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Abstract

The standard input format for Satisfiability Modulo Theories (SMT) solvers has now reached its

second version and integrates many of the features useful for users to interact with their favourite

SMT solver. However, although many SMT solvers do output proofs, no standardised proof for-

mat exists. We, here, propose for discussion at the PxTP Workshop a generic proof format in the

SMT-LIB philosophy that is flexible enough to be easily recast for any SMT solver. The format is

configurable so that the proof can be provided by the solver at the desired level of detail.

1 Introduction

Satisfiability Modulo Theory (SMT) consists in deciding the satisfiability of formulae belonging to a

combination of theories. Over the past few years, the quality of SMT-provers has greatly improved.

This is evaluated at the SMT-COMP, the annual competition for SMT. Current SMT-provers are highly

optimised and engineered tools that are capable of deciding formulae of industrial size. For the moment,

the output of most SMT-provers is just the simple answer: sat or unsat. This information is enough to

evaluate their speed and relative soundness – especially when the status of formulae is known beforehand.

But this may not be sufficient, and particularly when trusting the SMT solver is not an option, like in a

skeptical cooperation of solvers.

The purpose of the current proposal is to tackle this problem and propose a generic proof format for

SMT-provers. Compared to existing approaches our objective is to aim at a format that is sufficiently

generic so that:

- any SMT-solver could generate a proof without too much effort;

- the proof could be checked by a trustworthy external verifier.

Our assessment is that previous attempts have produced formats that are either easy to generate but hard

to check or hard to generate and easy to check. For instance, the SMT-solver clsat generates proofs that

are already genuine proofs objects of the logical framework LF [9]. This approach is very challenging and

intellectually attractive. Yet efficient generation and checking of LF proofs is still an open research area.

Unlike [9], we advocate for a clear distinction between the proof generated by the SMT-solver and the

proof-object that would be built by the checker. As a pay-off our proof format should be easier to produce

and not require a substantial re-engineering of the SMT-solver. There are other proof-generating SMT-

provers such as CVC3 [2], veriT [4] and Z3 [6, 5]. For those, the proof format is not totally formalised

and proof reconstruction in a skeptical proof assistant is not a trivial task [8, 3]. One difficulty lies in the

fact that certain proof steps of the SMT-provers are kept implicit and do not appear in the proof trace.

We aim at providing a proof format that is proof-assistant friendly.
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1.1 Proof of satisfiability/unsatisfiability

When a formula is satisfiable, a checkable account of the satisfiability is a detailed model of the formula,

such that every term, atom, literal, and sub-formula has a precise value. Giving this detailed model

may be problematic when handling formulae with quantifiers. When the formula is unsatisfiable, SMT-

solvers derive an inconsistency from the original formula. A proof of unsatisfiability is thus a checkable

derivation from the original formula to an object which is trivially inconsistent. The context of such a

proof is the set of all deduced facts. Initially, the context contains the original formula. Logical rules are

applied to derive new formulae from formulae in the context. These new formulae are then added to the

context. At the end of the proof, the empty clause (noted ()) should belong to the final context.

Our proof format aims at providing a clear interface between SMT-solvers that generate proofs and

checkers that verify the correctness of the generated proofs. We voluntarily restrict ourselves to a specific

and limited fragment of the logics current SMT-solvers can deal with. This will let us experiment rapidly

and get feedback on how the format should evolve and be improved. As a result, we are considering

quantifier-free formulae with uninterpreted functions, equality and linear arithmetic only. In particular,

we do not take quantifiers into account. This means that tasks such as skolemization and instantiation

are not covered yet.

The work of the solver is usually composed of several phases that the proof format has to address:

- First, the formula may be rewritten: the formula is transformed to a somewhat simpler and equiv-

alent one. This is done by identifying sub-formulae and sub-terms that clearly can be rewritten

to simpler equivalent forms. Provers implement this by some rewriting rules, and those rewriting

rules should have their derivation counterparts.

