmeister function : ϕ(a, b) =
√
a2 + b2 − a− b,

• ϕ(a, b) = −ab+min2(0, a) + min2(0, b).

Using this minimum function, we can write the complementarity problem (8)
as

H(x) = 0,

ϕ(F(x),G(x)) = 0.
(10)

Hence, the resulting system of mass conservation (differential) equations and
equilibrium conditions is fully free of inequalities (pure set of equations). The
only drawback of the introduction of a complementarity problem is that the
problem is no longer C1, since ϕ /∈ C1(R2N ,RN ), while the typical assump-
tion for having the local quadratic convergence of Newton’s algorithm requires
to have a “C1 function with a Lipchitz-continuous derivative". However, it
is well known, especially in the community of optimization, that the assump-
tions can be weakened in several ways, for example by only assuming strong
semi-smoothness. In the next section we give the definition of semi-smoothness
from [9, 10].

Inria
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3.2 Semi-smoothness

Let ψ : RN → R
N be a locally lipschitz-continuous function. Then, by Rademacher’s

theorem[10], there is a dense subset D ⊂ R
N on which f is differentiable. The

B-subdifferential of ψ at a point x ∈ R
N is the set

∂Bψ(x) := {J ∈ R
N×N | J = lim

k→∞

ψ′(xk), (xk) ⊂ D, xk → x},

where ψ′ is the derivative of ψ. The generalized Jacobian of ψ at x [9] is the set

∂ψ(x) = co ∂Bψ(x),

where coS denotes the convex hull of a set S. Now, the function ψ is said to
be semi-smooth at x if ψ is directionally differentiable at x and

Jd− ψ′(x; d) = o(||d||),

for any d→ 0 and for any J ∈ ∂ψ(x+ d), where ψ′(x; d) denotes the directional
derivative of ψ at x in the direction of d. Analogously, ψ is called strongly

semi-smooth at x, if
Jd− ψ′(x; d) = o(||d||2).

ψ is called (strongly) semi-smooth if ψ is (strongly) semi-smooth at any point x ∈ R
N .

It is well known that the minimum function and the Fisher-Burmeister func-
tion are strongly semi-smooth. One can then solve system (10) using the semi-
smooth Newton’s method, called the Newton-min method [5, 4] when the min
function is used. The Newton-min method can also be regarded as an active set
strategy [14].

3.3 The Newton-min algorithm

We now give an exact statement of the Newton-min algorithm for solving the
nonlinear system of equation (10).

Below ∂ϕ(x) denotes the generalized Jacobian of ϕ at a point x. Let Res be

the residual of ψ(x) where ψ(x) :=

(

H(x)
ϕ(x)

)

and ε be a stopping criterion for

Res.

Let x1 ∈ R
N . For k = 2, 3, . . ., do the following.

1) If Res 6 ε, stop.

2) Define the complementary index sets Ak and Ik by

Ak := {i : Gi(x
k) < Fi(x

k)}, Ik := {i : Gi(x
k) > Fi(x

k)}.

3) Select an element J k
x ∈ ∂ϕ(xk) such that its ith line is equal to

F ′
i(x

k) [resp. G′
i(x

k)] if Fi(x
k) 6 Gi(x

k) [resp. Fi(x
k) > Gi(x

k)].

RR n° 7803



8 I. Ben Gharbia & J. Jaffré

4) Let xk+1 be a solution to

H(xk) +H′

(xk)(xk+1 − xk) = 0,

ϕ(xk) + J k
x (x

k+1 − xk) = 0, J k
x ∈ ∂ϕ(xk).

Note that, as in a smooth Newton method, only one linear system has to be
solved at each Newton iteration.

Furthermore the Newton-min method satisfies also a quadratic convergence
property. Indeed, a theorem[10] says that if x∗ is a solution to the system ψ(x) =
0, such that J is nonsingular for all J ∈ ∂ψ(x∗) (as defined in section 3.2), then
for any initial value sufficiently close to x∗, the Newton-min method generates
a sequence that converges quadratically to x∗.

We have not yet proved the hypothesis of non-singularity of J for our system
but we observed the quadratic convergence in our numerical experiments.

4 Numerical experiment

4.1 A problem inspired from the Couplex Gas benchmark

We consider a one-dimensional core with length L = 200m, initially saturated
with liquid (sℓ = 1) and containing no hydrogen (χℓ

h = 0). Hydrogen is injected
at a given rate on the left. After a while the hydrogen injection is stopped. The
problem is then to simulate the migration of hydrogen and to illustrate the gas
appearance and disappearance phenomena.

We calculate spatial evolutions of the liquid pressure, the total hydrogen
molar density and the the gas saturation along the line. Computations are
performed from the initial time up to the stationary state.

