
HAL Id: hal-00643075
https://hal.inria.fr/hal-00643075

Submitted on 21 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Analysis of Cascading Style Sheets
Pierre Genevès, Nabil Layaïda, Quint Vincent

To cite this version:
Pierre Genevès, Nabil Layaïda, Quint Vincent. On the Analysis of Cascading Style Sheets. [Research
Report] RR-7808, INRIA. 2011. <hal-00643075>

https://hal.inria.fr/hal-00643075
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
8

0
8

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 7808
November 2011

Project-Teams WAM

On the Analysis of

Cascading Style Sheets

Pierre Genevès, Nabil Layaïda, Vincent Quint

RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

On the Analysis of Cascading Style Sheets

Pierre Genevès∗, Nabil Layaïda†, Vincent Quint †

Project-Teams WAM

Research Report n° 7808 — November 2011 — 23 pages

Abstract: Developing and maintaining cascading style sheets (CSS) is an important issue to
web developers as they suffer from the lack of rigorous methods. Most existing means rely on
validators that check syntactic rules, and on runtime debuggers that check the behavior of a CSS
style sheet on a particular document instance. However, the aim of most style sheets is to be
applied to an entire set of documents, usually defined by some schema. To this end, a CSS style
sheet is usually written w.r.t. a given schema. While usual debugging tools help reducing the
number of bugs, they do not ultimately allow to prove properties over the whole set of documents
to which the style sheet is intended to be applied.
We propose a novel approach to fill this lack. We introduce ideas borrowed from the fields of logic
and compile-time verification for the analysis of CSS style sheets. We present an original tool based
on recent advances in tree logics. The tool is capable of statically detecting a wide range of errors
(such as empty CSS selectors and semantically equivalent selectors), as well as proving properties
related to sets of documents (such as coverage of styling information), in the presence or absence
of schema information. This new tool can be used in addition to existing runtime debuggers to
ensure a higher level of quality of CSS style sheets.

Key-words: Web development, Style sheets, CSS, Debugging

∗ CNRS
† INRIA

Sur l’analyse des feuilles de style CSS

Résumé : Développer et maintenir des feuilles de style CSS constitue un
problème important pour les développeurs web notamment car ils manquent de
méthodes rigoureuses à cet effet. La plupart des moyens actuels reposent sur
des validateurs qui vérifient la syntaxe, et sur des débogueurs qui vérifient le
comportement d’une feuille de style sur un document particulier. Cependant,
la plupart des feuilles de style visent à s’appliquer à un ensemble de documents,
habituellement défini par un schéma. A cette fin, une feuille de style CSS est
habituellement écrite en rapport avec un schéma donné. Alors que les outils
usuels de déboguage aident à réduire le nombre de bogues, ils ne permettent pas
de prouver des propriétés sur l’ensemble des documents sur lesquels la feuille de
style est supposée s’appliquer.

Nous proposons une nouvelle approche pour combler ce manque. Nous
présentons un outil original basé sur des avancées récentes en matière de logique
d’arbres. L’outil est capable de détecter statiquement une large classe d’erreurs
(comme les sélecteurs CSS vides ou sémantiquement équivalents), ainsi que de
prouver des propriétés liées à des ensembles de documents (comme la couverture
de l’information de style), en présence ou en l’absence de contraintes définies
par des schémas. Ce nouvel outil peut être utilisé en combinaison avec les
débogueurs dynamiques dans le but de s’assurer d’une meilleure qualité des
feuilles de style CSS.

Mots-clés : Développement web, feuilles de style, CSS

On the Analysis of Cascading Style Sheets 3

1 Introduction

“Style sheet languages are terribly under-researched” [11]. This statement dates
back from 1999, but it is still true. However, Cascading Style Sheets (CSS)
[10] was the first feature that was added to the initial foundations of the web
(HTML, HTTP and URLs). While style has become a key component of web
user experience, development tools for style sheets have involved very little basic
research. As a result, empirical methods are the only means available to web
developers for implementing, and maintaining style sheets.

The research presented in this paper addresses the issue of debugging CSS
style sheets. At first glance, CSS appears to be a simple language, and from a
syntactical perspective, it really is. Basically, a style sheet is simply a sequence
of style rules. Each rule has a selector that specifies elements of interest in
the document structure, and provides a value for a style property. The value is
assigned to the corresponding property for all elements specified by the selector.

This apparent simplicity is contradicted by a few combinatorial aspects,
which bring a significant power to the CSS language, while making it a bit more
complex. Style rules can be grouped to share the same selector, for specifying
different properties that apply to the same elements. Style rules are also grouped
by style sheets, and several style sheets may apply to a single document. A
style sheet is usually external to the document it applies to, but it may also be
embedded in the document, with the style element of HTML. Finally, several
style rules may also be embedded within a element in a document with the style
attribute. In addition, the same style property may appear several times in all
these locations. The cascade sets the priority between several rules specifying
the same property for the same elements.

As a consequence, when a style sheet does not work the way it was intended,
it is very difficult to locate the origin of the problem. For this reason, the issue
of debugging and maintaining style sheets is important to web developers. In
this paper, we propose a novel approach to this issue, based on recent advances
in theoretical tools that handle XML structures and query languages for these
structures.

The paper is organized as follows. The next section reviews the methods and
tools that web developers currently use to debug CSS style sheets. It is followed
by an overview of the main features of CSS. The theoretical foundations on
which the rest of the paper is based are then summarized. This is mainly a
tree logic that is used in section 5 for modeling CSS style sheets. Based on
this model, section 6 presents a software tool for the static analysis of style
sheets which is illustrated by typical examples. The paper closes with some
perspectives.

2 Current practice

Developers use basically two kinds of tools to find errors in CSS style sheets:
validators and debuggers.

