
HAL Id: hal-00643088
https://inria.hal.science/hal-00643088

Submitted on 2 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reusing Legacy Software in a Self-adaptive Middleware
Framework

Santiago Hurtado, Sagar Sen, Rubby Casallas

To cite this version:
Santiago Hurtado, Sagar Sen, Rubby Casallas. Reusing Legacy Software in a Self-adaptive Middleware
Framework. Adaptive and Relfective Middleware Workshop, Middleware 2011, Dec 2011, Lisbon,
Portugal. �hal-00643088�

https://inria.hal.science/hal-00643088
https://hal.archives-ouvertes.fr

Reusing Legacy Software in a Self-adaptive Middleware
Framework

Santiago Hurtado
Universidad de los Andes

Bogota, Colombia
s-

hurtad@uniandes.edu.co

Sagar Sen
ATLANMOD, Ecole des Mines

Nantes, France
sagar.sen@mines-

nantes.fr

Rubby Casallas
Universidad de los Andes

Bogota, Colombia
rcasalla@uniandes.edu.co

ABSTRACT
Software that adapts its behavior to an operational context
and/or feedback from within is self-adaptive. For instance,
a computer vision system to detect people may change its
behavior due to change in context such as nightfall. This
may entail automatic change in architecture, software com-
ponents and their parameters at runtime. Legacy software
components do not possess this ability. Therefore we ask,
can legacy software be successfully cast into a self-adaptive
middleware framework ? We present Tekio, a self-adaptive
middleware platform to dynamically compose legacy soft-
ware behavior. Tekio is based on dynamic component load-
ing available in a Java implementation of Open Service Gate-
way Interface (OSGi). Tekio contains generic components
to capture context/feedback, plan an adaptation strategy,
and reconfigure domain-specific components. The domain-
specific components encapsulate legacy behavior implemented
possibly in native languages such as C/C++. We implement
a self-adaptive vision system in Tekio as a case study. We
perform experiments to validate that the self-adaptive layer
based on OSGi has negligible effects on the performance
of the legacy library namely OpenCV. We also demonstrate
that the self-adaptive middleware can handle about 30 adap-
tations in a span of 2 seconds while producing meaningful
output.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Experimentation, Performance, Measurement

Keywords
Self-adaptive software, OSGi, legacy software, software reuse,
middleware, framwework

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ARM 2011 , December 12, 2011 Lisbon, Portugal
Copyright 2011 ACM 0-12345-67-8/90/01 ...$10.00.

1. INTRODUCTION
Self-adaptive systems dynamically modify themselves due

to contextual changes and feedback from within their own
components [11]. Contextual changes may emanate from
monitoring events from the physical environment, running
software/hardware components, and detectors of social and
lingual boundaries to name a few. Moreover, these software
systems continue running despite user interventions and fail-
ures in the underlying software and hardware [3]. Well
known examples of such systems are sites such as Google
[7]. Contrary to these modern systems legacy software sys-
tems/libraries were not built with continual execution, adap-
tation to context and fault tolerance in mind. Therefore,
a natural question arises: Can we reuse existing legacy li-
braries as components in a self-adaptive framework where
they can be loaded/unloaded/replaced at runtime?

Reusing legacy libraries in a self-adaptive middleware frame-
work is the subject of this paper. Usually the legacy libraries
are black-boxes with callable functions. For instance, the
computer vision library OpenCV [18] contains functions to
segment images and detect different types of objects. Differ-
ent legacy libraries may be available in many different pro-
gramming languages. In a typical native implementation,
these legacy functions are sequentially called in a static pro-
gram, that is first compiled and then executed with core
behavior that is practically immutable at runtime. Our tar-
get self-adaptive middleware framework aims to create self-
adaptive systems using legacy libraries whose behavior can
change at runtime. We aim to (a) separate legacy library
functionality into components (b) achieve interoperability
between components in different languages (c) automatically
(re)configure a set of components in a processing chain based
on contextual events and feedback events from the system
itself (d) monitor Quality of Service (QoS) and evaluate sys-
tem performance.