- SMT-solvers, being based on the SAT-solvers technology, also require conjunctive normal forms

(CNF). The transformation phase, that translates the original formula to a set of clauses also re-

quires a proof. Each clause of the CNF becomes a new fact added to the context. From those

clauses, new clauses can be derived using resolution. Resolution is a complete method for the

satisfiability of propositional formulae.

- Reasoning about theories can be understood as adding conflict clauses to the SAT-solver. These

conflict clauses are tautologies according to the theories in action. To each theory will correspond

a set of rules that will add clauses in the context. Equality exchange between different parts of the

reasoner can simply be seen as resolution.

1.2 Rationale for the proof format

The SMT-LIB 2.0 format [1] is the de facto input standard of the SMT community. It provides a set of

commands for interacting with solvers. While designing our proof format, we have been careful at being

fully compatible with the SMT-LIB format. Other existing formats like TSTP [10] could have been valid

candidates to represent SMT proofs but we wanted to have a format whose syntax was a direct extension

of SMT-LIB syntax. For this reason, we inherit the syntax of terms and formulae but also certain well-

formedness conditions from the SMT-LIB. This does not prevent the possibility of developing a translator

to other formats like TSTP in the future.

The core of the proof format specifies the syntax and semantics for the existing SMT-LIB command

get-proof – currently left unspecified. To our opinion, a fixed proof format is not viable because

of the variety of existing SMT-provers. Our proposal is a proof format that is built upon a generic

kernel enriched by prover-specific proof rules that can be obtained by a dedicated get-proof-header

command (see Section 2.2).
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Overall, the proof format is a trade-off between the requirements from proof consumers, who want a

non-ambiguous syntax and semantics, and developers of SMT-solvers, who favour freedom in outputting

proofs in a structure that their solvers can generate without sacrificing efficiency. In Section 2.5, we list

a set of recommendations for getting a maximal benefit from the proof format.

The rest of the paper is organised as follows. Section 2 explains the syntax of the proof format. The

format is illustrated by an example discussed in details in Section 3. Section 4 provides an operational

semantics of the format by providing a reference implementation for a proof-checker.

2 Syntax

2.1 Data structures

This document inherits the syntax for terms (and thus formulae) from the SMT-LIB 2.0 standard [1].

Furthermore, clauses are used in several places. A clause is a list of formulae. For instance: ((= x y)

(= (f x) (f y)))) represents a clause which is a disjunction of the formula x = y and the formula

f (x) = f (y). The empty clause is the empty list (). For convenience, one can use the trivially valid

clause (true).

2.2 Proof header

The format is generic and therefore has to be instantiated with solver-specific proof rules. To ease

proof-reconstruction by third-party tools, proof rules are declared belonging to a certain SMT-LIB logic,

with an attached informal description. The header may be output on request by the SMT solver with

a supplementary command get-proof-header, an addition to SMT-LIB 2.0. An example of such a

header is given in Figure 2. Here is its syntax:

〈rule tag def〉 ::= (define-rule-kw 〈keyword〉 〈string〉)
〈rule def〉 ::= (〈rule id〉 〈logic〉 〈attribute〉∗)
〈header〉 ::= 〈rule tag def〉∗ 〈rule def〉∗

where 〈attribute〉 is defined as in SMT-LIB 2.0. Note that attribute values can be 〈sexpr〉 so they could

possibly contain code (for instance for proof checkers). All keywords used as attributes in 〈rule def〉
should be defined; there is currently no predefined keyword. Keywords are used to identify collection

of rules. For example, they could be used to qualify rules that are handling quantifiers, skolemizations,

or specific operations on connectors (e.g., conjunctions). A rule using 〈logic〉 should be such that SMT

solvers implementing only the SMT-LIB 2.0 logic must be able to verify every clause deduced by this

rule.

