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Abstract—This paper studies linear quadratic games with set
up costs monotonic on the number of active players, namely,
players whose action is non-zero. Such games arise naturally in
joint replenishment inventory systems. Building upon a prelim-
inary analysis of the properties of the best response strategies
and Nash equilibria for the given game, the main contribution is
the study of the same game under large population. Numerical
illustrations are provided.

I. INTRODUCTION

In this paper, we study linear quadratic games with set

up costs monotonic on the number of active players, namely,

players whose action is non-zero. Such games arise naturally

in multi-retailer inventory application as shown in a previous

work of the same authors [1].

In the first part of this paper, we analyze some properties of

the best response strategies. In particular, we show that best

response strategies are non-idle in the sense that a player never

switches from being inactive to active for fixed behaviors of

the other players (fixed set up costs). Non-idleness is used to

derive an iterative procedure to compute Nash equilibria.

We then turn to consider large population games and in

doing this we link our study to mean field games [2] [3] [4].

It turns out that most properties enjoyed by the game with

finite players still hold when the number of players tends to

infinity. This preliminary consideration allows us to claim that

fixed points exist and that these are associated to mean field

equilibria.

The paper is organized as follows. In Section II, we in-

troduce the game. In Section III we analyze some properties

of best response strategies. In Section IV, we discuss Nash

equilibria. In Section V, we consider the game with large

population and illustrate the mean field approach. In Sec-

tion VI, we provide numerical illustrations and conclude in

Section VII.

Notation. We denote by P = {1, 2, . . . , n} a set of n players.

We use index i to refer to the generic ith player. Likewise,

index −i refers to all players other than i. We use R+ to

denote the set of non-negative reals. Open and closed intervals

between scalars a and b are denoted by [a, b] and (a, b)
respectively. We use [0, T ] to denote a finite horizon from 0 to

T . Given a function of time φ(·) : [0, T ) → R, we denote by

φ(t) its value at time t ∈ [0, T ). We use φ[ξ](·) to express the

dependence of the function on a given parameter or function ξ.

II. GAME DEFINITION

Each player i ∈ P is characterized by the state variable

xi(·) ∈ R, the initial state x0
i ∈ R, the measurable control

t 7→ ui(t), taking value, for all t ∈ [0, T ), in the set R. The

state variable evolves according to the dynamics

{

ẋi(t) = ui(t), t ∈ [0, T )

xi(0) = x0
i

. (1)

Let us also introduce the measurable opponents’ control t 7→
u−i(t), taking value, for all t ∈ [0, T ), in the set Rn−1 and

denote the sets for the measurable controls u and u−i by

Ui =
{

ui : [0, T ) → R

∣

∣

∣
ui measurable

}

,

U−i =
{

u−i : [0, T ) → R
n−1

∣

∣

∣
u−i measurable

}

.
(2)

Let K, α, and β be given positive constants; δ : R → {0, 1}
be defined as in (3) and a : Rn−1 → R+ as in (4) where b is

a constant greater than 0:

δ(ui(t)) =

{

0 if ui(t) = 0,

1 otherwise;
(3)

a(u−i(t)) = b+
1

n

∑

j∈P

δ(uj(t)). (4)

The ith cost function is then

Ji(x
0
i , ui, u−i) =

∫ T

0

(

Kδ(ui(t))
a(u

−i(t))
+ xi(t)

2

+ αui(t)
2
)

dt+ βxi(T )
2
.

We say that a player is active at time t if its control ui(t)
is non-null. Then, the above cost function implies that each

player i ∈ P pays for its state norm xi(t)
2. In addition,

if active, it pays both a fixed cost
Kδ(ui(t))
a(u

−i(t))
and a variable

cost αui(t)
2 for implementing its strategy. Observe that the

fixed component of the cost is distributed among all the active

players.



III. PROPERTIES OF NON-DOMINATED STRATEGIES

Let the set of the non-anticipating strategies for the first

player be

M =
{

µi = µi[x
0
i , ·] : U−i → Ui

∣

∣

∣

ua
−i(s) = ub

−i(s)∀s ∈ [0, t] =⇒
µi[x

0
i , u

a
−i](s) = µi[x

0
i , u

b
−i](s)∀s ∈ [0, t],

∀ua
−i, u

b
−i ∈ U−i, ∀t ∈ [0, T )

}

.

(5)

Hereafter, we consider only strategies µi[x
0
i , u−i] such that

1) µi[x
0
i , u−i](t) = 0 or sign(µi[x

0
i , u−i](t)) =

−sign(xi(t)) where xi(t) is solution of
{

ẋi(t) = µi[x
0
i , u−i](t), t ∈ [0T )

xi(0) = x0
i

, (6)

2) µi[x
0
i , u−i] is piece-wise continuous.