Validators address only syntactic issues. They check that a style sheet
strictly follows the CSS grammar. These tools perform static checking: they
analyze a style sheet for itself, independently of any web page to which it could

RR n° 7808

4 Genevès et al.

be applied. A typical example of this family is the W3C CSS validator.1 While
they are useful, validators do not address the difficult issue of locating rules that
do not behave as expected.

As opposed to validators, debuggers are dynamic tools. They are coupled
with a formatting engine that executes style sheets by applying them to web
pages and displaying the result. They allow the user to see how the formatter ap-
plies style rules to the tested documents. All modern web browsers now include
debuggers, such as Firebug (Firefox), Developer Toolbar (Internet Explorer),
Dragonfly (Opera), or Web Inspector (Safari).

These tools do not address only style sheets. They deal with the many
facets of a web page (DOM tree, scripts, style) [1], but they constitute the
primary tool to debug style sheets. They help CSS debugging by providing a
list of all style rules that apply to any element chosen by the user. All rules
are displayed and any rule overridden by another through the cascade is struck
through, thus helping developers to understand what style rules really apply to
an element. The origin of each rule (style sheet, style element, style attribute) is
also presented. Rules can often be changed on the fly to quickly test alternative
solutions.

Performances may be another issue. With complex style sheets, formatting
may take some time. A tool such as the YSlow add-on for Mozilla may help to
find performance issues, but it also addresses other aspects of performances in
web pages, such as HTML and Javascript.

Other tools target CSS selectors specifically. Dust-Me Selectors, for instance,
detects unused selectors dynamically, on a single HTML page or on a whole site.

Debugging style sheets after they have been written is not the only way to
improve their quality. It could be done also at writing time. Two approaches
are possible: generating style sheets automatically from some higher-level spec-
ification [8] [9] [13], and including debugging features in a CSS editor [12]. In
the first case, the automatic tool is expected to generate bug-free style sheets,
but the issue of debugging the higher-level specification remains. In the second
case, the author gets assistance at the moment of creating the style rules, which
helps her to create better style sheets.

To summarize, validators are the only tools available today that perform
static analysis of a style sheet. The errors they report may potentially affect
any web page the style sheet is applied to, and if they detect no errors, developers
are sure that the style sheet will not have any syntactic issue whatever the page
it is applied to.

Unfortunately, syntactic issues are only a small part of the problem. To
address the other issues, developers have only dynamic tools at their disposal.
To get some confidence in their style sheets, they have to use these tools on
a number of pages, but they can never get any complete assurance that these
style sheets will not fail on some other page. The process is both painful and
unsatisfactory. We believe that static analysis of the content of style sheets (not
only their syntax) could considerably help developers in detecting errors and
proving properties that are expected from style sheets, whatever the document
they are applied to. We have then developed a tool for the static analysis of
CSS. After a brief review of the main features of CSS, we present a logical
framework for modeling structured documents and selection of information in

1see http://jigsaw.w3.org/css-validator/

Inria

http://jigsaw.w3.org/css-validator/

On the Analysis of Cascading Style Sheets 5

them, we show how CSS can be modeled in this logic, and we describe the tool
based on this model.

3 CSS: An overview

A style sheet C can be seen as a set R of rules, composed of simple rules Ri each
composed of a single selector Si and a set of pairs, each made of a property Pi

and its value Vi. Selectors define which elements of a document the properties
are applied to. Properties and their values define how those elements look like
in the browser.

A selector is a chain of one or more sequences of simple selectors separated by
combinators. Simple selectors considered here are of two types: the universal
selector, noted *, and the type selector which is noted by the tag name of a
given element, for example h1. For simplicity and without loss of generality, we
consider that the rules are made of single selectors (the specification allows a
comma separated list of selectors) which set a single property at a time (multiple
properties are allowed for a given selector). It is easy to rewrite multiple selectors
and property rules to a set of single selector and single property rules.

Selectors Si, sometimes called patterns in the CSS specification [3], define
boolean functions of the form:

expression× element→ boolean

that define whether or not a given element is selected by the selector expression.
In the following, we explore the main vehicle for setting CSS properties on

document elements, namely combinators, structural pseudo-classes, and prop-
erty inheritance.

3.1 Combinators

CSS combinators define relations between elements of a document. In CSS3,
they come in three variants according to the specification:

• Descendant combinator: a descendant combinator describes a descendant
relationship between two elements. A descendant combinator is made of
the whitespace sign, for example "body p".

• Child combinator: a child combinator describes a childhood relationship
between two elements. This combinator is made of the > sign, for example
"body > p".

• Sibling combinator: there are two different sibling combinators, the ad-
jacent sibling combinator and the general sibling combinator. They are
noted with the + and˜signs respectively.

3.2 Structural pseudo-classes

Structural pseudo-classes permit to select elements based on positional informa-
tion in the document tree. This positional information is based on calculating
the position (via an index on sibling elements) of an element relatively to its
parent. There are several pseudo-classes in the specification; we present just a

RR n° 7808

6 Genevès et al.

few of them here. The others are similar with additional constraints on element
types:

• :root pseudo-class: It represents an element that is the root of the docu-
ment. In HTML 4, this is always the html element.

• :first-child and :last-child pseudo-classes: They represent an element that
is the first child or the last-child of some other element respectively.

• :nth-child() pseudo-class : The :nth-child(an + b) pseudo-class notation
represents an element that has an+b−1 siblings before it in the document
tree, for any positive integer or zero value of n, and has a parent element.

• :nth-last-child(): The :nth-last-child(an + b) pseudo-class notation repre-
sents an element that has an+ b− 1 siblings after it in the document tree,
for any positive integer or zero value of n, and has a parent element.

