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Abstract Finding reliable, meaningful patterns in data with high numbers of at-
tributes can be extremely difficult. Feature selection helps us to decide
what attributes or combination of attributes are most important for
finding these patterns. In this chapter, we study feature selection meth-
ods for building classification models from high-throughput genomic
(microarray) and proteomic (mass spectrometry) data sets. Thousands
of feature candidates must be analyzed, compared and combined in such
data sets. We describe the basics of four different approaches used for
feature selection and illustrate their effects on an MS cancer proteomic
data set. The closing discussion provides assistance in performing an
analysis in high-dimensional genomic and proteomic data.
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1. Introduction

As technology improves, the amount of information we collect about
the world increases. Sensor networks collect traffic or weather infor-
mation in real–time, documents and news articles are distributed and
searched on–line, information in medical records is collected and stored
in electronic form. All of this information can be mined so that the re-
lations among components of the underlying systems are better under-
stood and their models can be built. Microarray and mass spectrometry
(MS) technologies are producing large quantities of genomic and pro-
teomic data relevant for our understanding of the behavior and function
of an organism, or characteristics of disease and its dynamics. Thousands
of genes are measured in a typical microarray assay; tens of thousands
of measurements comprise a mass spectrometry proteomic profile. The
high–dimensional nature of the data demands the development of spe-
cial data analysis procedures that are able to adequately handle such
data. The central question of this process becomes the identification
of those features (measurements, attributes) that are most relevant for
characterizing the system and its behavior. We study this problem in
the context of classification tasks where our goal is to find features that
discriminate well among classes of samples, such as samples from people
with and without a certain disease.

Feature selection is a process that aims to identify a small subset of
features from a large number of features collected in the data set. Two
closely-related objectives may drive the feature selection process: (1)
Building a reliable classification model which discriminates disease from
control samples with high accuracy. The model is then applied to early
detection and diagnosis of the disease. (2) Biomarker discovery task
where a small set of features (genes in DNA microarrays, or peaks in
proteomic spectra) that discriminate well between disease and control
groups is identified so that the responsible features can be subjected to
further laboratory exploration.

In principle, building a good classification model does not require
feature selection. However, when the sample size is small in comparison
to the number of features, feature selection may be necessary before a
classification model can be reliably learned. With a small sample size,
the estimates of parameters of the model may become unreliable and may
cause overfitting, a phenomenon in which each datum is fit so rigidly that
the model lacks flexibility for future data. To avoid overfitting, feature
selection is applied to balance the number of features in proportion to
the sample size. On the other hand, identification of a small panel of
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features for biomarker discovery purposes requires a classification model
so that the discriminative behavior of the panel can be assessed.

The dimensionality of typical genomic and proteomic data sets one has
to analyze surpasses the number of samples collected in typical studies
by a large margin. For example, a typical microarray study can consist
of up to a hundred samples with thousands of gene–expression measure-
ments. Mass spectrometry (MS) proteomic profiling is less expensive
and as a result one can often see data sets with two to three hundred
profiles. MS profiles consist of thousands of measurements. Typically,
’peaks’ are selected among those measurements, and number in the hun-
dreds. In either case, feature selection becomes important for both the
biomarker discovery and interpretive analysis tasks; one has to seek a
robust combination of feature selection methods and classification mod-
els to assure their reliability and success. Finally, feature selection may
be a one–shot process, but typically, it is a search problem where more
than one feature subset is evaluated and compared. Since the number
of possible feature subsets is exponential in the number of constituent
features, efficient feature selection methods are typically sought.

Feature selection methods are typically divided into three main groups:
filter, wrapper and embedded methods. Filter methods rank each feature
according to some univariate metric, and only the highest ranking fea-
tures are used; the remaining features are eliminated. Wrapper algo-
rithms(Kohavi and John, 1998) search for the best subset of features.
To assess the quality of a feature set, these methods rely on and inter-
act with a classification algorithm and its ability to discriminate among
the classes. The wrapper algorithm treats a classification algorithm
as a black box, so any classification method can be combined with the
wrapper. Standard optimization techniques (hill climbing, simulated an-
nealing or genetic algorithms) can be used. Embedded methods search
among different feature subsets, but unlike wrappers, the process is tied
closely to a certain classification model and takes advantage of its char-
acteristics and structure. In addition to feature selection approaches,
in which a subset of original features is searched, the dimensionality
problem can be often resolved via feature construction. The process of
feature construction builds a new set of features by combining multiple
existing features with the expectation that their combination improves
our chance to discriminate among the classes as compared to the original
feature space.

In this chapter, we first introduce the main ideas of four different
methods for feature selection and dimensionality reduction and describe
some of their representatives in greater depth. Later, we apply the meth-
ods to the analysis of one MS proteomic cancer data set. We analyze
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each method with respect to the quality of features selected and stress
differences among the methods. Since our measuring criterion for feature
effectiveness is how well it allows us to classify our samples, we compare
the methods and their classification accuracy by combining them with a
fixed classification method — a linear support vector machine (Vapnik,
1995). In closing, we analyze the results and give recommendations on
the methods.