There is no loss of generality in such a choice as, given the

player i dynamics and cost, for no reason i would control its

state so to increase its state norm.

We say that a strategy µi[x
0
i , u−i] is non-idle if, for each

interval [t1, t2], 0 ≤ t1 < t2 ≤ T in which the set up cost
K

a(u
−i(t))

is non-decreasing, ui(t) := µi[x
0
i , u−i](t) > 0 for

all t1 ≤ t ≤ t1 +∆t and ui(t) = 0 for all t1 +∆t < t ≤ t2,

for some 0 ≤ ∆t ≤ t2−t1. Then, a player i that implements a

non-idle strategy, over the considered interval, is either always

active or is always inactive or is first active and then inactive,

but in no case it remains some time inactive before becoming

active. Hereafter, we define switching time instant, the time

in which a non-idle strategy u(t) becomes non-active, i.e., the

time inf{t : u(t) = 0}.

The following two lemmas prove that a non-dominated

strategy for a player i is non-idle and that the instantaneous

set up cost paid by an active player cannot decrease over time.

Lemma 1: A strategy that is not non-idle is dominated.

Proof: Given a time interval [t1, t2], 0 ≤ t1 < t2 ≤
T where K

a(u
−i(t))

does not decrease, consider two strate-

gies µa
i [x

0
i , u−i] and µb

i [x
0
i , u−i] (see Fig. 1) such that

µa
i [x

0
i , u−i](t) = µb

i [x
0
i , u−i](t) for all t 6= [t1, t2] and







µa
i [x

0
i , u−i](t) = 0, t ∈ [t1, t1 +∆t)

µa
i [x

0
i , u−i](t) 6= 0, t ∈ [t1 +∆t, t2)







µb
i [x

0
i , u−i](t) = µa

i [x
0
i , u−i](t+∆t), t ∈ [t1, t2 −∆t)

µb
i [x

0
i , u−i](t) = 0, t ∈ [t2 −∆t, t2)

.

Denoting ul
i the control where ul

i(t) := µl
i[x

0
i , u−i](t) and

the label l ∈ {a, b}, we prove that control ua
i is dominated by

ub
i .

To see this, let us denote by xi(t1) =
∫ t1

0
ua
i (t)dt +

x0
i =

∫ t1

0
ub
i (t)dt + x0

i , and xi(t2) =
∫ t2

0
ua
i (t)dt + x0

i =
∫ t2

0
ub
i (t)dt+ x0

i . In the following, we prove that

Ji(x
0
i , u

a
i )− Ji(x

0
i , u

b
i )) > 0. (7)

Indeed, the costs induced by the two strategies are equal

for 0 ≤ t ≤ t1 and t2 ≤ t ≤ T , as in such interval the two

strategies assume the same values and induce the same states

for the player.

Then consider the interval t1 ≤ t ≤ t2, the cost paid by ua
i

is
∫ t1+∆t

t1

xi(t1)
2dt+

∫ t2

t1+∆t

K

a(u−i(t))
dt+

+

∫ t2

t1+∆t

αua
i (t)

2dt+

∫ t2

t1+∆t

xi(t)
2dt.

Differently, the cost paid by ub
i is

∫ t2−∆t

t1

xi(t)
2dt+

∫ t2−∆t

t1

K

a(u−i(t))
dt+

+

∫ t2−∆t

t1

αua
i (t+∆t)2dt+

∫ t2

t2−∆t

xi(t2)
2dt.

Now, note that
∫ t2

t1+∆t
K

a(u
−i(t))

dt ≥
∫ t2−∆t

t1

K
a(u

−i(t))
dt since

K
a(u

−i(t))
does not decrease for t1 ≤ t ≤ t2. In addition,

observe that
∫ t2

t1+∆t
ua
i (t)

2dt =
∫ t2−∆t

t1
ua
i (t + ∆t)2dt, and

∫ t2

t1+∆t
xi(t)

2dt =
∫ t2−∆t

t1
xi(t)

2dt, then the inequality (7)

holds true, as it becomes

Ji(x
0
i , u

a
i )− Ji(x

0
i , u

b
i )) ≥ (xi(t1)

2 − xi(t2)
2)∆t > 0.

Hence, the lemma is proved.

Fig. 1. Qualitative plot of the state evolution with strategies µa

i
[x0

i
, u−i]

(solid) and µb

i
[x0

i
, u−i] (dashed) for t ∈ [t1, t2] used in the proof of Lemma

1.

Lemma 2: If all the players play non-dominated strategies,
K

a(u
−i(t))

does not decrease for all i ∈ P and all 0 < t < T .

Proof: The value K
a(u

−i(t))
decreases for some player i

and some 0 < t < T , if there is at least another player j that

in tj switches from being inactive to being active.

Let us first prove the result under the assumption that no

more than one player can become active at each time instant.