2.3 Proof script

An example proof script is presented in Figure 3. A proof script is a pair made of a proof context and a

sequence of proof steps

〈proof〉 ::= 〈context〉 〈proof step〉∗

where the context is an SMT-LIB 2.0 script using only commands set-logic, declare-sort, define-sort,

declare-fun, define-fun, assert. The context is generally just a subset of the SMT-LIB 2.0 input
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script. Furthermore, in asserts, in order to identify formulae, we require them to be explicitly named

using the following SMT-LIB 2.0 notation:

(assert (! 〈term〉 :named 〈clause id〉))

where 〈term〉 is the formula asserted, written in the SMT-LIB 2.0 syntax, and 〈clause id〉 is an SMT-LIB

2.0 〈symbol〉.

A proof step is defined by the following rule:

〈proof step〉 ::= (define 〈term id〉 〈term〉)
| (set 〈clause id〉 〈gen clause〉)
| (seth 〈clause id〉 〈clause〉)

where

- (define 〈term id〉 〈term〉) declares 〈term id〉 as a short-name for the term 〈term〉.

- (set 〈clause id〉 〈gen clause〉) constructs a new clause named 〈clause id〉 using the clause gener-

ation rule 〈gen clause〉 (see below). The identifier 〈clause id〉 is an SMT-LIB 2.0 〈symbol〉 and is

used to refer to the clause in the current environment

- (seth 〈clause id〉 〈clause〉) is used to assert the hypotheses of a sub-proof. Again, 〈clause id〉 is

an SMT-LIB 2.0 〈symbol〉.

Note that this version of the proof format does not cover quantifiers yet. So 〈term〉 is just a ground term.

2.4 Derived clauses

A clause can either be explicit or derived. Here we describe how it is derived:

〈gen clause〉 ::= 〈clause id〉
| (〈rule id〉

(:clauses (〈gen clause〉∗) | :all-clauses)?
(:terms (〈term〉∗))?
〈attribute〉∗

(:conclusion 〈clause〉)?)
| (subproof 〈proofstep〉∗ (:conclusion 〈clause〉)? )

There exist three ways to derive a clause:

- 〈clause id〉 is used to retrieve a clause formerly assigned a 〈clause id〉 in the current environment

(where 〈clause id〉 is an SMT-LIB 2.0 〈symbol〉).

- A clause can be derived using a (named) rule: as arguments an optional list of terms, and an

optional result can be provided. When :clauses is used, the conclusion is a logical consequence

of the given set of clauses. When :all-clauses is used, the conclusion is a logical consequence

of an unspecified set of local hypotheses. When neither the tag :clauses nor :all-clauses is

used, the rule introduces a tautology.
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- A local proof can be declared. For simplicity, only local proofs from an empty context are sup-

ported; references to the current context in a local proof is not allowed. The clause attached to

a local proof is composed of all the literals in all clauses introduced by the seth in the proof

steps (these literals are negated) and the literals in the clause given after the :conclusion at-

tribute. When this attribute is omitted, it is the clause attached to the last step that is considered as

conclusion.

2.5 Recommendations

Figure 1 presents the whole grammar of the format. The format is very flexible and tries to avoid unnec-

essary constraints. Nevertheless, some obvious recommendations can already be made in order to allow

effective validation by third-party tools:

- rules should be carefully described in the header;

- term sharing should be maximised in order to improve memory management;

- all the hypotheses in local proofs should be specified first.

These are recommendations and not requirements since external tools could always refactor proofs in

order to meet these recommendations.

〈rule tag def〉 ::= (define-rule-kw 〈keyword〉 〈string〉)
〈rule def〉 ::= (〈rule id〉 〈logic〉 〈attribute〉∗)
〈header〉 ::= 〈rule tag def〉∗ 〈rule def〉∗

〈proof〉 ::= 〈context〉 〈proof step〉∗

〈proof step〉 ::= (define 〈term id〉 〈term〉)
| (set 〈clause id〉 〈gen clause〉)
| (seth 〈clause id〉 〈clause〉)

〈gen clause〉 ::= 〈clause id〉
| (〈rule id〉

(:clauses (〈gen clause〉∗) | :all-clauses)?
(:terms (〈term〉∗))?
〈attribute〉∗

(:conclusion 〈clause〉)?)
| (subproof 〈proofstep〉∗ (:conclusion 〈clause〉)? )

Figure 1: The complete proof format

3 An example

In Figure 3, we present a proof in our format of the following formula

¬((a = c)∧ (b = c)∧ (( f (a) 6= f (b))∨ (p(a)∧¬(p(b)))))
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For readability, the proof does not use the facility of the format for sharing terms. It starts with the context

which is just a subset of the SMT-LIB 2.0 input script. Every following command introduces a new clause

(with the set command) until the final clause, the empty clause (). The proof relies on elementary rules.

