Conditional anomaly detection methods for patient-management alert systems

Michal Valko 1, * Gregory Cooper 2 Amy Seybert 3 Shyam Visweswaran 4 Melissa Saul 2 Milos Hauskrecht 5
* Auteur correspondant
1 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal, Inria Lille - Nord Europe
Abstract : Anomaly detection methods can be very useful in identifying unusual or interesting patterns in data. A recently proposed conditional anomaly detection framework extends anomaly detection to the problem of identifying anomalous patterns on a subset of attributes in the data. The anomaly always depends (is conditioned) on the value of remaining attributes. The work presented in this paper focuses on instance-based methods for detecting conditional anomalies. The methods rely on the distance metric to identify examples in the dataset that are most critical for detecting the anomaly. We investigate various metrics and metric learning methods to optimize the performance of the instance-based anomaly detection methods. We show the benefits of the instance-based methods on two real-world detection problems: detection of unusual admission decisions for patients with the community-acquired pneumonia and detection of unusual orders of an HPF4 test that is used to confirm Heparin induced thrombocytopenia - a life-threatening condition caused by the Heparin therapy.
Type de document :
Communication dans un congrès
Workshop on Machine Learning in Health Care Applications in The 25th International Conference on Machine Learning, Jul 2008, Helsinki, Finland
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00643221
Contributeur : Michal Valko <>
Soumis le : lundi 21 novembre 2011 - 14:31:12
Dernière modification le : jeudi 11 janvier 2018 - 06:22:13
Document(s) archivé(s) le : mercredi 22 février 2012 - 02:27:13

Fichier

valko2008conditional.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00643221, version 1

Collections

Citation

Michal Valko, Gregory Cooper, Amy Seybert, Shyam Visweswaran, Melissa Saul, et al.. Conditional anomaly detection methods for patient-management alert systems. Workshop on Machine Learning in Health Care Applications in The 25th International Conference on Machine Learning, Jul 2008, Helsinki, Finland. 〈hal-00643221〉

Partager

Métriques

Consultations de la notice

529

Téléchargements de fichiers

152