The core is supposed to be homogenous porous medium. The capillary
pressure function pc and the relative permeability functions, krl and krg, are
given by the Van Genuchten-Mualem model [11]:

pc = Pr

(

S
−1/m
le − 1

)1/n

,

krl =
√
Sle

(

1−
(

1− S
1/m
le

)m)2

, krg =
√
1− Sle

(

1− S
1/m
le

)2m

,

with Sle =
Sl − Slr

1− Slr − Sgr
and m = 1 − 1

n
, and where parameters Pr, n, Slr

and Sgr depend on the porous medium. The parameters describing the porous
medium and the fluid characteristics are given in Table 1. Fluid temperature is
fixed to T = 303 K.

Initial conditions are Sℓ (t = 0) = 1, χℓ
h (t = 0) = 0 and pℓ (t = 0) =

106 Pa. For boundary conditions on the left, the hydrogen flow rate is given,
ρℓhqℓ+ ρghqg + jℓh = 5.57 10−6 kg/m2/year. From this condition, one can deduce
the saturation. Still on the left, we impose a zero water flow rate ρℓwqℓ− jℓh = 0.
On the right, the liquid pressure is given, pℓ = 106 Pa, and the liquid saturation
is set to sℓ = 1.

Inria



Complementarity constraints for gas phase appearance and disappearance 9

Porous medium parameters Fluid characteristics parameters
Parameter Value Parameter Value

K 5 10−20 m2 T 303 K
φ 0.15 (-) Dh

ℓ 3 10−9 m2/s
Pr 2 106 Pa µℓ 1 10−9 Pa.s
n 1.49 (-) µg 9 10−9 Pa.s
Slr 0.4 (-) H(T = 303K) 7.65 10−6 mol/Pa/m3

Sgr 0 (-) Mw 10−2 kg/mol
Mh 2 10−3 kg/mol
ρℓw 103 kg/m3

Table 1: Values of porous medium fluid characteristics.
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Figure 1: Spatial evolution of hydrogen density at several times t (in years)
during hydrogen injection.

4.2 Results and comments

For the numerical simulation below we divided the space interval into 200 in-
tervals of equal length and we used a constant time step of 5000 years. During
the simulation, we can identify four important periods, three periods during
injection and one period after injection.

During injection (figures 1, 2 and 3): 0 < t < 5.105 years

• Period 1 (0 < t < 2 104 years): only the hydrogen density increases (Fig-
ure 1, green curves), while the liquid pressure and the gas saturation stay
constant (Figures 2 and 3, green curve); the whole domain is saturated
with water (sg = 0).

• Period 2 (2 104 6 t 6 1.5 105 years): at t = 2 104, the gas phase appears

RR n° 7803
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Figure 2: Spatial evolution of gas saturation at several times t (in years) during
hydrogen injection.
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Figure 3: Spatial evolution of liquid pressure at several times t (in years) during
hydrogen injection.
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Figure 4: Spatial evolution of hydrogen density at several times t (in years)
after hydrogen injection is stopped.

(sg > 0). During this period, the liquid pressure increases (Figures 3,
blue curves) and pressure gradients are non zero which corresponds to
a displacement of both phases. The total hydrogen density and the gas
saturation increase (Figures 1 and 2, blue curves) and the unsatured area
grows.

• Period 3 (1.5 105 < t < 5 105 years): while the total hydrogen density
and the gas saturation continue to increase (Figures 1 and 2, red curves);
the liquid pressure and the pressure gradient decrease since there is no
water injection (Figure 3, red curves).

After injection (Figures 4, 5 and 6):

• Period 4 (t > 5 105 years): cell by cell, starting from the right, the gas
saturation decreases and after a while, the gas phase disappears (Fig-
ure 5). At the end of the simulation the system reaches a stationary state
(Figure 4) and the liquid pressure gradient goes to zero (Figure 6).
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Figure 5: Spatial evolution of gas saturation at several times t (in years) after
hydrogen injection is stopped.
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Figure 6: Spatial evolution of liquid pressure at several times t (in years) after
hydrogen injection is stopped.
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4.3 Quadratic convergence

The figure 7 shows the number of Newton-min iterations per time step for two
convergence criterions, ε1 = 1.e-5 (red curve) and ε2 = 1.e-10 (blue curve). The
points are connected with a straight line. As mentioned at the end of section
3.3, one can expect local quadratic convergence, at least for time steps which
are sufficiently small. In Figure 7, we can observe this quadratic convergence.
Indeed one can verify in this figure that, at each time step, the residue goes
from 1.e-5 to 1.e-10 in one iteration.

Figure 7: Quadratic convergence of Newton-min: number of Newton-min itera-
tions per time step for two convergence criterions, 1.e-5 (red curve) and 1.e-10
(blue curve).
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14 I. Ben Gharbia & J. Jaffré

5 Conclusion

We have studied a solution procedure for a model describing a system of two-
phase (liquid-gas) flow in porous media with two components (hydrogen-water)
where hydrogen can dissolve in the liquid phase. The problem is formulated
as a nonlinear complementarity problem and is solved with the Newton-min
method. We considered an example of a Couplex-Gas benchmark and we showed
the ability of our solver to describe the appearance and disappearance of the
gas phase during the migration of hydrogen. We also discussed the quadratic
convergence of the Newton-min method. A theoretical justification for this
quadratic convergence and other benchmark examples are under investigation.
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