Other pseudo-classes are defined in the spec based on both the element type
and position. Examples are :first-of-type, :last-of-type and :only-of-type pseudo-
classes.

The positional pseudo-classes are very useful to set properties (like fore-
ground and background colors, or fonts) in HTML structures such as tables.
The following example alternates four colors (zebra striping when two) in table
rows:

tr:nth-of-type(4n+1) {color: navy;}

tr:nth-of-type(4n+2) {color: green;}

tr:nth-of-type(4n+3) {color: maroon;}

tr:nth-of-type(4n+4) {color: purple;}

3.3 CSS properties and inheritance

CSS inheritance works on a property by property basis. The mechanism for
assigning a value to each property for each element is based on the following
steps, in order of precedence. If the cascade results in a value, this value is used.
Otherwise, if the property is defined by the specification as inherited and the
element is not the root of the document tree, the value of the property of the
parent element is used (this situation also corresponds to a property with value
inherit). Otherwise, the property’s initial value is used.

The initial value is specific to each property and is indicated by the spec-
ification. The initial value for many properties is already inherit, and for
most others (border for instance), inheriting the parent element’s value is ob-
viously not desirable. The allowed values for properties, their initial value, and
whether they are inherited or not are summarized in the property table of the
specification [2].

For example, with this style sheet and this HTML fragment:

div { background-color: white;

color: blue;

font-weight: normal; }

p { background-color: inherit;

Inria

On the Analysis of Cascading Style Sheets 7

color: inherit; }

<div>

<p>

Hello, world.

</p>

</div>

the background color of the div element is set to white. The background color
of the paragraph is also white, because its background-color property is set
to inherit and the background color of the div parent element is white.

The inherit value does not require that the parent element have the same
property set explicitly; it works from the computed value. In the above example,
the color property of the paragraph has value inherit, but the computed value
is blue because it inherits. The font-weight property of the p element is also
set to normal since it is inherited by default.

When two selectors select the same element for a given property, the more
"specific" one gets precedence. Specificity of selectors consists in counting a
four integer vector corresponding to (1) whether the property is specified in a
style attribute of not, (2) the number of id attributes in the selector, (3) the
number of other attributes and pseudo-classes in the selector, (4) the number
of element names in the selector. In our case, since we consider analyzing style
properties on a possibly infinite set of HTML documents, we consider that
selectors specificity is defined by the last integer corresponding to the number
of element names. For example:

* {} specificity = 0,0,0,0 */

li {} specificity = 0,0,0,1 */

ul li {} specificity = 0,0,0,2 */

ul ol+li {} specificity = 0,0,0,3 */

Since specificity can be easily and statically computed before analysis, we
consider that the corresponding number is provided for each selector by a func-
tion Specificity(Si).

4 Theoretical foundations

In this section, we present the static analysis technology on which our tool is
based, which relies on automated verification of properties that are expressed
as logical formulas over trees.

4.1 Approach overview

We use a tree logic capable of capturing the semantics of CSS selectors as well
as schemas. Our approach consists in modeling element selection performed by
CSS selectors and structural constraints described by schema information into
the tree logic. We then use an algorithm to check satisfiability of formulas of
the logic. Such an algorithm defines a partition of the set of logical formulas:
satisfiable formulas (for which there exist at least one tree, among those de-
fined by the schema, that satisfies the constraints expressed by the formula)

RR n° 7808

8 Genevès et al.

and remaining formulas which are unsatisfiable (no tree satisfies the formula).
Alternatively (and equivalently), formulas can be divided into valid formulas
(formulas which are satisfied by all trees) and invalid formulas (formulas that
are not satisfied by at least one tree). The use of a satisfiability-testing al-
gorithm allows proving validity of a given logical statement P by testing its
negation (¬P) for unsatisfiability.

In the sequel, we progressively introduce the tree logic and explain how it
captures schemas and CSS selectors. We first present the data model of the
logic and then we introduce the syntax of logical formulas through examples.

4.2 Data model

A document is considered as a finite tree of unbounded depth and arity, with
two kinds of nodes respectively named elements and attributes. In such a tree,
an element may have any number of children elements, and may carry zero, one
or more attributes. Attributes are leaves with a value. Elements are ordered
whereas attributes are not, as illustrated on Figure 1. The logic allows reasoning
on such trees.

<r c="␣" a="␣" b="␣">
<s d="␣">
<v/><w/><x e="␣"/>

</s>
<t/>
<u/>

</r>

XML Notation

a
b c

d

e

r

s t u

v w x

Figure 1: Sample XML tree with attributes

Unranked and binary trees There exist bijective encodings between un-
ranked trees (trees of unbounded arity) and binary trees. Owing to these en-
codings binary trees may be used instead of unranked trees without loss of
generality. The logic operates on binary trees. The logic relies on the “first-
child & next-sibling” encoding of unranked trees. In this encoding, the first
child of a node is preserved in the binary tree representation, whereas siblings
of this node are appended as right successors in the binary representation. The
intuition of this encoding is illustrated on Figure 2 for a sample tree. In the
remaining of this paper, the binary representation of a tree is implicitly consid-
ered, unless stated otherwise. From an XML point of view, notice that only the
nested structure of XML elements (which are ordered) is encoded into a binary
form like this. XML attributes (which are unordered) are left unchanged by
this encoding. For instance, Figure 3 presents how the sample tree of Figure 1
is mapped.

Inria

On the Analysis of Cascading Style Sheets 9

1

2

3

0

0

1

2

3

Figure 2: Binary encoding principle

a
b c

d

e

r

s

t

u

v

w

x

Figure 3: Binary encoding of tree of figure 1

RR n° 7808

10 Genevès et al.

4.3 A gentle introduction to tree logic

Navigating in trees with modalities The logic uses two programs for nav-
igating in binary trees: the program 1 for navigating from a node down to its
first successor and the program 2 for navigating from a node down to its second
successor. The logic also features converse programs -1 and -2 for navigating
upward in binary trees, respectively from the first and second successors to the
parent node. Some basic logical formulas together with corresponding satisfying
binary trees are shown on Table 1.