In this paper, we present the self-adaptive middleware
framework, Tekio. Tekio adheres to the requirements in
[6] for component frameworks to implement dynamic self-
adaptive systems. It has the following functionality:(1) Com-
ponent management that helps define components and the
interactions amongst them called a system configuration,
(2) Instance management that permits the component life-
cycle to be administered and (3)Self-adaptation manage-
ment for context understanding and mapping context to
a system configuration. Tekio is a implemented in Java
and provides access to legacy libraries in different languages
via Java Native Access (JNA). Self-adaptation in Tekio is

achieved using dynamic component loading provided by the
OSGi framework specification (formerly known as the Open
Services Gateway Initiative). OSGi provides an universal
publish-subscribe based protocol for components with dif-
ferent underlying implementation languages to communi-
cate with each other. The OSGi framework has applica-
tions ranging from mobile applications, IDE, applications
servers to software in automobile industries. The OSGi has
136 official members plus several research projects. It has
seven implementations such as Eclipse Equinox, Apache fe-
lix, Knopflerfish and projects such as JBoss, Glasfish Fuse
EXB Eclipse platform and WebSphere. The widely used
OSGi provides the basic functionality to create self-adaptive
systems. This paper serves as an evaluation of OSGi to re-
alize self-adaptive middleware and systems.

We use Tekio to build a self-adaptive vision system. This
system serves as a case study to evaluate Tekio and OSGi
as the middleware framework to reuse legacy open-source
libraries. We reuse the OpenCV libraries [18] in software
components dynamically managed by Tekio. Tekio com-
ponents call native code in C/C++ using Java Native Ac-
cess. We provide number of configurations of these com-
ponents for adaptation. These configurations achieve tasks
such as intrusion detection, face detection, and segmenta-
tion. During adaptations we measure frames per second
indicating throughput. We also measure the settling time
between adaptations. Settling time indicates the time re-
quired by Tekio to produce meaningful outputs after adapta-
tion. We perform experiments to demonstrate that Tekio’s
throughput for a configuration is very close to an identi-
cal native implementation despite the layer of software for
self-adaptation. The self-adaptive system can demonstrate
very low settling times for low and medium resolution input
video. For instance, it can provide about 30 adaptations in
a span of 2 seconds without significant loss in throughput.
However, for high resolution input videos the system fails to
provide meaningful outputs when the adaptation frequency
goes beyond a certain level. From these results we infer that
managing self-adaptation requires rigorous empirical analy-
sis and may entail trade-offs. Empirical analysis is possibly
the most practical approach to validate and reuse complex
legacy libraries where complete visibility/understanding is
impossible.

The paper is organized as follows. In Section 2, we present
Tekio’s architecture based on OSGi. In Section 3, we val-
idate Tekio. In Section 4, we present the comparison of
Tekio with other self-adaptive middleware frameworks. We
conclude in Section 5.

2. ARCHITECTURE
In this Section, we present the Self-Adaptive Middleware

called Tekio. The middleware framework allows arrange-
ment of legacy modules in a processing chain that is self-
adaptive. Tekio is a component centric architecture that
provides possibility to replace any of its components at run-
time and maintain a clear separation of concerns that is
between self-adaptation and behavioral components. Tekio
is built in layers as shown in Figure 1 (a). The lowest soft-
ware layer is that of OSGi including the Java Virtual Ma-
chine. The OSGi layer is primarily responsible for execution
of the system using the publish-subscribe paradigm for ser-
vice oriented architecture. The legacy libraries are called
from within domain-specific OSGi components in the sec-

Figure 1: Tekio (a) Software Layers (b) Generic Ar-
chitecture (b) Domain-specific Architecture

ond layer. The Java Native Access library is used to access
the native library. Finally, Tekio’s self-adaptation compo-
nents (see Section 2.1) manage these domain-specific OSGi
components (see 2.2).

