Learning predictive models for combinations of heterogeneous proteomic data sources

Michal Valko 1, 2, * Richard Pelikan 1 Milos Hauskrecht 1
* Auteur correspondant
2 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal
Abstract : Multiple technologies that measure expression levels of protein mixtures in the human body offer a potential for detection and understanding the disease. The recent increase of these technologies prompts researchers to evaluate the individual and combined utility of data generated by the technologies. In this work, we study two data sources to measure the expression of protein mixtures in the human body: whole-sample MS profiling and multiplexed protein arrays. We investigate the individual and combined utility of these technologies by learning and testing a variety of classification models on the data from a pancreatic cancer study. We show that for the combination of these two (heterogeneous) datasets, classification models that work well on one of them individually fail on the combination of the two datasets. We study and propose a class of model fusion methods that acknowledge the differences and try to reap most of the benefits from their combination.
Type de document :
Communication dans un congrès
AMIA Summit on Translational Bioinformatics, Mar 2008, San Francisco, United States. 2008
Liste complète des métadonnées

https://hal.inria.fr/hal-00643349
Contributeur : Michal Valko <>
Soumis le : lundi 21 novembre 2011 - 16:34:30
Dernière modification le : jeudi 11 janvier 2018 - 06:22:13
Document(s) archivé(s) le : mercredi 22 février 2012 - 02:30:59

Fichier

valko2008learning.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00643349, version 1

Collections

Citation

Michal Valko, Richard Pelikan, Milos Hauskrecht. Learning predictive models for combinations of heterogeneous proteomic data sources. AMIA Summit on Translational Bioinformatics, Mar 2008, San Francisco, United States. 2008. 〈hal-00643349〉

Partager

Métriques

Consultations de la notice

246

Téléchargements de fichiers

662