Sample Formula Satisfying Tree In XML

a & <1>b
a

b

<a>

a & <2>b
a

b

<a/>

a & <1>(b & <2>c)

a

b

c

<a>

<c/>

e & <-1>(d&<2>g)
d

e g

<d>

<e/>

</d><g/>

f & <-2>(g&˜<2>T) none none

Table 1: Sample formulas using modalities

The set of logical formulas is defined by the syntax given on Figure 4, where
the meta-syntax 〈X〉� means one or more occurrences of X separated by com-
mas. Models of a formula are finite binary trees for which the formula is satisfied
at some node. The semantics of logical formulas is formally defined in [5, 6].
Table 1 gives basic formulas that use modalities for navigating in binary trees
and node names.

Recursive formulas The logic allows expressing recursion in trees through
the use of a fixpoint operator. For example the recursive formula:

let $X = b | <2>$X in $X

means that either the current node is named b or there is a sibling of the
current node which is named b. For this purpose, the variable $X is bound
to the subformula b | <2>$X which contains an occurrence of $X (therefore
defining the recursion). The scope of this binding is the subformula that follows
the in symbol of the formula, that is $X. The entire formula can thus be seen
as a compact recursive notation for a infinitely nested formula of the form:

b | <2>(b | <2>(b | <2>(...)))

Inria

On the Analysis of Cascading Style Sheets 11

ϕ ::= formula
T true

| F false
| l element name
| p atomic proposition
| ϕ | ϕ disjunction
| ϕ & ϕ conjunction
| ϕ => ϕ implication
| ϕ <=> ϕ equivalence
| (ϕ) parenthesized formula
| ϕ̃ negation
| <p>ϕ existential modality
| <l>T attribute named l
| <l>’v’ attribute l with value ’v’
| $X variable
| let 〈$X = ϕ〉� in ϕ binder for recursion

p ::= program inside modalities
1 first child

| 2 next sibling
| -1 parent
| -2 previous sibling

Figure 4: Syntax of logical formulas

Recursion allows expressing global properties. For instance, the recursive for-
mula:

˜ let $X = a | <1>$X | <2>$X in $X

expresses the absence of nodes named a in the whole subtree of the current node
(including the current node). Furthermore, the fixpoint operator makes possible
to bind several variables at a time, which is specifically useful for expressing
mutual recursion. For example, the mutually recursive formula:

let $X = (a & <2>$Y) | <1>$X | <2>$X, $Y = b | <2>$Y in $X

asserts that there is a node somewhere in the subtree such that this node is
named a and it has at least one sibling which is named b. Binding several
variables at a time provides a very expressive yet succinct notation for expressing
mutually recursive structural patterns (that may occur in DTDs for instance).

The combination of modalities and recursion makes the logic one of the most
expressive (yet decidable) logic known. For instance, most DTDs and schemas
(specifically regular tree grammars) can be expressed with the logic using re-
cursion and (forward) modalities (see [5] or [6] for details). The combination
of converse programs and recursion allows expressing properties about previous
siblings of a node for instance, which happens to be very useful for capturing
the semantics of CSS selectors.

RR n° 7808

12 Genevès et al.

5 A Logical Modeling of CSS

5.1 Capturing selectors

CSS selectors are systematically translated into the logic: Figure 5 shows how
the main combinators found in CSS selectors level 3 [3] are mapped into their
corresponding logical representation. The logical formula holds for elements
that are selected by the CSS selector. Figure 6 presents how the structural
and negation pseudo-classes of CSS level 3 are compiled into logical formulas.
We have developed a general compiler that takes a CSS selector as input, sys-
tematically applies the translation rules, and outputs the corresponding logical
formula. In the remaining part of this paper, we denote this compiler by a com-
pilation function F(·) so that we can refer to the logical translation of a selector
Si with F(Si).

For example, the selector S1 = ul li:nth-last-of-type(2) selects any
li element which is a second sibling of its type, counting from the last one,
while being a descendant of some ul element. The corresponding logical for-
mula is built in two steps. First, the translation of the descendant combinator
(shown in Figure 5) is instantiated with the appropriate parameters ul and
li:nth-last-of-type(2), therefore the logical translation F(S1) is as follows:

ϕ & let $X= <-1>(ψ | $X) | <-2>$X in $X

where ϕ = F(li:nth-last-of-type(2)) and ψ = F(ul). As a second step, ϕ
and ψ are computed:

• ϕ = li & let $X= <2>(li & ˜let $Y=<2>li|<2>$Y in $Y) |<2>$X in

$X (see f8 in Figure 6);

• ψ = ul (see Figure 5).

5.2 Capturing Properties

In order to capture CSS properties, we consider that all elements in a schema,
in HTML in particular, are augmented with the entire set of CSS properties
encoded as attributes. For example, the following rule:

ul li:nth-last-of-type(2) {color: green;}

is translated as F(S1) & <css:color>’green’ in the logic, with F(S1) computed
as explained above.

