C. Cortes, . Mohri, . Mehryar, . Pechyony, . Dmitry et al., Stability of transductive regression algorithms, Proceedings of the 25th international conference on Machine learning, ICML '08, 2008.
DOI : 10.1145/1390156.1390179

J. A. Hanley and B. J. Mcneil, The meaning and use of the area under a receiver operating characteristic (ROC) curve., Radiology, vol.143, issue.1, pp.29-36, 1982.
DOI : 10.1148/radiology.143.1.7063747

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 2001.

M. Hauskrecht, M. Valko, B. Kveton, S. Visweswaram, C. et al., Evidence-based anomaly detection, Annual American Medical Informatics Association Symposium, pp.319-324, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00643401

L. Kohn, J. Corrigan, and M. Donaldson, To Err Is Human: Building a Safer Health System, 2000.

M. Markou and S. Singh, Novelty detection: a review, part 1: statistical approaches. Signal Process, pp.2481-2497, 2003.

S. Papadimitriou and C. Faloutsos, Crossoutlier detection, Advances in Spatial and Temporal Databases, 8th International Symposium, SSTD 2003, pp.199-213, 2003.

B. Schölkopf, J. C. Platt, . Shawe-taylor, . John, A. J. Smola et al., Estimating the Support of a High-Dimensional Distribution, Neural Computation, vol.6, issue.1, 1999.
DOI : 10.1214/aos/1069362732

. Song, . Xiuyao, . Wu, J. Mingxi, and C. , Conditional Anomaly Detection, IEEE Transactions on Knowledge and Data Engineering, vol.19, issue.5, pp.631-645, 2007.
DOI : 10.1109/TKDE.2007.1009

V. N. Vapnik, The nature of statistical learning theory, 1995.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Scholkopf, Learning with local and global consistency, Advances in NIPS, vol.16, pp.321-328, 2004.

. Zhu, . Xiaojin, . Ghahramani, . Zoubin, and J. Lafferty, Semi-supervised learning using gaussian fields and harmonic functions, Proceedings of the 20th ICML, pp.912-919, 2003.