Then, there exists a value t1 ≥ 0, a value ∆t > 0, and an

interval 0 ≤ t1 < t1 + ∆t = tj < t2 < T , such that

player j is first inactive and then active even if K
a(u

−j(t))

remains constant. Then, by Lemma 1, player j cannot be

playing a non-dominated strategy.

Given the above argument, for K
a(u

−i(t))
to decrease for

some player i, we must assume that a set S of players, with



|S| ≥ 2, coordinates to switch from being inactive to being

active at time tj > 0. Even in this case, there exists a value

t1 ≥ 0, a value ∆t, and an interval 0 ≤ t1 < t1+∆t = tj < T ,

such that K
a(u

−s(t))
remains constant, for all s ∈ S. Following

the same line of reasoning of Lemma 1, it is immediate

to prove that strategies that coordinate the switch at time

t1 induce less costs for all the players in S and then they

dominate the current strategies (that coordinate the switch at

time tj). We can conclude that the strategy that coordinates

the switch at time tj cannot be a non-dominated one.

We define switching feedback strategy at τ any control ui[τ ]
that satisfies:

ui[τ ](t) := µi[x
0
i , u−i](t)

=

{

f(t, τ)xi(t) for 0 ≤ t ≤ τ

0 for τ < t ≤ T
.

(8)

In the hypotheses of the above two lemmas, the following

corollary holds.

Corollary 1: For all τ such that 0 ≤ τ ≤ T and for

each player i there exists a unique non-dominated switching

feedback strategy ui[τ ] as in (8).

Proof: For all τ such that 0 ≤ τ ≤ T , the non-dominated

strategy is

ui[τ ](t) =

{

ũi(t) for 0 ≤ t ≤ τ

0 for τ < t ≤ T
,

where t 7→ ũi(t) solves the problem below:

ũi := argmin{
∫ τ

0

(
K

a(u−i(t))
+ xi(t)

2 + αui(t)
2)dt

+((T − τ) + β)xi(τ)
2}

= argmin{
∫ τ

0

(xi(t)
2 + αui(t)

2)dt

+((T − τ) + β)xi(τ)
2}.

The equality holds as the value of K
a(u

−i(t))
is independent of

ũi(t). In addition, if x0
i > 0, the second problem, because of

the quadratic structure of the costs, presents a unique optimal

continuous solution of type ũi(t) = f(t, τ)x(t). The latter

strategy is independent of the fixed cost and is different from

zero for 0 ≤ t ≤ τ , as it can be directly verified explicitly

solving the optimization problem. In this context note that this

problem is a quadratic control problem that can be analytically

solved using the maximum principle or a differential Riccati

equation.

Hereafter, for any realization of u−i and therefore K
a(u

−i(t))
,

we say that the best response strategy of player i is the

switching feedback control at t∗i defined as:

ui[t
∗
i ] := argmin

ui[τ ]:0≤τ≤T {J(xi
0,ui[τ ], u−i)}

=: µ∗
i [x

0
i , u−i].

(9)

Note that a strategy solution of (9) always exists and is unique,

as it can be verified analytically that J(xi
0,ui[τ ], u−i) is a

continuous strictly convex function of τ . In case of multiple

solutions, we observe that an immediate consequence of the

above lemma is that the corresponding state trajectories do not

intersect. Then, in the rest of the paper, we consider as best

response strategy only the one that defines the state trajectory

with minimal value for 0 ≤ t ≤ T .

The next lemma relates the switching times of two different

players.

Lemma 3: Given two players i and j, such that x0
i ≥ x0

j >
0, if uj [t

∗
j ] is a best response strategy for player j, then all

the strategies of player i ui[τ ] where τ < t∗j are dominated.

Proof: The statement of this lemma can be directly veri-

fied by explicitly determining the values of J(x0
i ,ui[τ ], u−i)

and J(x0
j ,uj [τ ], u−i) and observing that J(x0

i ,ui[τ ], u−i)
decreases for τ ∈ [0, t∗j ] as long as J(x0

j ,uj [τ ], u−j) decreases

in the same interval. The latter is true as uj [t
∗
j ] is the best

response strategy for player j.

The above lemma can be rephrased by saying that according

to their best responses if player j is active then player i is

active too.

The next theorem states under which condition a player

active a time t = 0 becomes inactive in a following time

instant. Specifically, it points out the dependence of the

switching time instant of a non-dominated strategy on the

value of the fixed cost.

Theorem 1: According to a non-dominated strategy, player

i is active as long as the instantaneous set up cost satisfies the

following condition

Kα

a(u−i(t))
≤ (((T − t) + β)xi(t))

2. (10)

When the above condition is satisfied, a non-dominated strat-

egy is bounded as in (11), where γ := −((T − t) + β)xi(t)
and ∆ := (((T − t) + β)xi(t))

2 −Kα/a(u−i(t)):

γ −
√
∆

α
≤ ui(t) ≤

γ +
√
∆

α
. (11)

Proof: We analyze under which circumstances player i,
active at time t, remains so for a further interval time ∆t > 0.