5.3 Capturing Inheritance

The CSS property value inherit is a very particular value which is not related
to style, but instead it indicates how the property value must be computed.
Specifically, a computed value v 6= inherit is obtained for a property p at a
given element iff:

• value of p is explicitly set to v at the given element (intuitively this has
been set by some custom selector);

Inria

O
n

th
e

A
n
a
lysis

o
f
C

a
sca

d
in

g
S
tyle

S
h
eets

13

Semantics CSS Tree Logic

Any element * T

Any ’p’ element p p

Any child of some p element p > * let $X= <-1>p | <-2>$X in $X

Any descendant ’b’ of some ’a’ element a b b & let $X= <-1>(a | $X) | <-2>$X in $X

Any element with class ’foo’ .foo <class>’foo’

Any element with attribute ’title’ *[title] <title>T

Any ’p’ element with an ’a’ child Not possible p & <1>let $X= a | <2>$X in $X

Any adjacent next sibling of a ’p’ element p + * <-2>p

Any next sibling ’pre’ of a ’h1’ element h1 ˜ pre pre & let $X= <-2>h1 | <-2>$X in $X

Any ’e’ whose ’foo’ attribute value is ’bar’ e[foo="bar"] e & <foo>bar

Figure 5: Main CSS combinators and corresponding logical formulas

R
R

n
°
7
8
0
8

14
G

en
ev

ès
et

a
l.

Semantics CSS Tree Logic

An ’e’ element, root of the document e:root e & ˜<-1>T & ˜<-2>T

Any first child of a ’p’ element p > *:first-child f1
Any ’li’ element that is the last child of a ’ol’ element ol > li:last-child f2
Any odd row of an HTML table tr:nth-child(odd) f3
Any even row of an HTML table tr:nth-child(even) f4
Any ’foo’, third child of its parent element foo:nth-child(3) f5
Any ’e’, second child of its parent, counting from the last one e:nth-last-child(2) f6
Any ’e’ element, second sibling among the ’e’ ’s e:nth-of-type(2) f7
Any ’e’, second sibling of its type, counting from the last one e:nth-last-of-type(2) f8
Any ’e’ element, first sibling of its type e:first-of-type f9
Any ’e’ element, last sibling of its type e:last-of-type f10
Any ’e’ element, only child of its parent e:only-child f11
Any ’e’ element, only sibling of its type e:only-of-type f12
Any ’e’ element that has no children e:empty e & ˜<1>T

Any ’e’ element that does not match simple selector s e:not(s) e & ˜s

f1 = ˜<-2>T & let $X=<-1>p|<-2>$X in $X

f2 = ˜<2>T & li & let $X=<-1>ol|<-2>$X in $X

f3 = tr & let $X=<-1>T|<-2><-2>$X in $X

f4 = tr & let $X=<-2><-1>T|<-2><-2>$X in $X

f5 = foo & <-2><-2>(˜<-2>T) & let $X=<-1>T|<-2>$X in $X

f6 = e & <2>(˜<2>T) & let $X=<-1>T|<-2>$X in $X

f7 = e & let $X= <-2>(e & ˜let $Y=<-2>e|<-2>$Y in $Y) |<-2>$X in $X

f8 = e & let $X= <2>(e & ˜let $Y=<2>e|<2>$Y in $Y) |<2>$X in $X

f9 = e & ˜let $X=<-2>e|<-2>$X in $X

f10 = e & ˜let $X=<2>e|<2>$X in $X

f11 = e & ˜<2>T & ˜<-2>T & let $X=<-1>T|<-2>$X in $X

f12 = e & ˜let $X=<2>e|<2>$X in $X & ˜let $Y=<-2>e|<-2>$Y in $Y

Figure 6: Structural and negation pseudo-classes (CSS level 3) and corresponding logical formulas

In
ri

a

On the Analysis of Cascading Style Sheets 15

• value of p is not explicitly set to v at the given element, it is not set to
inherit either at that element, but the initial value for this property is
v;

• value of p is set to inherit at that element, the given element is the root,
the initial value for this property happens to be v.

• value of p is set to inherit at that element, the given element is not the
root, and value v is obtained for the parent element (by applying this case
analysis recursively);

We model this inheritance mechanism for propagating values in logical terms.
We introduce a predicate that logically describes each of those possible cases.
The predicate inherit(p, v) holds at a given element iff value v is obtained for
property p at this element:

inherit(p, v) =
let $X = <-1>(<p>’v’

| ˜<p>’v’ & ˜<p>’inherit’ & initialvalue(p,v)
| <p>’inherit’ & ˜<-1>T & ˜<-2>T & initialvalue(p,v)
| <p>’inherit’ & $X) | <-2>$X in $X

where initialvalue(p, v) is a predicate that holds iff property p has initial
value v, as defined by the CSS recommendation (see [2]).

6 Implementation and Experiments

We present here the tool we have developed based on the logical modeling pre-
sented in the previous section. Its architecture is outlined in Figure 7. It is
composed of a set of parsers for reading the CSS and schema files together with
a text file corresponding to problem description as a logical formula. Some
compilers are used for translating schemas and CSS files into their logical rep-
resentations. CSS files are first converted into the simplified form explained in
Section 3. The solver takes the overall problem formulation and checks it for
satisfiability.

CSS file

XML Schema

Problem formulation

let $X=e &<1>$X...

Logical formula over

binary trees

Satisfiability test

Unsatisfiable formula

Counter‐example

generation

Figure 7: Overall architecture

The result of the analysis corresponds to two situations: either the formula
is found unsatisfiable (meaning that the checked property holds for any tree), or
it is satisfiable. In this case, the solver generates a counter-example document
satisfying the formula (described in [7]).

RR n° 7808

16 Genevès et al.

<!ELEMENT html (head,body)>
<!ELEMENT head (title)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT body ((div|table)*)>
<!ELEMENT table (tbody)>
<!ELEMENT tbody (tr+)>
<!ELEMENT tr (td+)>
<!ELEMENT td (div*)>
<!ELEMENT div (#PCDATA|div)*>

Figure 8: Simplified HTML DTD.