2. Basic Concepts

Filter Methods

Filter methods perform feature selection in two steps. In the first
step, the filter method assesses each feature individually for its potential
in discriminating among classes in the data. In the second step, fea-
tures falling beyond some thresholding criterion are eliminated, and the
smaller set of remaining features is used. This score–and–filter approach
has been used in many recent publications, due to its relative simplicity.
Scoring methods generally focus on measuring the differences between
distributions of features. The resulting score is intended to reflect the
quality of each feature in terms of its discriminative power. Many scoring
criteria exist. For example, in the Fisher score (Pavlidis et al., 2001),

V (i) =
µ(+)(i) − µ(−)(i)

σ2
(+)(i) + σ2

(−)(i)

the quality of each feature is expressed in terms of the difference among
the empirical means of two distributions, normalized by the sum of their
variances. Table 1.1 displays examples of scoring criteria used in bioin-
formatics literature. Note that some of the scores can be applied directly
to continuous quantities, while others require discretization. Scores can
be limited to two classes, like the Fisher score, while others, such as
the mutual information score, can be used in the presence of 3 or more
classes. For the remainder of this chapter, we will assume our scoring
metrics deal with binary decisions, where the data either belong to a
positive (+) or negative (-) group.

Criteria based on hypothesis testing. Some of the scoring
criteria are related to statistical hypothesis testing and significance of
their results. For example, the t–statistic is related to the null hypothesis
H0 under which the two class-conditional distributions (p(x|y = (+))
and p(x|y = (−))) have the identical mean, that is µ(+) = µ(−). The
degree of violation of H0 is captured by the p–value of the t–statistic
with respect to the Student distribution. As a result, features can be
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Table 1.1. Examples of Univariate Scoring Criteria for Filter Methods. See Appendix
for mathematical definitions of these scores.

Criterion References

Fisher Score (Golub et al., 1999; Furey et al., 2000)

SAM Scoring Criterion (Tusher et al., 2001; Storey and Tibshirani, 2003)

Student t–test (Baldi P, 2001; Gosser, 1908)

Mutual Information (Tzannes and Noonan, 1973)

χ2 (Chi Square) (Chernoff H, 1954; Liu and Setiono, 1995)

AUC (Hanley and McNeil, 1982)

J–measure (Smyth and Goodman, 1992)

J5 Score (Patel and Lyons-Weiler, 2004)

See Appendix (table A.1) for mathematical definitions of these scores.

ranked using the inverse of their p–value. Similarly, one can rank the
features according to the inverse of the p–value of the Wilcoxon rank–
sum test (Wilcoxon, 1945), a nonparametric method, testing the null
hypothesis that the class–conditional densities of individual features are
equal.

Permutation tests. Any differential scoring metric (statistic)
can be incorporated into and evaluated within the hypothesis testing
framework via permutation tests. Permutation (or randomization) tests
define a class of non–parametric techniques developed in the statistics
literature (Kendall, 1945; Good, 1994), that are used to estimate the
probability distribution of a statistic under the null (random) hypothesis
from the available data. The estimate of the probability distribution
of a scoring metric (Fisher score, J–measure, t–score, etc.) under the
null condition allows us to estimate the p–value of the score observed
in the data, similarly to the t–test or Wilcoxon rank–sum test. From
the viewpoint of feature selection, the null hypothesis assumes that the
conditional probability distributions for the two classes (y = (+) or (-))
are identical under a feature x, that is, p(x|y = (+)) = p(x|y = (−));
or equivalently, that the data and the labels are independent, p(x, y) =
p(x)p(y). The distribution of data under the null hypothesis is generated
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Figure 1.1. Permutation Test Algorithm

permutation test
{
Compute the test statistic T for the original data;
For b = 1 to B do {

Permute randomly the group labels in the data;
Compute the test statistic Tb for the modified data;

}
Calculate the p–value of T with respect to the distribution
defined by permutations b as: p = NTb≥T /B;
where NTb≥T is the number of permutations for which
the test statistic Tb is better than T ;

Return p;
}

through random permutations (of labels) in the data. The permutation
test algorithm is shown in figure 1.1. The main cycle of the algorithm
either scans through all possible permutations of labels, or, if this set
is too large, a large number B of permutations is generated randomly.
With sufficient cycles, the distribution of the test statistic under the null
hypothesis can be estimated reliably.

Choosing features based on the score. Differential scores or
their associated p–value scores allow us to rank all feature candidates.
However, it is still not clear how many features should be filtered out.
The task is easy if we always seek a fixed set of k features. In such a case,
the top k features are selected with respect to the ordering imposed by
ranking features by their score. However, the quality of these features
may vary widely, so selecting the features based solely on the order
may cause some poor features to be included in the set. An alternative
method is to choose features by introducing a threshold on the value of
the score. Unfortunately, not every scoring criterion has an interpretable
meaning, so it is unclear how to select an appropriate threshold. The
statistic typically used for this purpose is the p–value associated with
the hypothesis test. For example, if the p–value threshold is 0.05 then
there is a 5% chance the feature is not differentially expressed at the
threshold value. Such a setting allows us to control the chance of false
positive selections. These are features which appear discriminative by
chance.
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Feature set selection and controlling false positives. The
high–dimensional nature of biological data sources necessitates that many
features (genes or MS–profile peaks) be tested and evaluated simultane-
ously. Unfortunately, this increases the chance that false positives are
selected. To illustrate this, assume we measure the expression of 10,000
independent genes and none of them are differentially expressed. De-
spite the fact that there is no differential expression, we might expect
100 features to have their p–value smaller than 0.01. An individual fea-
ture with p–value 0.01 may appear good in isolation, but may become
a suspect if it is selected from thousands of tested features. In such a
case, the p–value of the combined set of the top 100 features selected
out of 10,000 is quite different. Thus, adjustment of the p–value when
performing multiple tests in parallel is necessary.

