TEG: GPU Performance Estimation Using a Timing Model

Junjie Lai 1 André Seznec 1
1 ALF - Amdahl's Law is Forever
Inria Rennes – Bretagne Atlantique , IRISA-D3 - ARCHITECTURE
Abstract : Modern Graphic Processing Units (GPUs) offer significant performance speedup over conventional processors. Programming on GPU for general purpose applications has become an important research area. CUDA programming model provides a C-like interface and is widely accepted. However, since hardware vendors do not disclose enough underlying architecture details, programmers have to optimize their applications without fully understanding the performance characteristics. In this paper we present a GPU timing model to provide more insights into the applications' performance on GPU. A GPU CUDA program timing estimation tool (TEG) is developed based on the GPU timing model. Especially, TEG illustrates how performance scales from one warp (CUDA thread group) to multiple concurrent warps on SM (Streaming Multiprocessor). Because TEG takes the native GPU assembly code as input, it allows to estimate the execution time with only a small error. TEG can help programmers to better understand the performance results and quantify bottlenecks' performance effects.
Type de document :
[Research Report] RR-7804, INRIA. 2011
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

Contributeur : Junjie Lai <>
Soumis le : mercredi 16 novembre 2011 - 15:03:10
Dernière modification le : jeudi 15 novembre 2018 - 11:57:43
Document(s) archivé(s) le : lundi 5 décembre 2016 - 04:14:30


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00641726, version 1


Junjie Lai, André Seznec. TEG: GPU Performance Estimation Using a Timing Model. [Research Report] RR-7804, INRIA. 2011. 〈hal-00641726〉



Consultations de la notice


Téléchargements de fichiers