6.1 Reasoning on style properties

In this section, we present some experiments highlighting how the analyzer works
on some examples. These examples are simplified in order to make the analysis
easier to understand (but the same kind of analyses can be applied to more
complex cases). Note that users are not asked to type these formulas as generic
tests are provided as a set of macros in the tool (see Section 6.2). We just detail
some of them enough to explain how they work. For the same reasons, we use
the simplified HTML DTD shown in Figure 8.

The first example is the verification of the behavior of a style sheet when it
comes to displaying text in different font sizes. Indeed, setting the font-size

property to the value inherit can be error-prone. Specifically, a computed
font-size value repeatedly obtained by inheritance from a relative value like
80% or smaller may result in tiny or unreadable text. The goal of the test here
is to check whether the style sheet may yield such a bad rendering on some
documents. This can be expressed logically by the following formula:

1. type("html.dtd","html") & ~<-1>T & ~<-2>T
2. & let $CSS = (div => <font-size>’smaller’)
3. & (~div => (~<font-size>T |<font-size>’normal’))
4. & (~<1>T | <1>$CSS) & (~<2>T | <2>$CSS) in $CSS
5. & let $Q = <font-size>’smaller’

& ancestor(<font-size>’smaller’
& ancestor(<font-size>’smaller’)) | <1>$Q | <2>$Q in $Q

This formula is built from the sample style sheet of Figure 10. The first
line allows translating the simplified schema of Figure 8 into a logical formula
(omitted here). Notice that ˜<-1>T & ˜<-2>T means that the element has no
parent nor a previous sibling, i.e. it is the root element. Line 2 represents the
logical counterpart of CSS rule 6 of the sample CSS of Figure 10. It corresponds
to the logical implication “if an element is labeled div then the value of its
font-size property must be smaller”. Line 3 states that any other element
than div (elements that are not concerned by the previous rules) may either
carry no font-size property or if they do, then the value for font-size is set
to normal. This models the default behavior of CSS for property font-size

which is overridden by the rules for div. Line 4 in is charge of applying the
style information to every element in the document.

Thus, lines 1 to 4 restrict the considered set of documents to those that are
valid with respect to the DTD, and that have the style information defined by
the style sheet.

Now, line 5 formulates the question: “may the application of my style sheet
render some valid document with unreadable text due to font-size too small be-

Inria

On the Analysis of Cascading Style Sheets 17

Figure 9: Counter-example layouts

1. tr:nth-child(even) {background-color:LightGray;}
2. tr:nth-child(odd) {background-color:DarkGray;}
3. table td {font-size: 16px;}
4. td {font-size: 14px;}
5. div {color:gray};
6. div {font-size:smaller;}

Figure 10: Sample CSS style sheet.

cause of a triple application of the relative font-size value ’smaller’? ” In this
example, the predicate inherit(p, v) is simply substituted by the simpler ances-
tor predicate. When fed with this formula, the logical solver explores all possible
situations and produces the following counter-example (which is displayed in the
browser as the picture on the left in Figure 9):

<html xmlns:solver="http://wam.inrialpes.fr/xml">
<head>
<title/>

</head>
<body>Body text
<div font-size="smaller">text in first level of div

<div font-size="smaller">text in second level of nested div
<div font-size="smaller">text in third level of nested
div </div>

</div>
</div>

</body>
</html>

Notice that if we add the following rule

div div div {font-size:medium;}

in order to fix the style sheet, then the solver cannot find any counter-example
anymore.

The second test consists in verifying that for a given style sheet, there is
no document such that the style sheet generates text with the same color as
the background color. For example, we consider the simple style sheet of Fig-
ure 10. The problem consists in testing wether rules that set the color and
background-color properties together with the CSS inheritance mechanism
may result in such a situation.

This is expressed in logical terms is as follows:

1. type("html.dtd","html") & ~<-1>T & ~<-2>T
2. & let $CSS =

RR n° 7808

18 Genevès et al.

((tr & let $V=<-1>T|<-2><-2>$V in $V)
=> <background-color>’LightGray’)

3. & ((tr & let $X=<-2><-1>T|<-2><-2>$X in $X)
=> <background-color>’DarkGray’)

4. & (~tr => (~<background-color>T |<background-color>’white’))
5. & (div => <color>’DarkGray’)
6. & (~div => (~<color>T |<color>’black’))
7. & (~<1>T | <1>$CSS) & (~<2>T | <2>$CSS) in $CSS
8. & let $Q = (<color>’DarkGray’

& ancestor(<background-color>’DarkGray’))
| <1>$Q | <2>$Q in $Q

Line 2 and 3 are the logical counterparts of CSS rule 1 and 2 of the sample of
Figure 10. They correspond to the logical implication “if an element is labeled
tr and is at an even position (odd position respectively) among its siblings,
then its background color must be ’LightGray’ (’DarkGray’ respectively)”. Line
4 says that any other element than tr (elements that are not concerned by the
previous rules) may either carry no background-color property or if they do,
then its value is set towhite. This models the default behavior of CSS for the
background-color property which is overridden by the rules for tr. Similarly,
line 5 is the logical implication that corresponds to the CSS rule on line 5 of
Figure 10. Line 6 models the default behavior for the property color. Line 7 is
in charge of applying the style information to every element in the document.

Line 8 formulates the question: “may the application of my style sheet render
some valid document with unreadable text because it is displayed in the same
color as the background? ” For the sake of simplicity, the ancestor predicate in
this line models the default CSS inheritance behavior for the background-color
property. A more general statement should use the predicate inheritedValue.
When fed with this formula, the logical solver explores all possible situations
and ends up with this counter-example (which is displayed in the browser as
the picture on the right in Figure 9):

<html xmlns:solver="http://wam.inrialpes.fr/xml">
<head>

<title/>
</head>
<body>

<table>
<tbody>

<tr background-color="LightGray">
<td>
This <div color="DarkGray"> Cell</div> is DarkGray.
</td>

</tr>
<tr background-color="DarkGray">

<td>
The <div color="DarkGray"> Cell</div> is DarkGray.
</td>

</tr>
</tbody>

</table>
</body>

</html>

The disclaimer text contained in the second cell of the table has both prop-
erties color and background-color set to DarkGray. This is caused by the
default inheritance rules for these properties which are set to inherit. The
disclaimer text has inherited its values from the enclosing div resulting in this
color collision.