2.1 Tekio Self-adaptation Components
Tekio’s self-adaptation is provided by three components

as shown in Figure 1. These components realize behavior
prescribed by the Monitor, Analyze, Plan, Execute, Knowl-
edge (MAPE-K) loop conceived by IBM in [8]: 1) The Con-
text Manager monitors and analyzes the symptoms to know
when to request a change in system configuration, the symp-
toms are represented as Context Events that are events pro-
duced by the user, system itself (self) or the environment.
The environmental events can be from the video or other
hardware sensors, such as movement and weight sensors.
2) The Adaptation Planner computes a change plan. This
component uses Acher et. al. [1] proposal to specify rules as
constraints between two feature models. One feature model
captures the variability in context configurations while the
other captures variation in system configurations. The adap-
tation planner generates the system configuration and order
in which components must be unloaded/loaded. 3) The Ex-
ecutor Component (re)configures the processing chain by the
execute the load/unload steps presented by the adaptation
planner. The new running configuration may produce new
symptoms. This component administers the life cycle of
the components in the processing chain. At this moment
the system is capable of self-configuring and self-optimizing
based on QoS feedback and context awareness.

Tekio is able to provide four different adaptations types:
(a)Parameter Adaptation of any of the running components,
(b) Component Adaptation to replace a component at run-
time for another that provides a similar task, (c) Context
Event Adaptation, depending on events from the processing
chain the system analyzes how to adapt and request a new
adaptation, and (d) QoS Adaptation on which the system is
able to maintain a minimum level of quality of service.

2.2 Processing Chain
A processing chain as shown in Figure 1 (c) is the cur-

rent configuration of domains-specific components managed
by Tekio. We implement a self-adaptive vision system using
Tekio. The domain-specific/vision OSGi components in the

processing chain call algorithms implemented in the open-
source computer vision library OpenCV(Open Source Com-
puter Vision) 2.1. This library is written in C and C++,
as many other computer vision libraries for performance
benefits. In this paper we focus on processing chains of
components but our approach is fully applicable to complex
orchestrations where components call other components in
both serial and parallel. However, we assume that the or-
chestration is a fixed entity and only the components are
replaced by various alternatives.

We achieve the link between OSGi and legacy libraries us-
ing the Java library, Java Native Access (JNA), that seam-
lessly calls C/C++ functions with negligible performance
loss. A similar implementation JavaCV [2] uses the native
access functionality. Technically, we pass the memory ad-
dress of an image to the OpenCV C++ functions. This
allows the OSGi framework to manage the native imple-
mentation and its process without compromising its perfor-
mance and original OpenCV library functionalities. The in-
terfaces of the different algorithms are defined in Java while
the implementations of the component is in C++. This im-
proves portability and usability of the vision components
with all other components written in the OSGi framework.
Any other OSGi component can execute the functionality
of these vision components without worrying about low-
level and native implementation detail in C/C++. We did
explore alternative frameworks to OSGi including Tuscany
[15] and Frascati [14]. These prototypical frameworks were
heavyweight and did not have the maturity of OSGi hence
Equinox OSGi was our final choice. OSGi also has the ad-
vantage of being a standard allowing interoperability with
OSGi components written by other authors.

The vision system’s processing chain consists on four types
of algorithms: 1) Image acquisition that provides images
from different possible sources such as, cameras, streams or
files, 2)Image Segmentation that divides images and extracts
important objects, 3) Blob Construction and Object Detec-
tion that merges the separate objects into a group called a
blob and then into an object such as a face 4) Event Con-
struction that converts information at different stages of the
vision system to produce either events that are fed back to
Tekio or events to final users. Each type of algorithm has
several possible implementations that are different manners
or configurations to provide specific tasks. For instance, if
we use the Smooth Segmentation and the Find Contours
blob construction algorithms the system can detect motion.
If the Pyramid Segmentation and the HAAR blob construc-
tion algorithms are used the system can detect faces. How-
ever, if the last configuration uses FGD Segmentation algo-
rithm instead of the pyramid the system can perform faster
FPS but lower result quality.