The description of these rules can be obtained using the command (get-proof-header) which could

return (among other rule definitions) the definitions in Figure 2. In those definitions, the :clauses,

:terms and :conclusion attributes respectively give the expected number of clauses (−1 if arbitrary),

terms, and conclusion (0 if no conclusion is provided, that is, if the checker is expected to recompute the

conclusion).

The and rule is used to deduce new clauses from conjunctive unit clauses: every conjunct of a

conjunctive unit clause can indeed be itself introduced as a unit clause, as are clauses c2, c3 and c4 in

the example in Figure 3. The and pos rule generates a tautology of the form ¬∧i ai ∨a j for some j (see

clauses c5 and c6). The or rule introduces a clause from a disjunctive unit clause, by simply building

the clause of the disjuncts (e.g. clause c7). Clauses c2 to c7 constitute the CNF of the input formula.

Notice that the CNF transformation is not a naive transformation, but it does not explicitly introduce new

(Tseitin) Boolean variables. Indeed, as a side effect of the fact that clauses are sets of formulae (and not

just literals), it is easy to introduce definitional CNF transformations without introducing new Boolean

variables: the formulae themselves stand for those Boolean variables. Using sharing, the CNF would be

linear with respect to the size of the initial formula.

Rules eq_congruent, eq_congruent_pred, and eq_transitive introduce equational tautologies

(for instance c8, c9, c15 and c16). The resolution rule implements chain resolution. Note that this rule

serves several purposes here. It is used for instance for resolution executed within the SAT-solver (e.g.

to deduce c18), and it is used to build conflict clauses from generic tautologies (e.g. to build c10).

The subproof construct (see Figure 1) can always be inlined – maybe at the cost of adding more

proof-rules. It does not change the expressive power of the proof-format but allows for more structured

proofs. The subproof construct can also be used to minimise the number of proof rules. For instance,

in the proof-script of Figure 3, the clause c5 can alternatively be obtained by the following sub-proof.

(set c5 (subproof (seth h (and (p a) (not (p b))) )

(set res (and :clauses (h) :conclusion (p a)))))

Note that the conclusion of a sub-proof (if omitted) can exactly be reconstructed as soon as the proof

rule for the last derived clause in the sub-proof has an explicit conclusion. Here, the obtained clause is

therefore ((not (and (p a) (not (p b)))) (p a)).

4 Proof checking

In this section, we provide a reference implementation for a proof verifier for the generic proof format.

The proof verifier is parametrised by prover-specific proof rules declared in the proof header. As a result,

the validity of the proof verifier relies on the fact that proof rules are logically sound i.e., only derive

clauses that are logic consequences of the current known clauses.

The proof verifier takes as input a proof π ∈ 〈context〉×〈proof step〉∗ (see Section 2.3). and verifies

that the proof steps indeed derive the empty clause i.e., the conjunctions of the formulae asserted by the

〈context〉 part of the proof is unsatisfiable. The state of the verifier is made of a quadruple (Sig,N,S,cl)
where

- Sig is a SMT-LIB signature built from the commands declare-sort and declare-fun of the

proof context. Its purpose is to ensure that terms are well-sorted.
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; get-proof-header returns

(and_pos QF_UF

:comment "valid clause ((not (and a_1 ... a_n)) a_i)"

:clauses 0 :terms 0 :conclusion 1)

(and QF_UF

:comment "(and :clauses (c) :conclusion (a_i))

where c = ((and a_1 ... a_n))"

:clauses 1 :terms 0 :conclusion 1)