Now, we check the consistency of selectors in the style sheet of Figure 10. The
test amounts to comparing the selectors for a given property. For example, if we

Inria

On the Analysis of Cascading Style Sheets 19

focus on the font-size property for table element selectors table td and td,
the test consists in checking the precise relation between selectors, equivalence
or containment, against the HTML DTD for instance.

The problem formulation for the solver is as follows:

1. type("html.dtd","html") & ~<-1>T & ~<-2>T
2. & let $Q =

~(td & ancestor(table) <=> td)
| <1>$Q | <2>$Q in $Q

The formula is found unsatisfiable which means that the two selectors are equiv-
alent in the presence of the DTD. Intuitively, here, both selectors are equivalent
since under HTML schema constraints td always occurs under a table element.
However, for td elements, CSS rule precedence gives higher priority to rule 5
which has specificity 2 compared to rule 6 with specificity of 1. Therefore, rule
6 will never be reachable by any HTML document. As a consequence, rule 6
can be safely removed from the style sheet.

When generalized to all selectors for a given property, this mechanism allows
to clean up style sheets from such inapplicable rules, enhancing their readability,
as seen in the next Section.

While in the case of HTML such situations can be detected by an expert
designer, things become much harder when considering CSS for general XML
documents. In particular, CSS rules (see selectors of [15]) for very structured
schemas like Docbook [14] or DITA [4], tend to be much more involved as they
use complex compositions of combinators with type elements.

6.2 Identifying and verifying generic issues

In this section, we investigate the logical formulation of generic issues that
correspond to useful questions for CSS developers and that can arise in many
style sheets. The tests described here can be checked in the absence or in the
presence of a schema. In the latter case, we use the logical translation of the
schema that we insert as the initial context for the translation of selectors2.

Emptiness of selectors This test is the generalization of the example pre-
sented above. The test consists in extracting every selector and testing its sat-
isfiability against a given schema. We check F(Si) for unsatisfiability. If F(Si)
is unsatisfiable then the selector is inconsistent and the corresponding style rule
is always inactive.

Equivalence of selectors We check the validity of F(Si) ⇔ F(Sj) for i 6= j

pairwise by checking for the unsatisfiability of ¬ (F(Si) ⇔ F(Sj)). If two selec-
tors are equivalent and if one has a lower specificity, i.e. Specificity(Si) <
Specificity(Sj) then the rule for Si is always inactive. If both have the same
specificity then the first rule in the lexical order in the style sheet is always
inactive since CSS favors the last one in this case.

2The notion of context is explained in details in [6]. The acute reader may notice that
the resulting formula is large, however it can still be decided efficiently, because common
subformulas can be shared, following the result of [7].

RR n° 7808

20 Genevès et al.

The emptiness and equivalence tests for selectors can be used for tuning a
CSS style sheet for a particular schema by pruning inactive CSS rules automat-
ically. In addition to improve readability, this reduces the size of the CSS file
and therefore the amount of time needed to download the webpage materials.

Coverage without properties nor inheritance We check the validity of
T ⇒

⋃
i Si, that is, we check the unsatisfiability of ¬ (

⋃
i Si). If this formula

is unsatisfiable, then it means that some elements are not covered by any style
sheet selectors. In other terms, the style properties set by the CSS developer
do not cover all the possible elements of a document. If a rule with selector
* exists then obviously all elements are covered. This test can be performed
on the style sheet except * selectors, in order to capture the coverage of CSS
properties other than those defined for all elements (*).

Coverage with inheritance for a given property We want to determine,
whether a given property p is set to some value v for all elements of a document,
while taking into account the propagation of values defined by the inheritance
mechanism of CSS. We define the predicate customset(p, v) as the disjunction
of all selectors that set the value v for the property p. We check for the validity
of the following formula ψ:

<p>’v’ ⇒ (inherit(p, v)|customset(p, v))

or in other terms we check for the unsatisfiability of ¬ψ where p is the property
and v is the value for which we check the coverage. For example, we can think
of a web designer building a style theme restricted to a limited set of colors.
She may be willing to test whether all possible HTML documents and their
respective elements do have only these colors without reverting to default ones.

¬(
⋃

i=1,2

<color>ci ⇒ (
⋃

i=1,2

inherit(color, ci)

|customset(color, ci)))

Is this formula is satisfiable, this means that there exist some document instance
for which the style sheet renders some elements with another color than the ci’s,
breaking the intended design.

The tool is available at: http://wam.inrialpes.fr/websolver

7 Conclusion

In this paper, we introduce the concept of static analysis for CSS style sheets.
To the best of our knowledge, this is the first attempt at statically analyzing
CSS style sheets. We propose an original tool based on recent advances in tree
logics. The tool is capable of statically detecting a wide range of common errors,
as well as proving properties related to sets of documents, such as coverage of
styling information, in the presence or absence of schema information.