2.3 Example Execution in Tekio
We demonstrate dynamic adaptation in Tekio using Fig-

ure 2.3. Tekio starts in intrusion detection mode which is
the initial and current configuration. An intrusion event is
detected as shown in Figure 2(a) by the context manager.
The adaptation planner then decides the new configuration
for face detection. The component executor loads the face
detection component. The face detection configuration en-
sues as shown in Figure 2(b).

3. VALIDATION

(a) Intrusion Detection

(b) Face Detection

Figure 2: Dynamic Reconfiguration from Intrusion
to Face Detection. Figure (a) is before and Figure
(b) is after

Our objective is to validate the self-adaptive middleware
Tekio built using an OSGi component framework. The val-
idation aims to encourage the reuse of legacy components
in modern self-adaptive frameworks. Our case study is a
self-adaptive computer vision system built using Tekio. We
choose the representative computer vision domain for a num-
ber of reasons: (a) they process large amounts of input data
with variations in resolution and content of images, (b) they
often require high-throughput and low latency and can run
on various operating platforms, (c) they solicit the use of
hardware resources such as cameras, high-end servers, and
actuators, and (d) computer vision applications require com-
plex software components involving large databases, file sys-
tems, and image processing algorithms.

We are intrigued by two principal questions that we ad-
dress experimentally: Q1:How much performance is com-
promised due to the use of self-adaptive middleware on a
native implementation? Q2:How often the system can adapt
while maintaining a minimal QoS?

The experimental setup to answer these questions is pre-
sented in Section 3.1. Finally, we present results of our ex-
periments and discuss them in Section 3.2.

3.1 Experimental Setup
Dynamic adaptation is between different system configu-

rations of video processing components handled by Tekio. A
configuration is a specific set of components and its param-
eters. The components in the configuration are composed
in a video processing chain/pipeline. In our experiments we
implement a total of six configurations in Figure 3.

Configurations
Number Name
C1 SMOOTH SEGMENTATION
C2 FGD SEGMENTATION
C3 PYRAMID SEGMENTATION
C4 INTRUSION DETECTION
C5 FACE DETECTION
C6 FACE DETECTION FGD

Configurations Details
Component C1 C2 C3 C4 C5 C6
OpenCV AVI Reader 1 1 1 1 1 1
Image Smoothing 2 × × 2 × ×
FGD Background Subtraction × 2 × × × 2
Pyramid Segmentation × × 3 × 2 ×
HAAR Detection × × × 3 3 3
Image Window 3 3 4 4 4 4

Figure 3: Experimental Configurations

We present the content of these configurations in Figure 3.
For example, the configuration for motion detection contains
three different components (a) image acquisition that reads
a video from a file, (b) image segmentation that reduces or
smoothens the edges of the images, (c) blob construction
that finds the contours of objects and translates them into
detected movement.

Another dimension of variability in our experiments is the
image resolution. The input to the video processing chain
is 1020 frames of video in an office space available in three
different resolutions:1) High, 1024x720 pixels with a bit rate
of 3,582 2) Medium, 720x400 pixels with a bit rate of 1,325
and, 3) Low, 480x272 pixels with a bit rate 681. Each ex-
periment measures percentage of CPU usage, percentage of
memory usage and FPS monitored every 5 frames.

We evaluate the configurations based on the following
metrics:

Throughput We measure throughput using the rate at
which the video processing chain processes frames per
second (FPS).

Settling Time The time the system takes to switch from
the current configuration to the next. This measure-
ment takes into account the time needed to load the
new components

CPU Usage What percentage of the processor Tekio is us-
ing at a given instant. This includes the percentage of
processor used by the loaded vision components.