(or QF_UF

:comment "(or :clauses (c) :conclusion (a_1 ... a_n) )

where c = ((or a_1 ... a_n))"

:clauses 1 :terms 0 :conclusion 1)

(eq_transitive QF_UF

:comment "valid clause

((not (= x_1 x_2)) ... (not (= x_{n-1} x_n)) (= x_1 x_n))"

:clauses 0 :terms 0 :conclusion 1)

(eq_congruent QF_UF

:comment "valid clause ((not (= x_1 y_1)) ... (not (= x_n y_n))

(= (f x_1 ... x_n) (f y_1 ... y_n)))"

:clauses 0 :terms 0 :conclusion 1)

(eq_congruent_pred QF_UF

:comment "valid clause ((not (= x_1 y_1)) ... (not (= x_n y_n))

(not (p x_1 ... x_n)) (p y_1 ... y_n))"

:clauses 0 :terms 0 :conclusion 1)

(resolution QF_UF

:comment "Chain resolution of any number of clauses"

:clauses -1 :terms 0 :conclusion 1)

Figure 2: The proof header

- N is a mapping from symbols to constants and function declarations. It is initialised by the

define-fun context commands. Later on, for sharing purpose, it is updated by the proof com-

mand define. Note that unlike define-fun, the define command can only define constants1.

- S is a stack of named assertions tagged with a boolean flag. The assert commands of the context

construct an initial singleton stack where all the asserted formulae are tagged true. During the

proof, derived clauses introduced by the set command are also tagged by true. The tag false

is reserved to clauses introduced by the seth command. Those clauses are local hypotheses to be

discharged by sub-proofs.

1For more flexibility, this restriction might be lifted in the future.
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; get-proof returns

; Context

(set-logic QF_UF)

(declare-sort U 0)

(declare-fun p (Bool) U)

(declare-fun f (U) U)

(declare-fun a () U)

(declare-fun b () U)

(declare-fun c () U)

(assert (! (and (= a c) (= b c)

(or (not (= (f a) (f b))) (and (p a) (not (p b))))) :named c1))

; Proof

(set c2 (and :clauses (c1) :conclusion ((= a c))))

(set c3 (and :clauses (c1) :conclusion ((= b c))))

(set c4 (and :clauses (c1)

:conclusion ((or (not (= (f a) (f b))) (and (p a) (not (p b)))))))

(set c5 (and_pos :conclusion ((not (and (p a) (not (p b)))) (p a))))

(set c6 (and_pos :conclusion ((not (and (p a) (not (p b)))) (not (p b)))))

(set c7 (or :clauses (c4)

:conclusion ((not (= (f a) (f b))) (and (p a) (not (p b)))))

(set c8 (eq_congruent :conclusion ((not (= b a)) (= (f a) (f b))))

(set c9 (eq_transitive :conclusion ((not (= b c)) (not (= a c)) (= b a)))

(set c10 (resolution :clauses (c8 c9)

:conclusion ((= (f a) (f b)) (not (= b c)) (not (= a c)))))

(set c11 (resolution :clauses (c10 c2 c3) :conclusion ((= (f a) (f b)))))

(set c12 (resolution :clauses (c7 c11) :conclusion ((and (p a) (not (p b))))))

(set c13 (resolution :clauses (c5 c12) :conclusion ((p a))))

(set c14 (resolution :clauses (c6 c12) :conclusion ((not (p b)))))

(set c15 (eq_congruent_pred :conclusion ((not (= b a)) (p b) (not (p a)))))

(set c16 (eq_transitive :conclusion ((not (= b c)) (not (= a c)) (= b a))))

(set c17 (resolution :clauses (c15 c16)

:conclusion ((p b) (not (p a)) (not (= b c)) (not (= a c)))))

(set c18 (resolution :clauses (c17 c2 c3 c13 c14) :conclusion ())

Figure 3: A simple example with its proof.

- cl is the last derived clause. It is initialised to true ( true ) and for a valid proof is eventually set to

the empty clause () .

The proof checking succeeds if the empty clause is eventually generated in a singleton stack for which

all the formulae are tagged true.