The Bonferroni correction adjusts the p–value for each individual test
by dividing the target p–value for all findings by the number of findings.
This assures that the probability of falsely rejecting any null hypotheses
is less than or equal to the target p. The limitation of the Bonfer-
roni correction is that it operates under the assumption of independence
and as a result it is too conservative if features are correlated. Two
alternatives to the Bonferroni correction are offered by: (1) the Family–
wise Error Rate method (FWER, (Westfall and Young, 1993)) and (2)
methods for controlling the False Discovery Rate (FDR, (Benjamini and
Hochberg, 1995; Tusher et al., 2001). FWER takes into account the
dependence structure among features, which often translates to higher
power. (Benjamini and Hochberg, 1995) suggest to control FDR instead
of the p–value. The FDR is defined as the mean of the number of false
rejections divided by the total number of rejections. The Significance
Analysis of Microarrays (SAM) method (Storey and Tibshirani, 2003)
is used as an estimate of the FDR. Depending on the chosen threshold
value for the test statistic T , it estimates the expected proportion of
false positives on the feature list using a permutation scheme.

Correlation filtering. To keep the feature set small, the objective
is to diversify the features as much as possible. The selected features
should be discriminative as well as independent from each other as much
as possible. The rationale is that two or more independent features
will be able to discriminate the two classes better than any of them
individually. Each feature may differentiate different sets of data well,
and independence between the features tends to reduce the overlap of the
sets. Similarly, highly dependent features tend to favor the same data
and thus are less likely to help when both are included in the panel. The
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extreme case is when the two features are exact duplicates, in which case
one feature can be eliminated.

Correlation filters (Ross et al., 2000; Hauskrecht et al., 2005) try to
remove highly correlated features since these are less likely to add new
discriminative information (Guyon and Elisseeff, 2003). Various elim-
ination schemes are used within these filters to reduce the chance of
selected features being highly correlated. Typically, correlation filters
are used in combination with other differential scoring methods. For ex-
ample, features can be selected incrementally according to their p–value;
the feature to be added next is checked for correlation with previously
selected features. If the new feature exceeds some correlation threshold,
it is eliminated (Hauskrecht et al., 2005).

Wrapper Methods

Wrapper methods (Kohavi and John, 1998) search for the best feature
subset in combination with a fixed classification method. The goodness
of a feature subset is determined using internal–validation methods, such
as, k–fold or leave–one-out cross–validation (Krus D. J., 1982). Since the
number of all combinations is exponential in the number of features, the
efficiency of the search methods is often critical for its practical accep-
tance. Different heuristic optimization frameworks have been applied to
search for the best subset. These include: forward selection, backward
elimination (Blum and Langley, 1997), hill–climbing, beam search (Rus-
sel and Norvig, 1995), and randomized algorithms such as genetic algo-
rithms (Koza, 1995) or simulated annealing (Kirkpatrick et al., 1983).
In general, these methods explore the search space (subsets of all fea-
tures) starting with no features, all features, or a random selection of
features. For example, the forward selection approach builds a feature
set by starting from an empty feature set and incrementally adding the
feature that improves the current feature set the most. The procedure
stops when no improvement in the feature set quality is possible.

Embedded Methods

Embedded methods incorporate variable selection as part of the model
building process. A classic example of an embedded method is CART
(Classification and Regression Trees, (Breiman et al., 1984)).

CART searches the range of each individual feature to find the split
that optimally divides the observed data into a more homogeneous groups
(with respect to the outcome variable). Beginning with the subsets of
the variable that produces the most homogeneous split, each variable is
again searched across its range to find the next optimal split. This pro-
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cess is continued within each new subset until all data are perfectly fit by
the resulting tree, or the terminal nodes have a small sample size. The
group constituting the majority of data points in each node determines
the classification accuracy of the derived terminal nodes. Misclassifica-
tion error from internal cross–validation can be used to backprune the
decision tree and optimize its projected generalization performance on
additional independent test examples.

Regularization/Shrinkage methods. Regularization or shrink-
age methods (Hastie et al., 2001; Xing et al., 2001) offer an alternative
way to learn classifications for data sets with large number of features
but small sample size. These methods trim the space of features di-
rectly during classification. In other words, regularization effectively
shuts down (or zeros the influence of) unnecessary features.

Regularization can be incorporated either into the error criterion or
directly into the model. Let w be a set of parameters defining a clas-
sification model (e.g., the weights of a logistic regression model), and
let Error(w,D) be an error function reflecting the fit of the model to
data (e.g., least–squares as likelihood–based error). A regularized error
function is then defined as:

ErrorReg(w,D) = Error(w,D) + λ||w||,

where λ > 0 is a regularization constant, and ||.|| is either the L1 or
L2 norm. Intuitively, the regularization term penalizes the model for
nonzero weights so the optimization of the new error function drives
all unnecessary parameters to 0. Automatic Relevance Determination
(ARD, (Neal, 1998; MacKay, 1992)) achieves regularization effects in a
slightly different way. The relevance of an individual feature is repre-
sented explicitly via model parameters and the values of these parame-
ters are learned through Bayesian methods. In both cases, the output of
the learning is a feature–restricted classification model, so features are
selected in parallel with model learning.

Support vector machines. Regularization effects are at work also
in one of the most popular classification frameworks these days: the sup-
port vector machine (SVM) (Burges, 1998; Schölkopf and Smola, 2002).
The SVM defines a linear decision boundary (hyperplane) that separates
case and control examples. The boundary maximizes the distance (also
called margin) in between the two sample groups. The effects of mar-
gin optimization are twofold: only a small set of data points (support
vectors) are critical for the separation; the dimensions unncessary for
separation are penalized. Both of these processes help to fight the prob-
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lem of model overfit. As a result, the SVM offers a robust classification
framework that works very well for situations with a moderately large
number of features and relatively small sample sizes.