From a theoretical perspective, CSS selectors could be related to XPath
queries, for which an extensive static analysis has been conducted in [6]. In
this paper, we deal with the peculiar combinators and pseudo-classes found

Inria

http://wam.inrialpes.fr/websolver

On the Analysis of Cascading Style Sheets 21

in CSS selectors. In particular, we have extended the logical solver, initially
developed for XPath, to be able to reason about attribute values, by introducing
an equality test that compares an attribute value to a constant. This is a worthy
extension since it is sufficient for supporting CSS while preserving decidability
for the extended logic (it is known that extending the logic with equality tests
with variables results in undecidable logics, but this feature is not needed for
CSS). In addition, we deal with style properties and the propagation of values
defined by the inheritance mechanism of CSS, which do not have any XPath
counterpart.

From a practical perspective, there exists a whole class of dynamic analyses.
Most of this technology relies on runtime debuggers that check the behavior of a
CSS style sheet on a particular document instance. However, the aim of CSS is
to be applied to an entire set of documents usually defined by some schema. The
existing runtime debugging tools help reducing the number of bugs. However,
compared to our approach, they do not allow to prove properties over the whole
set of documents for which the style sheet is intended to be applied. Therefore,
our new approach and tool can be used in addition to debuggers to ensure a
higher level of quality of CSS style sheets.

There are several directions for future work. One is to characterize erroneous
patterns in the box model and in positioning. As seen in the examples, such
errors may also be captured by logical descriptions regardless of values such as
sizes, paddings, etc. Another direction is to extend the analysis to complex and
very large style sheets such as those for Docbook [14] or DITA [4]. Another
perspective consists in taking into account in the analysis the program that
generates the document to which a CSS style sheet is applied. Programs usually
generate restricted HTML or XML structural patterns. This subset could be
inferred by some procedure and combined with the analyses proposed here.

References

[1] J. J. Barton and J. Odvarko. Dynamic and graphical web page breakpoints.
In Proceedings of the 19th international conference on World wide web,
WWW ’10, pages 81–90, New York, NY, USA, 2010. ACM.

[2] B. Bos, T. Çelik, I. Hickson, and H. W. Lie. Cascading Style Sheets Level
2 Revision 1 (CSS 2.1) Specification. W3C recommendation, World Wide
Web Consortium, June 2011.

[3] T. Çelik, E. J. Etemad, D. Glazman, I. Hickson, P. Linss, and J. Williams.
Selectors level 3. W3C recommendation, World Wide Web Consortium,
September 2011.

[4] K. J. Eberlein, R. D. Anderson, and G. Joseph. Darwin information typing
architecture (DITA) version 1.2. Oasis standard, OASIS, December 2010.

[5] P. Genevès. Logics for XML. PhD thesis, Insti-
tut National Polytechnique de Grenoble, December 2006.
http://www.pierresoft.com/pierre.geneves/phd.htm.

[6] P. Genevès, N. Layaïda, and A. Schmitt. Efficient static analysis of XML
paths and types. In PLDI ’07: Proceedings of the ACM SIGPLAN Con-

RR n° 7808

22 Genevès et al.

ference on Programming Language Design and Implementation, pages 342–
351, 2007.

[7] P. Genevès, N. Layaïda, and A. Schmitt. Efficient static analysis of XML
paths and types (extended version). Research Report 6590, INRIA, July
2008.

[8] M. Keller and M. Nussbaumer. Cascading style sheets: a novel approach
towards productive styling with today’s standards. In Proceedings of the
18th international conference on World wide web, WWW ’09, pages 1161–
1162, New York, NY, USA, 2009. ACM.

[9] M. Keller and M. Nussbaumer. CSS code quality: A metric for abstractness.
In Seventh International Conference on the Quality of Information and
Communications Technology (QUATIC), pages 116–121, Oct. 2010.

[10] H. W. Lie. Cascading style sheets. Phd thesis, Faculty of Mathematics and
Natural Sciences, University of Oslo, 2005.

[11] P. M. Marden and E. V. Munson. Today’s style sheet standards: the great
vision blinded. Computer, 32(11):123–125, nov 1999.

[12] V. Quint and I. Vatton. Editing with style. In Proceedings of the 2007
ACM symposium on Document engineering, DocEng ’07, pages 151–160,
New York, NY, USA, 2007. ACM.

[13] M. Serrano. HSS: a compiler for cascading style sheets. In T. Kutsia,
W. Schreiner, and M. Fernández, editors, PPDP, pages 109–118. ACM,
2010.

[14] L. M. N. Walsh. DocBook: The Definitive Guide. O’Reilly & Associates,
1999.

[15] H. Werntges. A CSS for docbook, November 2011. http://www.cs.hs-
rm.de/ werntges/proj/wysiwyg-dbk01.html.

Inria

On the Analysis of Cascading Style Sheets 23

Contents

1 Introduction 3

2 Current practice 3

3 CSS: An overview 5

3.1 Combinators . 5
3.2 Structural pseudo-classes . 5
3.3 CSS properties and inheritance 6

4 Theoretical foundations 7

4.1 Approach overview . 7
4.2 Data model . 8
4.3 A gentle introduction to tree logic 10

5 A Logical Modeling of CSS 12

5.1 Capturing selectors . 12
5.2 Capturing Properties . 12
5.3 Capturing Inheritance . 12

6 Implementation and Experiments 15

6.1 Reasoning on style properties . 16
6.2 Identifying and verifying generic issues 19

7 Conclusion 20

RR n° 7808

RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

	1 Introduction
	2 Current practice
	3 CSS: An overview
	3.1 Combinators
	3.2 Structural pseudo-classes
	3.3 CSS properties and inheritance

	4 Theoretical foundations
	4.1 Approach overview
	4.2 Data model
	4.3 A gentle introduction to tree logic

	5 A Logical Modeling of CSS
	5.1 Capturing selectors
	5.2 Capturing Properties
	5.3 Capturing Inheritance

	6 Implementation and Experiments
	6.1 Reasoning on style properties
	6.2 Identifying and verifying generic issues

	7 Conclusion

