Lyusternik-Graves Theorem and Fixed Points II

Asen L. Dontchev Hélène Frankowska 1
1 C&O - Equipe combinatoire et optimisation
UPMC - Université Pierre et Marie Curie - Paris 6, CNRS - Centre National de la Recherche Scientifique : FRE3232
Abstract : This work continues the studies in our previous paper ["Lyusternik-Graves theorem and fixed points", Proc. Amer. Math. Soc. 139 (2011) 521--534]. It is written as a separate paper which extends the previous one in the direction of closing the gap between Lyusternik-Graves theorems and fixed point theorems. Here we introduce a new definition of global metric regularity on a set and associated definitions of Aubin continuity and linear openness that are equivalent to metric regularity on the same sets and with the same constant. When the sets are neighborhoods of a point in the graph of the mapping, these definitions reduce to the well studied properties at a point. We present Lyusternik-Graves type theorems in metric spaces for single-valued and set-valued perturbations, and show that they can be derived from, and some of them are even equivalent to, corresponding set-valued fixed point theorems.
keyword : sadco
Type de document :
Article dans une revue
Journal of Convex Analysis, Heldermann, 2012, 19 (4), 〈http://www.heldermann.de/JCA/JCA19/JCA194/jca19060.htm〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00643241
Contributeur : Estelle Bouzat <>
Soumis le : lundi 21 novembre 2011 - 14:43:46
Dernière modification le : jeudi 11 janvier 2018 - 06:20:24

Identifiants

  • HAL Id : hal-00643241, version 1

Collections

Citation

Asen L. Dontchev, Hélène Frankowska. Lyusternik-Graves Theorem and Fixed Points II. Journal of Convex Analysis, Heldermann, 2012, 19 (4), 〈http://www.heldermann.de/JCA/JCA19/JCA194/jca19060.htm〉. 〈hal-00643241〉

Partager

Métriques

Consultations de la notice

305