Feature construction

Better discriminatory performance can be often achieved using fea-
tures constructed from the original input features. Building a new fea-
ture is an opportunity to incorporate domain specific knowledge into the
process and hence to improve the quality of features. Nevertheless, a
number of generic feature construction methods exist: clustering; linear
(affine) projections of the original feature space; as well as more sophisti-
cated space transformations such as wavelet or kernel transforms. In the
following, we briefly review three basic feature construction approaches:
clustering, PCA and linear discriminative projections.

Clustering. Clustering groups data components (data points or fea-
tures) according to their similarity. Every data component is assigned to
one of the groups (clusters); components falling into the same cluster are
assigned the same value in the new (reduced) representation. Clustering
is typically used to identify distinguished sample groups in data (Ben-
Dor et al., 2000; Slonim et al., 2000). In contrast to supervised learning
techniques that rely heavily on class label information, clustering is un-
supervised and the information about the target groups (classes) is not
used. From the dimensionality reduction perspective, a data point is
assigned a cluster label which is then used as its representation.

Clustering methods rely on the similarity matrix – a matrix of dis-
tances between data components. The similarity matrix can be built
using one of the standard distance metrics such as Euclidean, Maha-
lanobis, Minkowski, etc, but more complex distances based on, for ex-
ample, functional similarity of genes (Speer et al., 2005), are possible.
Table 1.2 gives a list of some standard distance metrics one may use in
clustering.

Clustering algorithms. The goal of clustering is to optimize
intra and inter cluster distances among the components. Two basic
clustering algorithms are: k–means clustering (McQueen, 1967; Ball and
Hall, 1967), and hierarchical agglomerative clustering (Cormack, 1971;
Eisen et al., 1998).

Briefly, the k–means algorithm clusters data into groups by itera-
tively optimizing positions of cluster centers (means) so that the sum
of within-cluster distances (the distances between data points and their
cluster centers) is minimized. Initial positions for cluster centers are gen-
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Table 1.2. Examples of Distance Metrics for Clustering

Metric Formula

Euclidean distance d(r, s) = (xr − xs)(xr − xs)
′

Standardized Euclidean distance d(r, s) = (xr − xs)trace(Σ)
−1(xr − xs)

′

Mahalanobis distance d(r, s) = (xr − xs)Σ
−1(xr − xs)

′

City Block metric d(r, s) =
∑n

j=1 |xrj − xsj |

Minkowski metric d(r, s) = p

√

(

∑n
j=1 |xrj − xsj |p

)

Cosine distance d(r, s) =

(

1− xrx
′
s√

x′
rxr

√
x′
sxs)

)

Correlation distance d(r, s) = 1− (xr−x̄r)(xs−x̄s)
′√

(xr−x̄r)(xr−x̄r)′
√

(xs−x̄s)(xs−x̄s)′

Hamming distance d(r, s) =
#(xrj 6=xsj)

n

Jaccard distance d(r, s) =
#[(xrj 6=xsj)∧((xrj 6=0)∨(xsj 6=0))]

#[(xrj 6=0)∨(xsj 6=0)]

x and x′ denote a column vector and its transpose respectively.
xr and xs indicate the rth and sth samples in the data set, respectively.
xrj indicates the jth feature of the rth sample in the data set.
x̄r indicates the mean of all features in the rth sample in the data set.
Σ is the sample covariance matrix.
The symbol # denotes counts; the number of instances satisfying the associated property.

erated randomly or by using heuristics. The algorithm is not guaranteed
to converge to the optimal solution. On the other hand, hierarchical ag-
glomerative methods work by combining pairs of data entities (features)
or clusters into a hierarchical structure (called a dendrogram). The algo-
rithm starts from unit clusters and merges them greedily (i.e. choosing
the merge which most improves the fit of the clusters to the data) into
larger clusters using an a priori selected similarity measure.

Probabilistic (soft) clustering. The k–means and agglomerative
clustering methods assign every data point into a single cluster. How-
ever, sometimes it may be hard to decide what cluster the point belongs
to. In probabilistic (soft) clustering methods, a data point belongs to
all clusters, but the strength (weight) of its association with clusters
differs by how well it fits cluster descriptions. Typically, the weight has
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probabilistic meaning and defines a probability with which a data point
belongs to a cluster.

To calculate the probability, an underlying probabilistic model must
be first fit to the data. Briefly, data are assumed to be generated from k
different classes that correspond to clusters. Each class has its own dis-
tribution for generating data points. The parameters of these distribu-
tions as well as class (cluster) priors are fit (learned) using Expectation–
Maximization techniques (Dempster et al., 1977). Once the model pa-
rameters are known, the probabilistic weights relating a data point and
clusters are posterior probabilities of the point belonging to classes. A
classic example of a probabilistc model often used in clustering is the
Mixture of Gaussians model (McLachlan et al., 1997), where k clusters
are modeled using k Gaussian distributions.

Clustering features. Clustering methods can be applied to group
either data points or features in the data. When clustering features, the
dimensionality reduction is achieved by selecting a representative feature
(typically the feature that is closest to the cluster center, (Guyon and
Elisseeff, 2003)), or by aggregating all features within the cluster via
averaging to build a new (mean) feature. If we assume k different feature
clusters, the original feature space is reduced to a new k-dimensional
space. An example method of feature clustering is to cluster features
based on intra–correlation, and use the cluster center as a representative.
Closely correlated features are not likely to help when separated, so
grouping them away from more unrelated features will help diversify the
resulting features.