Memory Usage What quantity of memory Tekio is using
at any given instant. This measurement also includes
includes memory used by vision components in Tekio.

We design two experiments to address questions Q1 and
Q2:

Experiment E1 For Q1, we run a single configuration with
three resolutions. Each system configuration is first
run with legacy static C components. Second, we run
the configuration using Tekio that handles the C com-
ponents in its self-adaptive framework. The goal is to
understand how much performance is lost by adding
the self-adaptive layer, and whether this performance
loss out costs the benefits of self-adaptation.

Experiment E2 For Q2, we run 38 pairs (without repe-
tition) of the 6 configurations in a fixed time. First,
we reconfigure 38 times in two minutes. Secondly, we
decrease the time limit to 90 seconds and continue re-
ducing to 60, 45, 30, 15, 10, 5, 4, 3, 2, 1 second(s). The
purpose here is to figure how the system is affected by

the stress to adapt quickly in fixed time. Can we de-
termine when the system stops functioning properly
due to a very high frequency of adaptation?

All experiments to answer our empirical questions are
executed on an iMac with the Intel Core i3 Processor of
3.06GHz and 4GB 1333 MHz DDR3.

3.2 Results and Discussion
We summarize the results of executing experiment E1 in

Figure 4 and E2 in Figure 5.
In this section, we summarize and present the results of

the experimental executions. Measurements are performed
at runtime during the execute phase of the MAPE-K loop.

We execute Experiment E1 to address Question Q1.
In Figure 4, we compare a legacy implementation of motion
detection in C with motion detection within the self-adaptive
framework Tekio. As expected, in Figure 4 (a) we observe
that the frame rate is slightly higher for a native/legacy im-
plementation of motion detection compared to Tekio for all
three resolutions low, medium, and high. The CPU usage
for both native and Tekio is similar as shown in Figure 4
(b). However, we observe large difference in memory usage
in Tekio compared to a native implementation as seen in
Figure 4 (c). The OSGi framework used to develop Tekio
uses up considerable amount of memory compared to the
native implementation. However, the upper limit is around
2.25% of main memory (4Gb) which is largely acceptable.

We execute Experiment E2 to address Question Q2.
We switch between pairs of configuration using Tekio. In all
possible 38 pairs of configurations we choose to show 6 pairs
where we switch to motion detection from any given configu-
ration with varying time limits and resolutions. The results
for low, medium, and high resolution input videos are are
shown in Figure 5. In Figure 5 (a), we observe that frame
rate starts dropping at 90 seconds time bound for high reso-
lution while 5 seconds time bound for low and medium reso-
lution videos. This implies that a high frequency of adapta-
tion is not suitable for high resolution images while we may
expect to adapt several times for lower resolution videos.
The CPU usage drops for high resolution after its break
point as seen in Figure 4 (b). However, as the frequency
of adaptation increases for low and medium the CPU usage
increases beyond using a single CPU (upto 170%). Finally,
in Figure 4 (c), we notice that memory usage for high res-
olution is initially very high but gradually drops after the
break point. The memory usage remains relatively static for
low and medium resolution but drops after the break point.

We define the time required for the system to settle down
into a state which produces meaningful results as settling
time. In conclusion, we observe that most of the settling
times are very low. However, if the system adapts very fast

Figure 4: Performance Comparison of Legacy and Self-adaptive for Motion Detection (a) Frame Rate (b)
CPU Usage (c) Memory Usage

Figure 5: Stress Testing All Switches to Motion Detection (a) Frame Rate (b) CPU Usage (c) Memory Usage

(about 0.25 milliseconds per adaptation) the system can be-
gin to fail depending on the load and video resolution. How-
ever, most importantly Tekio does not crash, it simply does
not produce results and continues running, this is possible
because the algorithms do not produce any exceptions. In
future work, we would like to see if Tekio can recover from
bursts of high loads automatically without crashing.