The proof-verifier is executed in a state constructed by running the context commands. After running

the context commands the proof state is such that:

- The signature Sig contains sort and function declarations (Sig is thereafter immutable)

- N contains constant and function declarations (during the proof checking, only new constants can
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be defined)

- S is a singleton stack of the form {n1 7→ cltt
1 , . . . ,ni 7→ cltt

i } where a binding (ni,cli) is the result of

the assert command

(assert (! fi :named ni)).

cli being then the clause containing the sole formula fi.

4.1 Conventions and auxiliary functions

The verifier makes use of auxiliary functions and predicates. Several of them are already part of the

SMT-LIB 2.0 where they are used to give a semantics to SMT-LIB scripts. The pseudo-code does not

introduce an explicit abstract syntax for the proof constructs. Instead we use directly the concrete syntax

with the conventions that optional attributes are given a default value. More precisely, missing attributes

of type list (for instance :clauses, :terms, :attributes) are given as default value the empty list and

a missing attribute of type clause (for instance :conclusion) is given as default value the symbol null.

4.1.1 Well-formedness

As in the SMT-LIB we only consider well-formed terms.

Definition 1 (Well-formed terms). A term t is well-formed with respect to a signature Sig and an envi-

ronment of names N (isWellFormed(Sig,N, t)) if

- all the symbols in the term are bound in N;

- the term is well-sorted according to the signature Sig.

To ensure that a well-formed term will never be invalidated, the signature Sig and the environment N

can only be augmented by additional declarations. It is therefore forbidden to overwrite a declaration. In

case of violation, the verification is aborted.

4.1.2 Assertion stack

Proof scripts feature a notion of subproof to describe scoped proofs. As already stated, this construct

does not increase the expressive power of the format. Its purpose is to structure proofs and thus facilitate

their checking. For instance, each theory reasoner of the SMT solver can generate a sub-proof for each

theory lemma or conflict clause. The advantage of sub-proof is that such theory lemma can be checked

in isolation. To implement scoped proofs, the assertion stack is updated by push and pop operations2.

Given a tagged clause clb, clause(clb) returns the clause cl and tag(clb) returns the boolean b. The verifier

always accesses and updates the topmost assertion set. We write top[s] for the clause bound to the symbol

s in the topmost assertion set. Accessing a non-existent symbol aborts the verification. Overwriting a

clause tagged with ff also aborts the verification i.e., an assignment of the form top[s] := clb where

tag(top[s]) = ff aborts the verification.

2They correspond to the functions push 1 and pop 1 of the SMT-LIB
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4.1.3 Prover-specific proof rules

The verifier is parametrised by prover-specific proof rules that are trusted and could therefore be respon-

sible for an invalid proof. Each proof rule is implemented by a function named according to the 〈rule id〉
taking as arguments an optional list of clauses, terms and attributes and either returning a clause or re-

porting an error. An error immediately aborts the verification of the proof. The soundness requirement is

that the generated clause must be a logic consequence of the clauses passed as arguments. A proof rule

also takes as arguments the signature Sig and the environment of bindings N.

〈rule id〉 : Sig×N ×〈clause〉∗×〈term〉∗×〈attributes〉∗ → 〈clause〉 | 〈error〉

4.2 Pseudo-code of the verifier

The verifier is written in an imperative style and therefore updates in-place the proof state (Sig,N,S,cl).
The verifier is presented top-down and consists of 4 functions:

- checker is the top-level function and evaluates a whole proof. Upon success, it concludes that the

input problem is not satisfiable.

- eval proof evaluates all the proof steps in turn and updates the proof state accordingly;

- eval proof step performs a case analysis over the proof command;

- eval gen clause is responsible for deriving from the proof state new logic consequences by com-

bining prover-specific proof rules.