Principal component analysis. Principal Component Analysis
(PCA), (Jolliffe, 1986) is a widely used method for reducing the di-
mensionality of data. PCA finds projections of high dimensional data
into a lower dimensional subspace such that the variance retained in
the projected data is maximized. Equivalently, PCA gives uncorrelated
linear projections of data while minimizing their least square reconstruc-
tion error. Additionally, PCA works fully unsupervised; class labels are
ignored. PCA can be extended to nonlinear projections using kernel
methods (Bach and Jordan, 2001). Dimensionality reduction methods
similar to PCA that let us project high dimensional features into a lower
dimensional space include multidimensional scaling (MDS) (Cox and
Cox, 1994) used often for data visualization purposes or independent
component analysis (ICA) (Jutten and Herault, 1991).
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Discriminative projections. Principal component analysis iden-
tifies affine (linear) projections of data that maximize the variance ob-
served in data. The method operates in a fully unsupervised manner;
no knowledge of class labels is used to find the principal projections.
The question is whether there is a way to identify linear projections
of features such that they optimize the discriminability among the two
classes. Techniques which try to achieve this goal include Fisher’s lin-
ear discriminant (FLD) (Duda et al., 2000), linear discriminant analysis
(Hastie et al., 2001) and more complex methods like partial least squares
(PLS) (Denham, 1994; Dijkstra, 1983).

Take for example, the linear discriminant analysis model. The model
assumes that cases and controls are generated from two Gaussian distri-
butions with means µ(−), µ(+) and the same covariance matrix Σ. The
parameters of the two distributions are estimated from data using the
maximum likelihood methods. The decision boundary that is defined
by data points that give the same probability for both distributions is a
line. The linear projection is defined as:

w = Σ−1(µ(+) − µ(−)),

where µ(−), µ(+) are the means of the two groups and Σ is the covari-
ance for both groups, where p(x|y) ∼ N(µ,Σ).

3. Advantages and Disadvantages

Each of the aforementioned methods comes with advantages and dis-
advantages. The following text briefly summarizes them.

Filter methods:

Advantages: Univariate scores are very easy to calculate and thus,
filter methods have a short running time. If our goal is a predic-
tion, they often perform well in combinations with more robust
classification methods such as the SVM.

Disadvantages: Many differential scoring methods exist, it is un-
clear which one is best for the data set at hand. The features are
analyzed independent of each other. This is a problem if our goal
is to identify a small panel of discriminative features (biomarkers).
Multivariate relations/dependencies must be incorporated through
additional criteria, e.g. correlation filters.

Wrapper methods

Advantages: More comprehensive search of the feature-set space.
The feature set with the best discriminative potential on a fixed
classification method is selected.
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Disadvantages: Running time is much longer than filter methods;
many feature sets need to be analyzed and assessed. In addition,
scoring of feature sets is based on internal cross-validation methods
which lengthens their running time. The reliability of the estimate
of the internal cross–validation error needs to be considered. Low
reliability of the internal validation error in combination with a
large number of subsets examined can be lethal especially in vari-
ous greedy search schemes.

Embedded methods:

Advantages: Features and their selection are tuned to a specific
model. Learning methods which incorporate aspects of regulariza-
tion, like the SVM or regularized logistic regression, can learn very
good predictive models even in the presence of high-dimensional
data. We recommend trying SVM as a first step if the goal is only
to build a predictive model.

Disadvantages: Identification of a small set of features may be
problematic. Backward feature elimination routines (Guyon and
Elisseeff, 2003) can be used to reduce the feature panel to a more
reasonable size.

Feature construction methods:

Advantages: May incorporate the domain knowledge which may
translate to improved feature sets.

Disadvantages: If features are constructed using one of the out-of-
box methods (e.g., PCA) the new features may be hard to interpret
biologically. In addition, many feature construction techniques
(e.g. clustering, PCA, ICA) work in an unsupervised mode, so high
quality features for discriminatory purposes are not guaranteed.

4. Case Study: Pancreatic Cancer

To illustrate some of the advantages and disadvantages of feature
selection methods, we use a data set of MS proteomic profiles for pan-
creatic cancer collected at the University of Pittsburgh Cancer Institute
(UPCI). Since full feature-selection comparison is very hard to do with-
out a full predictive model that combines both the feature-selection and
the classification stages we test feature selection methods in combina-
tion with one classification method — the linear support vector machine
(SVM) (Vapnik, 1995). All classification results presented in the fol-
lowing text were obtained by using the repeated random subsampling
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strategy with 40 different train/test data splits using 70/30 train/test
split ratio. The optimization criterion for the SVM method was a zero-
one loss function, which focuses on improving classification error instead
of sensitivity or specificity. The statistics reported are: ACE (average
test classification error), SN (Sentivity) and SP (Specificity) and their
standard deviations.

Data and preprocessing

The data set consists of 116 MS profiles, with 57 cancer cases (+
group) and 59 controls, matched according to their smoking history, age,
and gender (– group). The data were generated using Ciphergen Biosys-
tems Inc. SELDI–TOF (Surface–Enhanced Laser Desorption/Ionization
Time-of–Flight) mass spectrometry. Compounds such as proteins, pep-
tides and nucleic acids for masses of up to 200 thousand Daltons are
recorded using this technology. Before applying feature selection tech-
niques the data set was preprocessed using the Proteomic Data Analysis
Package (PDAP, (Hauskrecht et al., 2005)). The following preprocessing
steps were applied: (1) cuberoot variance stabilization, (2) local min–
window baseline correction, (3) Gaussian kernel smoothing, (4) range–
restricted intensity normalization, and (5) peak–based profile alignment.
The quality of all profiles were tested beforehand on raw MS profile read-
ings using total ion current (TIC). None of the profiles differed by more
than two standard deviations from the mean TIC, which is our current
quality–assurance/quality—control threshold for sample exclusion. Af-
ter basic preprocessing, peaks in the range of 1500–1650 Daltons were
identified and their corresponding intensities were extracted. 1 This
gave us a data set of 116 samples with 602 peak features.