4. RELATED WORK
Self-adaptive middleware frameworks are an emerging area

in software engineering. There are a number of contributions
in the domain self-adaptive middleware. Most self-adaptive
middleware are based on the MAPE-K loop proposed by
IBM [8]. An ampl survey is provided in [16]. We discuss
middleware frameworks that are closely related to Tekio.
We place our contribution with respect to established frame-
works such as WildCAT [5], Rainbow [17], DIVA [12] and
MUSIC [13].

WildCAT [5] is an easy to use Java based framework to
build context-aware adaptive systems. Reusing legacy li-
braries may be achieved in WildCAT by extending classes
provided in WildCAT. It does not directly support a stan-
dard component framework such as OSGi. In Tekio, we
support the OSGi standard for components allowing a large
number of components in possibly different implementation
languages to interoperate. WildCAT lacks empirical evalua-
tions of its QoS especially with the concern of reusing legacy
libraries.

The Rainbow [17] framework provides a reusable archi-

tecture to build self-adaptive software systems. The compo-
nents in rainbow facilities for remote procedure call to ac-
cess legacy libraries. The authors evaluate the system using
a video conferencing case study to show how self-adaptation
can help keep latency below a threshold. In [4], the authors
evaluate the effectiveness of Rainbow to a realistic rise in
demand in a website Znn.com. This rise in demand neces-
sitates quick adaptations which Rainbow seems to handle
well. However, the authors do not address the impact of
these adaptations on resource usage such as memory and
CPU which are often limited. From an interoperability point
of view all components in Rainbow are specific to the frame-
work and must be rewritten as Rainbow components much
like WildCAT.

DIVA (Dynamic Variability in complex, Adaptive sys-
tems) is a European project that provide tools and method-
ologies to manage dynamic variability in adaptive systems.
The approach proposes the use of model-driven and aspect-
oriented techniques [12]. DIVA addresses the problem of ex-
plosion of possible system configurations and the migration
from the current configuration to a valid target configura-
tion [10] in an adaptive system. The framework has been
develop using the OSGi specification on the Helios Eclipse
Equinox implementation. However, DIVA is a heavy-weight
framework and performs adaptations in the order of sec-
onds and not milliseconds such as in Tekio. DIVA also does
not address more intricate issues such as its functionality
due high frequency of adaptation. DIVA has been applied
to a home automation system called Entimid [9]. Entimid

contains a number of OSGi components for sensors, behav-
ior and actuators situated in an apartment for handicapped
and elderly people. Entimid tends to behave very errati-
cally when contextual events that trigger adaptations arrive
in unpredictable ways. In our opinion, this is primarily due
to lack of empirical analysis of the middleware framework.

MUSIC (Self-Adapting Applications for Mobile Users in
Ubiquitous Computing Environments) [13] is an European
project that provides an open source framework for devel-
opment and execution of self-adaptive systems using OSGi
components. MUSIC provides self-adaptive mobile applica-
tions for different devices and operating systems. It also
provides developer tools that simplify its use. The platform
bases its decisions on monitoring and sensing QoS charac-
teristics of the components that compose the running sys-
tem. With the help of utility or weight functions the system
measures how the system can adapt to a specific context.
The adaptation framework has a model of the system struc-
tured with several components that can be modified at run
time. It also uses the event-driven architecture to manage
context events; this allows the system to provide loosely
coupled software components. The project goal is to main-
tain self-adaptation separated from the business logic. Tekio
has been inspired by the architecture of MUSIC. However,
MUSIC does not validate its infrastructure using empirical
studies as we have done for Tekio.