A proof is valid if after executing the proof steps the clause cl is the empty clause () and there are

no introduced local hypotheses (all clauses are tagged tt).

boo l c h e c k e r ( Π ) {
e v a l p r o o f ( Π ) ; r e t u r n ( c l = ( ) ) & (∀ i , t a g ( t o p [ i ] ) = tt ) ;

}

The function eval proof executes in turn the proof steps.

vo id e v a l p r o o f ( Π ) { f o r−each ( π ∈ Π ) e v a l p r o o f s t e p ( π ) ; }

The function eval proof step performs a case analysis and updates the last derived clause.

vo id e v a l p r o o f s t e p ( π ){
s w i t c h ( π ) {

c a s e (define t i d t rm ) : r e q u i r e s ( i sWel lFormed ( t rm ) ) ;

N[ t i d ] := trm

c a s e (set c i d g e n c l ) :

c l := e v a l g e n c l a u s e ( g e n c l ) ;

t o p [ c i d ] := c l tt ;

c a s e (seth c i d hyp ) :

r e q u i r e s ( i sWel lFormed ( hyp ) & h a s S o r t B o o l ( hyp ) ) ;

t o p [ c i d ] := hyp ff ;

}
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The core of the verifier is the function eval gen clause which generates a novel clause logic consequence

of the current proof state.

c l a u s e e v a l g e n c l a u s e ( g e n c l ){
s w i t c h ( c l g e n ){

c a s e c l i d : r e t u r n c l a u s e ( t o p [ c l i d ] )

c a s e ( r i d :clauses ( gc1 , . . . , g c i )

:terms ( t1 , . . . , t k )

:attributes ( a1 , . . . , an )

:conclusion c o n c l ) :

/∗ R e c u r s i v e l y g e n e r a t e c l a u s e s ∗ /

gcs := ( e v a l g e n c l a u s e ( gc1 ) ,

. . . , e v a l g e n c l a u s e ( g c i ) ) ;

/∗ C a l l t h e p r o v e r s p e c i f i c p r o o f r u l e ∗ /

c l := r i d ( Sig , N, gcs , ( t1 , . . . , t k ) , ( a1 , . . . , an ) , c o n c l ) ;

/∗ Check t h e c o n c l u s i o n i f any ∗ /

i f c o n c l != n u l l & c o n c l != c l t h e n a b o r t

r e t u r n c l ;

c a s e (subproof p r f :conclusion c o n c l )

push ( ) ; /∗ Loca l a s s e r t i o n s e t ∗ /

e v a l p r o o f ( p r f ) ;

i f c o n c l != n u l l & c l != c o n c l t h e n a b o r t

/∗ G e n e r a t i o n o f t h e c o n f l i c t −c l a u s e ∗ /

c o n f l i c t := ( n o t ( h1 ) , . . . . , n o t ( hn ) , c l ) ;

where {h1 , . . . , hn} =

{ c l a u s e ( t o p [ i ] ) | t a g ( t o p [ i ] ) = ff }
pop ( ) ;

r e t u r n c o n f l i c t ;

}
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6 Conclusion and further work

The proof format presented in this paper is an extension of the SMT-LIB 2.0 format. We have tried as

much as possible to find a good compromise between what can be output by an SMT-solver and what is

needed in order for a simple checker to be able to verify a proof. We are aware that this format is not

perfect and some subtle issues still need to be further investigated and discussed. Nevertheless we hope

that the format can serve as a common basis that can be used by the SMT community.

The format is currently being implemented in the veriT solver distributed as open-source using the

BSD licence. We are also currently investigating proofs for quantifier reasoning [7]; Skolemization, as a

satisfiability preserving transformation which does not preserve logical equivalence, may raise difficult
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issues. The CNF transformation presented here does not require Tseitin variables; if such variables are

required by other solvers, then similar issues may also appear for CNF transformation.

In Section 4, we presented the code of a proof checker. A standalone checker for the format is one

of our long term goals. However, in addition to the infrastructure presented in Section 4, this requires to

implement the term data-structure, and the operators to manipulate terms. This comes to reimplementing

(parts of) a kernel like those found in mainstream proof assistants. We are currently implementing a

module to replay proofs in the present format within Coq, and we plan to study replaying this proof

format within LFSC.
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