Filter methods

Basic Filter Methods. Many univariate scoring metrics that as-
sess the individual quality of features were proposed in the literature. An
important question is how the rankings and subsequent feature selection
induced by these metrics vary. Table 1.3 shows the number of overlap-
ping features for the top 20 features selected according to four frequently
used scoring criteria: correlation, Fisher, t–statistic and Wilcoxon’s p–
value measures.

1The region below 1500 Daltons is unsuitable for analysis because of known signal repro-
ducibility problems. The region is often referred to as the junk region. On the other hand,
signals for higher mass-to-charge-ratios are of lower intensity which makes them hard to
separate from the noise. An a priori upper limit is typically set to restrict the search for
signal.
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Table 1.3. Overlap of top 20 features for four different metrics.

Correlation Fisher t–statistics Wilcoxon

Correlation — 18 12 18
Fisher 18 — 11 16
t–statistics 12 11 — 11
Wilcoxon 18 16 11 —

The table shows that different scoring metrics may induce rather dif-
ferent feature orders and as a result, different feature panels. It is very
hard to argue that any one of them is the best. The quality depends
strongly on the classification technique used in the next step, but even
there the story is often unclear, and the best method tends to vary
among the data sets. Table 1.4 illustrates the results obtained using top
20 choices of four scoring methods from Table 1.3 after we combine them
with the linear SVM model. Standard deviations of performance statis-
tics are also given. We see that the best classification error was obtained
using the features selected based on the t–statistic score. While our ex-
perience is that the t–statistic score performs well on many proteomic
data sets, other scoring metrics may often outperform it.

Table 1.4. Results for classifiers based on different feature filtering methods and the
linear SVM. Standard deviations are given in parentheses.

Correlation Fisher t–statistics Wilcoxon

ACE 0.2500 (0.1178) 0.2188 (0.1075) 0.1743 (0.0684) 0.2611 (0.1091)
SN 0.8022 (0.0387) 0.8102 (0.1210) 0.8259 (0.0997) 0.7956 (0.1200)
SP 0.7142 (0.1249) 0.7628 (0.1423) 0.8327 (0.0852) 0.6961 (0.1607)

PPV 0.7229 (0.1452) 0.7580 (0.1265) 0.8179 (0.0881) 0.7115 (0.1358)

Controlling false positive selections. A problem with high
dimensional data is that some features may appear as good discrimi-
nators simply by chance. The problem of false positive identifications
of features is critical for the biomarker discovery task. Clearly, a more
comprehensive analysis and validation of the feature in the lab may in-
cur a significant monetary cost. While positive feature selections may
influence also the generalizations of the predictive model and its clas-
sification accuracy, the classification methods are often more robust to
handle them and the problem of false positive features is less pressing
than for the biomarker discovery applications.
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The false positive selection rate can be controlled via p–value on in-
dividual features, Bonferroni corrected p–value for the panel of features,
or through false discovery rate. Table 1.5 shows the number of features
out of 602 original features selected by each of these methods.

Table 1.5. p–value for t–statistics

original number of features p < 0.05 Bonferroni p < 0.05 FDR 0.2

602 13 0 5

Assuming that all features are independent and random, we expect
to see about 30 false positive features under the simple p–value of 0.05
for each feature. Using this estimate and the fact that we see only 13
features for the p-value of 0.05 would lead us to the conclusion that all
of these are likely obtained by chance. The caveat is that when features
are dependent and correlated the expected numbers are very different.
Indeed, features in this and other proteomic data sets exhibit a large
amount of correlation among the features; so the result in the table is
indicative of such a dependency. The Bonferroni correction typically
leads to a very conservative bound that may be very hard to satisfy.
For example, none of the features in our cancer data passed Bonferroni-
corrected p-value of 0.05. FWER and FDR methods and their thresholds
give better estimates of false positive selections and their rates for the
real–world data and should be preferred over simple and Bonferroni-
corrected p–value thresholding.

When selecting features, our objective is to strike the right balance
between the number of features, the flexibility they may offer when build-
ing multivariate discriminators, and the risk of inclusion of false positive
features. The FWER and FDR methods give better control over risks
of false positives. However, choosing the optimal thresholds for these
techniques is a matter of personal preference. For example, two differ-
ent approaches can be taken. If the selected features are meant only
for use with an automated classification routine, it may be more ac-
ceptable to risk selecting false positives, and thusly the threshold can
be less stringent. On the other hand, if the selected features are to be
investigated more thoroughly (e.g. to analyze them using wetlab tech-
niques), it would be far less acceptable to suggest that false positives
are informative features. In this case, the threshold should be set more
aggressively.

Correlation filters. Biological (genomic and proteomic) data sets
often exhibit a relatively high number of correlations. The correlations
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can be introduced by the technology producing the data or they reflect
true underlying dependencies among measured species. For example,
a peak in a proteomic profile is formed by a collection of correlated
measurements, triple or double charged ions cause the same signal to
be replicated at different parts of the profiles, and finally some peaks
are correlated because they share a common regulatory (or interaction)
pathway.

Selecting two features that are near duplicates, even if they are highly
discriminative, does not help the classification model and its accuracy.
Correlation filtering alleviates the problem by removing features highly
correlated with existing features in the panel. Table 1.6 illustrates the
number of features one obtains by filtering out correlated features at
different maximum allowed absolute correlation (MAC) thresholds from
the original 602 features. We note that the amounts of correlates fil-
tered out at higher thresholds are statistically significantly different (at
p=0.01) from what one would obtain for independent feature sets.