5. CONCLUSION
In this paper, we demonstrate that legacy software li-

braries can be cast into a self-adaptive middleware frame-
work: Tekio. Tekio is based on the lightweight OSGi stan-
dard for dynamic component loading that facilitates self-
adaptation of functions in legacy libraries. Using the com-
puter vision library OpenCV we demonstrate that Tekio can
be used to build a self-adaptive vision system. We evalu-
ate Tekio for a number of configurations of a vision system.
First, we demonstrate that Tekio’s performance is negligibly
slower for a fixed configuration compared to an identical im-
plementation in native C. The OSGi layer and Tekio’s mid-
dleware do not incur a large performance overhead. Second,
we demonstrate that Tekio can handle about 30 adaptations
in a span of 2 seconds. This result however, is dependent
on the input video resolution. Only low/medium resolution
videos can be dealt with despite high rates of adaptation.
When high resolution videos are treated the 30 adaptations
may occur in the span of at least 90 seconds. If the adapta-
tion rate is too high Tekio simply stops producing output.
It does not crash which open doors to techniques for self-
healing.

There are a number of lessons learned in our experiment of
reusing legacy libraries in a self-adaptive middleware frame-
work. We enlist some of the important lessons:

1. Self-adaptive frameworks can be superimposed on legacy
libraries if the language used to build the framework
provides optimized native access to the libraries. In
our case, Tekio, Java Native Access used within an
OSGi component is an optimized framework with min-
imum performance overhead.

2. Self-adaptive frameworks have limited control over the
resources used by legacy libraries. For instance, inter-
nal memory management in the legacy library must

be handled well by routines in the library. This is true
unless the legacy library provides functions to manage
memory or do garbage collection.

3. We have reasonable idea about the range of applica-
tion domains where our approach would be applicable.
For instance, legacy libraries that collect real-time sen-
sor data can be placed in a self-adaptive framework.
However, the final output of the application must not
be sensitive to loss of some real-time data that may
be incurred due to change in configurations. Video,
in most cases, is an example of sensor data that re-
mains usable despite loss of some frames. In other
cases where application output is sensitive to sensor
data such as in safety critical systems the adaptation
must be performed only when the system is sure that
no critical data is received by the sensors.

4. In our experiments, we also demonstrate that compu-
tation intensive behavior such as face detection can
be reused in a self-adaptive framework. Tekio quickly
loads/unloads heavy components without inflicting a
domino effect that can bring the system down. In case
of very high-frequency of adaptation Tekio stops pro-
ducing results. As the frequency reduces, Tekio, re-
sume normal functionality without system crash.

As future work we would like Tekio to provide self-healing
and self-protection to the running system. For example,
Tekio must be provide the possibility of cleaning up unused
memory. Resource management including memory manage-
ment and debugging of legacy components from Tekio is an
important goal of our future work. We would also like Tekio
to perform selection from two or more candidates configu-
rations for an adaptation. Tekio also needs to maintain a
model@runtime to simplify the interface to reconfiguration
in Tekio. In an experiment, it is intriguing to see how Tekio
works as a function of component granularity. Should I self-
adaptive with many small and lightweight components or
with few heavy components?

6. ACKNOWLEDGMENTS
We would like to thank Team PULSAR at INRIA Sophia-

Antipolis that provided us with the necessary financial sup-
port and resources to apply new ideas in self-adaptive soft-
ware architectures to the domain of computer vision. In
particular, we are grateful to Prof. Jean-Paul Rigault and
Dr. Sabine Moisan.

7. REFERENCES
[1] M. Acher, P. Lahire, S. Moisan, and J.-P. Rigault.

Tackling High Variability in Video Surveillance
Systems through a Model Transformation Approach.
In MiSE ’09: Proceedings of the 2009 international
workshop on Modeling in software engineering at ICSE
2009 (MiSE’09). IEEE Computer Society, May 2009.

[2] S. Audet. Java interface to opencv, Aug. 2011.

