A. Abadpour and M. Panfilov, Asymptotic Decomposed Model of Two-Phase Compositional Flow in Porous Media: Analytical Front Tracking Method for Riemann Problem, Transport in Porous Media, pp.547-565, 2010.
DOI : 10.1007/s11242-009-9428-8

B. Amaziane, S. Antontsev, L. Pankratov, and A. Piatnitski, Homogenization of Immiscible Compressible Two-Phase Flow in Porous Media: Application to Gas Migration in a Nuclear Waste Repository, Multiscale Modeling & Simulation, vol.8, issue.5, pp.2023-2047, 2010.
DOI : 10.1137/100790215

URL : https://hal.archives-ouvertes.fr/hal-00867190

I. B. Gharbia, J. Ch, and . Gilbert, An Algorithmic Characterization of $P$-Matricity, SIAM Journal on Matrix Analysis and Applications, vol.34, issue.3, pp.904-916, 2013.
DOI : 10.1137/120883025

URL : https://hal.archives-ouvertes.fr/hal-00713330

I. B. Gharbia, J. Ch, and . Gilbert, Nonconvergence of the plain Newton-min algorithm for linear complementarity problems with a P-matrix, Mathematical Programming, vol.88, issue.2, pp.349-364, 2012.
DOI : 10.1007/s10107-010-0439-6

URL : https://hal.archives-ouvertes.fr/inria-00442293

A. Bourgeat, M. Jurak, and F. Smaï, Two-phase, partially miscible flow and transport modeling in porous media; application to gas migration in a nuclear waste repository, Computational Geosciences, vol.48, issue.3, pp.29-42, 2009.
DOI : 10.1007/s10596-008-9102-1

URL : https://hal.archives-ouvertes.fr/hal-00965384

H. Buchholzer, C. Kanzow, P. Knabner, and S. Kraütle, The semismooth Newton method for the solution of??reactive transport problems including mineral precipitation-dissolution reactions, Computational Optimization and Applications, vol.58, issue.2, pp.193-221, 2011.
DOI : 10.1007/s10589-010-9379-6

G. Chavent and J. Jaffré, Mathematical Models and Finite Elements for Reservoir Simulation, Studies in Mathematics ans its Applications, 1986.

F. H. Clarke, Optimization and Nonsmooth Analysis (second edition), Classics in Applied Mathematics, 5. SIAM, 1990.

F. Facchinei and J. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems (two volumes), Series in Operations Research, 2003.

M. Van-genuchten, A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1, Soil Science Society of America Journal, vol.44, issue.5, pp.892-898, 1980.
DOI : 10.2136/sssaj1980.03615995004400050002x

C. Hager and B. Wohlmuth, Semismooth Newton methods for variational problems with inequality constraints, GAMM-Mitteilungen, vol.12, issue.3, pp.8-24, 2010.
DOI : 10.1002/gamm.201010002

P. T. Harker and J. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Mathematical Programming, vol.30, issue.115, pp.48-161, 1990.
DOI : 10.1007/BF01582255

M. Hintermüller, K. Ito, and K. Kunisch, The Primal-Dual Active Set Strategy as a Semismooth Newton Method, SIAM Journal on Optimization, vol.13, issue.3, pp.865-888, 2003.
DOI : 10.1137/S1052623401383558

J. Jaffré and A. Sboui, Henry's law and gas phase disappearance, Transport in Porous Media, pp.521-526, 2010.

. Ch and . Kanzow, Inexact semi-smooth Newton methods for large-scale complementarity problems, Optimization Methods and Software, vol.19, pp.309-325, 2004.

S. Kraütle, The semismooth Newton method for multicomponent reactive transport with minerals, Advances in Water Resources, vol.34, issue.1, 2008.
DOI : 10.1016/j.advwatres.2010.10.004

A. Lauser, C. Hager, R. Helmig, and B. Wohlmuth, A new approach for phase transitions in miscible multi-phase flow in porous media, Advances in Water Resources, vol.34, issue.8, pp.957-966, 2011.
DOI : 10.1016/j.advwatres.2011.04.021

E. Marchand, T. Müller, and P. Knabner, Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences, vol.53, issue.16, pp.17-431, 2013.
DOI : 10.1007/s10596-013-9341-7

E. Marchand, T. Müller, and P. Knabner, Fully Coupled Generalized Hybrid-Mixed Finite Element Approximation of Two-Phase Two- Component Flow in Porous Media. Part II: Numerical scheme and numerical results, Computational Geoscience, pp.16-691, 2012.

G. Research and . Momas, Mathematical Modeling and Numerical Simulation for Nuclear Waste Management Problems