Table 1.6. Effect of correlation filtering

threshold 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

number of features 602 460 247 119 52 22 12 9 6 3 1

Figure 1.2 illustrates the effect of correlation filtering when it is com-
bined with the univariate feature scoring based on the t–statistic. We see
that test errors for smaller feature sets (size 5) are improved if feature
panels are decorrelated. However, for larger feature panels the effect
of feature decorrelation may vanish since some good features that add
some discriminative value to the panel are filtered out. For example,
for 20 features in Figure 1.2 the effect of correlation filtering has disap-
peared and the SVM classifier based on the unrestricted t-statistic score
performs better than classifiers with correlation thresholds of 0.75 and
0.5. This illustrates one of the problems of the method, identification
of an appropriate MAC threshold. We must note that the effect as seen
in Figure 1.2 may be less pronounced on other classification methods
or on other data sets, while in some cases correlation thresholds may
lead to superior performance. These differing outcomes are the results
of tradeoffs of feature quality and overfit processes.

The plain correlation threshold filtering method suffers from a couple
of problems. First, an identification of an appropriate correlation thresh-
old in advance is hard. Moreover, for different feature sizes there appears
to be a different threshold that works best so switching of thresholds may
be appropriate. One solution to this problem is the parallel correlation
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filtering method (Hauskrecht et al., 2005) that works at multiple correla-
tion threshold levels in parallel and uses internal cross–validation meth-
ods to decide on what feature (correlation level) to select next. The per-
formance of the method is compared to the unresticted t-statistic filter
and two correlation filtering methods based on simple MAC thresholds
in Figure 1.2.

Figure 1.2. Effect of correlation filtering on classification errors. Results of correla-
tion filtering on the t-statistic score and SVM are shown.

Wrapper methods

Table 1.7. Wrapper methods with two search algorithms: forward selection and sim-
ulated annealing. Standard deviations are given in parentheses.

602 Greedy Simulated Annealing

ACE 0.1750 (0.0668) 0.1660 (0.0603)
SN 0.8239 (0.1123) 0.8149 (0.1097)
SP 0.8261 (0.1100) 0.8614 (0.0784)

# steps 7037.4 10000

Wrapper methods search for the best subset of features by trying them
in combination with a fixed classification method. However, there is a
natural tradeoff between the quality of the feature set found, and the
time taken to search for it. Table 1.7 displays performance statistics for
two search methods: greedy forward selection and simulated annealing.
The forward selection approach, also called the greedy approach, adds
the feature which improves the set the most. The panel begins empty
and is built incrementally, stopping when no improvement in the feature
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set is possible. Simulated annealing is a randomized algorithm and if it
is left to search long enough all possible combinations may be reached
and evaluated. Thus, simulated annealing may arrive at a better solu-
tion than the greedy method when given enough time. This quality/time
tradeoff is captured in the table. The model based on the greedy forward
selection method leads to average errors of 0.1750 while simulated an-
nealing approaches 0.1660. To reach the result, 7037.4 feature sets were
evaluated on average by forward selection, while simulated annealing
was run for 10000 steps on every train/test split.

Evaluating a new feature set in any wrapper method is done by inter-
nal validation methods, such as k-fold cross–validation or leave–one–out
validation. The overhead incurred by the evaluation step contributes to
the running time of the algorithm. In general, using more internal splits
improves the estimate of the error for each feature set. The price paid for
it is an additional increase in the running time. Despite the downfalls,
the results obtained from wrapper methods powered by various search
heuristics are often quite good, especially when computational time is
not an issue.

Embedded methods

Table 1.8 shows the results of three classification methods with em-
bedded feature selection: CART (Breiman et al., 1984), Regularized
logistic regression (RLR) (Hastie et al., 2001) and Support Vector Ma-
chines (SVM) (Burges, 1998). Each of these methods handles features
differently, and consequently leads to different classification accuracies.
We see that two of the methods, RLR and SVM, achieved results com-
parable or better than filter and wrapper methods. While this is not the
rule, the linear SVM appears to be a very stable method across a large
range of features so we always recommend to try it on the full feature
set.

Table 1.8. Performance statistics for embedded methods. Standard deviations are
given in parentheses.

602 CART Regularized LR SVM

ACE 0.3681 (0.0897) 0.1382 (0.0584) 0.1382 (0.0623)
SN 0.6321 (0.1888) 0.8619 (0.1026) 0.8536 (0.0913)
SP 0.6361 (0.2088) 0.8624 (0.0942) 0.8769 (0.0881)

PPV 0.6270 (0.1442) 0.8561 (0.0933) 0.8617 (0.0952)

Embedded methods may not be optimal, if we want to use them for
biomarker discovery, that is, if our objective is to find a small set of
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original features with a good discriminatory performance. The embed-
ded methods may rely on too many features so a follow-up selection of
a smaller subset is necessary. Wrapper methods based on the backward
feature elimination (Guyon and Elisseeff, 2003) achieve this by gradually
eliminating the features that affect the performance the least.

Feature construction methods

To illustrate feature construction methods we use three unsupervised
methods: sample clustering, feature clustering and PCA projections, all
aimed to reduce the dimensionality of data. The results of these methods
in combination with the linear SVM are in table 1.9.

Table 1.9. Construction methods: Sample clustering using squared Euclidian dis-
tance, feature clustering using correlation coefficient, and PCA. Standard deviations
are given in parentheses.