[3] Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese,
H. Kienle, M. Litoiu, H. Muller, M. Pezzè, and
M. Shaw. Engineering self-adaptive systems through
feedback loops. Software Engineering for Self-Adaptive
Systems, pages 48–70, 2009.

[4] B. Cheng, R. de Lemos, H. Giese, P. Inverardi,
J. Magee, J. Andersson, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, and Others. Software engineering
for self-adaptive systems: A research roadmap.
Software Engineering for Self-Adaptive Systems, pages
1–26, 2009.

[5] P. David and T. Ledoux. WildCAT: a generic
framework for context-aware applications. In
Proceedings of the 3rd international workshop on
Middleware for pervasive and ad-hoc computing, pages
1–7. ACM, 2005.

[6] S. Hallsteinsen, E. Stav, A. Solberg, J. Floch, S. ICT,
and N. Trondheim. Using product line techniques to
build adaptive systems. In Software Product Line
Conference, 2006 10th International, page 10. Ieee,
2006.

[7] Y. S. S. K. Hao-hua Chu, Hoi Lee Candy Wong.
Dynamic adaptation of gui presentations to
heterogeneous device platforms, 2007.

[8] IBM. An architectural blueprint for autonomic
computing. Technical Report June, IBM, 2005.

[9] B. Morin, O. Barais, G. Nain, and J.-M. Jézéquel.
Taming Dynamically Adaptive Systems with Models
and Aspects. In 31st International Conference on
Software Engineering (ICSE’09), Vancouver, Canada,
May 2009.

[10] B. Morin, T. Ledoux, M. B. Hassine, F. Chauvel,
O. Barais, and J.-M. Jezequel. Unifying Runtime
Adaptation and Design Evolution. 2009 Ninth IEEE
International Conference on Computer and
Information Technology, pages 104–109, Oct. 2009.

[11] P. Oreizy, M. M. Gorlick, R. N. Taylor,
D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici,
D. S. Rosenblum, A. L. Wolf, S. Artlcle, and
R. Modifications. An Architecture-Based Approach to
Self-Adaptive Software. IEEE Intelligent Systems.

[12] I. Romero, F. Juan, V. Chicote, B. Morin, and
O. Barais. Using Models@ Runtime for Designing
Adaptive Robotics Software: an Experience Report.
Context, 2010.

[13] R. Rouvoy, M. Beauvois, L. Lozano, J. Lorenzo, and
F. Eliassen. Music: Middleware Support for
Self-Adaptation in Ubiquitous and Service-Oriented
Environments. Proceedings of the 1st workshop on
Mobile middleware embracing the personal
communication device - MobMid ’08, page 1, 2008.

[14] L. Seinturier, P. Merle, D. Fournier, N. Dolet,
V. Schiavoni, and J.-B. Stefani. Reconfigurable SCA
Applications with the FraSCAti Platform. In
Proceedings of the 2009 IEEE International
Conference on Services Computing, SCC ’09, pages
268–275, Washington, DC, USA, 2009. IEEE
Computer Society.

[15] R. F. H. M. S. N. Simon Laws, Mark Combellack.
Tuscany in Action. Manning, 2011.

[16] N. M. Villegas, H. A. Müller, G. Tamura, L. Duchien,
and R. Casallas. A framework for evaluating
quality-driven self-adaptive software systems. In
Proceeding of the 6th international symposium on
Software engineering for adaptive and self-managing
systems, SEAMS ’11, pages 80–89, New York, NY,
USA, 2011. ACM.

[17] S. wen Cheng, A. cheng Huang, D. Garlan,
B. Schmerl, and P. Steenkiste. Rainbow:
Architecture-based self-adaptation with reusable
infrastructure. IEEE Computer, 37:46–54, 2004.

[18] A. Zelinsky. Learning OpenCV—Computer Vision
with the OpenCV Library (Bradski, G.R. et al.;
2008)[On the Shelf]. IEEE Robotics & Automation
Magazine, 16(3):100–100, Sept. 2009.

