L. Kohn and J. Corrigan, To err is human: Building a safer health system, 2000.

B. Starfield, Is US Health Really the Best in the World?, JAMA, vol.284, issue.4, pp.483-485, 2000.
DOI : 10.1001/jama.284.4.483

V. Chandola, A. Banerjee, and V. Kumar, Anomaly Detection -A Survey, ACM Computing Surveys, vol.41, issue.3, 2009.

M. Hauskrecht, Evidence-based anomaly detection in AMIA Annual Symposium, pp.319-324, 2007.

M. Valko, Conditional anomaly detection methods for patient-management alert systems, ICML Workshop on Machine Learning in Health Care Applications, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00643221

V. Vapnik, The Nature of Statistical Learning Theory, 1995.

P. Sollich, Probabilistic methods for support vector machines, Advances in Neural Information Processing Systems, pp.349-355, 2000.

A. Post and J. Harrison, Temporal Data Mining, Clinics in Laboratory Medicine, vol.28, issue.1, pp.83-100, 2008.
DOI : 10.1016/j.cll.2007.10.005

J. A. Hanley and B. J. Mcneil, The meaning and use of the area under a receiver operating characteristic (ROC) curve., Radiology, vol.143, issue.1, 1982.
DOI : 10.1148/radiology.143.1.7063747

A. Schedlbauer, What Evidence Supports the Use of Computerized Alerts and Prompts to Improve Clinicians' Prescribing Behavior?, Journal of the American Medical Informatics Association, vol.16, issue.4, pp.531-538, 2009.
DOI : 10.1197/jamia.M2910

D. Bates, Ten Commandments for Effective Clinical Decision Support, J Am Med Inform Assoc, vol.10, pp.523-553, 2003.
DOI : 10.1201/b16306-14

S. Visweswaran, Identifying deviations from usual medical care using a statistical approach, AMIA Annual Symposium, 2010.