602 sample clustering feature clustering PCA projections

ACE 0.4525 (0.0810) 0.2104 (0.0652) 0.1681 (0.0594)
SN 0.4721 (0.1604) 0.7932 (0.1426) 0.8223 (0.0984)
SP 0.6444 (0.1633) 0.7968 (0.0920) 0.8492 (0.0842)

The first entry in the table (sample clustering with Euclidean dis-
tance) illustrates the major weakness of clustering methods: the clus-
tering does not give reasoning as to why the data components group
together, other that their distance is close, which obviously depends on
the choice of the metric. Thus, one has to assure that the distance
selected is not arbitrary and makes sense for the data and the predic-
tion task. The result for clustering of features based on the correlation
metric also supports this point. There are many feature correlates in
the proteomic data set, so grouping the features based on their mutual
correlation and replacing the features in each cluster with a feature cor-
responding to the cluster center tends to eliminate high correlates in
the new (reduced) data. This is very similar in spirit to the correla-
tion filtering method. The difference is that the correlation filtering is
closely combined with and benefits from the univariate score filtering,
while correlation clustering works fully unsupervised.

PCA constructs features using linear projections of complete data.
Since PCA arranges projections along uncorrelated axes, it helps to
relieve us from identifying feature correlates. As a result, we see an
improvement in classification error over some other construction and fil-
tering methods. Note that PCA can be a good “one shot” technique,
avoiding necessities like the choice of the number of clusters, k, in k–
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means clustering, or scoring metric in filtering methods. The effort saved
by not choosing parameters is in exchange for knowledge about a tar-
getable panel of biomarkers, but PCA can still be convenient if the only
interest is constructing a predictive model.

Summary of analysis results and recommendations

There are multiple feature selection / dimensionality reduction meth-
ods one may apply to reduce the feature size of the data and make it
’comparable’ to its sample size. Unfortunately, there is no perfect recipe
for what method to choose but here are some guidelines.

Having prior information about how features can be related to the
prediction task will always help feature selection and its subsequent
application. So whenever possible try to use this information. For
example, when the biological relevance of features can be ascer-
tained, the potentially irrelevant or obvious features can also be
eliminated.

In the presence of no prior information, more generic information
can be used for steering feature selection in the right direction.
The effect of a feature on the target class and the presence of
multivariate dependencies (e.g. correlations) among feature can-
didates appear to be the most important ones. The importance
of a feature is captured by a univariate scoring metric. Dealing
with highly correlated features, either by grouping them or elimi-
nating redundancies, can help the selection process by narrowing
the choice of features.

Feature selection coupled with more robust classification methods,
like SVM, can perform extremely well on all features. Backward
feature elimination methods can be applied if we would like to
identify a smaller panel of informative features.

The feature selection method applied to data does not have to
match a single method. A combination of feature selection meth-
ods may be beneficial and may work much better (Xing et al.,
2001). For example, it may help to exclude some features outright
with a basic filtering method by removing the lowest–scoring fea-
tures and apply other methods (e.g. wrapper or PCA methods)
only on the remaining features.

Since there are many feature selection methods, one may be tempted
to try many of them in combination with a specific classifier and pick the
one that gives the best test-set result post-hoc. Note that in such a case
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the error is biased and does not objectively report on the generalizability
of the approach. Model selection methods based, for example, on an
internal cross-validation loop should be applied whenever a choice out
of many candidates is allowed.

In closing, it is important to note that the selection of the feature
selection technique should first be driven by prior knowledge about the
data, and then by the primary goal you wish to accomplish by analyzing
the data: obtain a small, easy to interpret, feature panel or build a
good classification model. Feature selection techniques vary in their
complexity and interpretability, and the issues discussed above must be
taken into careful consideration.

5. Conclusions

In this chapter, we have presented four basic approaches to feature
selection and dimensionality reduction. Filter, wrapper, and embedded
methods work with the available features and choose those which ap-
pear important. In slight contrast, feature construction methods build
new features which can be more powerful than previous ones. To dis-
cuss the entire gamut of feature selection methods would be exhaus-
tive, as researchers must constantly meet their needs of analyzing high–
dimensional data. The techniques covered here are among the most
effective for analyzing genomic and proteomic data, in terms of building
predictive models and developing biologically relevant information.
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Appendix

Filtering Methods

Table A.1. Formulae for popular filter scores

Filter Name Formula

Fisher Score score(i) =
(µ+(i)−µ−(i))2

(σ+(i))2+(σ−(i))2

Student t–test score(i) = (µ+(i)− µ−(i))/

√

σ2
+

n+
+

σ2
−

n−

Mutual Information score(X) =
∑

x

∑

y p(X = x, Y = y) · log p(X=x,Y=y)
p(X=x)·(Y=y)

(Chi–Square)χ2 score(X) =
∑

x

∑

y
(p(X=x,Y=y)−p(X=x)·p(Y=y))2

p(X=x)·p(Y=y)

AUC score(i) =
∫

ROC Curve for feature i

J–measure score(X) =
∑

x p(X = x|Y = 0) − p(X = x|Y = 1) · log
p(X=x|Y =0)
p(X=x|Y =1)

J5 Score score(i) =
µ+(i)−µ−(i)

1
m

∑
m
j=1

|µ+(j)−µ−(j)|

SAM scoring criterion. The standard SAM technique is meant to be used
in a permutation setting, however, the scoring criteria can still be used for filtering
methods.

score(i) =
µ+(i)−µ−(i)

s(i)+s0

The correcting constants s(i) and s0 are computed as follows:

s(i) =
√

(1/n+)+(1/n−)

(n1+n2−2)

[
∑n+

j=1(xj(i) − µ+(i))2 +
∑n−

j=1(xj(i)− µ−(i))2
]

s0 = 1 for purposes of simplicity.
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