Then, let us look at interval [t, t+∆t] and consider a non-null

strategy, where u(t) > 0, and a null strategy, with u(t) = 0,

for t ∈ [t, t+∆t]. Let us compare the cost to go from t to T
induced by such strategies. The cost to go of the null strategy

is
∫ t+∆t

t

xi(t)
2dτ +

∫ T

t+∆t

xi(t)
2dτ + βxi(T )

2.

Similarly, the cost to go of the non-null strategy is the one

displayed below, with ∆xi =
∫ t+∆t

t
ui(τ)dτ :

∫ t+∆t

t

(

K

a(u−i(τ))
+ αui(τ)

2 + xi(τ)
2

)

dτ

+

∫ T

t+∆t

(xi(t) + ∆xi)
2(t)dτ + β(xi(t) + ∆xi)

2.

Then, we compute the difference of the two costs for ∆t → 0,

to obtain
(

K

a(u−i(t))
+ αui(t)

2

)

dt+2(T − t)xi(t)dxi +2βxi(t)dxi.



Since dxi = ui(t)dt, after dividing by dt the latter can be

rewritten as

K

a(u−i(t))
+ αui(t)

2 + 2(T − t)xi(t)ui(t) + 2βxi(t)ui(t).

Hence, the non-null strategy provides a lower cost than the

null strategy, and therefore we would rather have ui(t) > 0
in t, if and only if the above difference is non-positive, that

is if αu2
i (t) + 2((T − t) + β)xi(t)ui(t) +

K
a(u

−i(t))
≤ 0. In

turn, this last inequality holds if and only if conditions (10)

and (11) are satisfied.

An immediate consequence of the above theorem is that a

player is certainly never active if Kα > (b+ 1− 1/n)((T +
β)x0

i )
2.

Lemma 3 also implies that if all the players j 6= i play their

best responses, and using u−i[t
∗
−i] to denote their set of best

response strategies in compact form, then it holds

Kα

a(u−i[t∗−i](t
∗
i ))

= (((T − t∗i ) + β)xi(t
∗
i ))

2. (12)

IV. NASH EQUILIBRIA

In this section, we show how to determine a set of Nash

equilibria strategies for players in P under the assumption

that 0 < x0
1 ≤ x0

2 ≤ . . . ≤ x0
n. To this end, we heavily exploit

Lemma 3 to determine the best response of the players.

Preliminarily, for each player i let us define K̂i :=
K

b+n−i+1

n

and t̂i the time instant, if exists, for which by applying a

switching strategy ui[t̂i] the following equality holds

K̂iα = (((T − t̂i) + β)xi(t̂i))
2. (13)

If no t̂i satisfies the above condition and furthermore if

K̂iα > ((T + β)x0
i )

2, then we set t̂i = 0, otherwise if

K̂iα < ((T + β)x0
i )

2 then we set t̂i = T . Note that ui[t̂i]
is the best response strategy for player i if K

a(u
−i(t̂i))

= K̂i,

that is, if at the switching time instant the only active players

are the ones with state greater than or equal to xi(t̂i), or, that is

the same, as the trajectories of best strategies cannot intersect,

the only active players are the ones with initial state greater

than or equal to x0
i . In other words, t̂i is the last time instant

in which it is convenient for player i to remain active even if

there are only other n− i active players.

Lemma 3 implies that if all the players play their best

responses, then strategy u1[t
∗
1] for player 1 must satisfy:

K

a(u−1[t∗−1](t))
=

{

K
b+1 =: K̂1 if 0 ≤ t ≤ t∗1

0 if t∗1 < t ≤ T
.

From the latter condition, and invoking conditions (12)-(13),

we can infer that t∗1 = t̂1 and also that player 1 has a unique

non-dominated strategy u1[t
∗
1] = u1[t̂1].

Let us now consider the generic player i > 1. It holds

t∗i = max{t∗i−1, t̂i}. (14)

Indeed, Lemma 3 implies that player i must be active at least

as long as player i−1 is active, hence t∗i ≥ t∗i−1. Lemma 3 also

implies that if t∗i > t∗i−1, then in t∗i the only active players

are the ones with state greater than or equal to xi(t
∗
i ), this

in turn implies that t∗i is either equal to t∗i−1 or equal to t̂i,
that is that player i can consider only two strategies ui[t

∗
i−1] or

ui[t̂i]. Finally, observe that player i chooses ui[t̂i], if t̂i > t∗i−1

because it is convenient for player i to remain active even if

only other n− i players are active after t∗i−1.

The above argument points out how it is easy to practically

determine Nash equilibrium strategies ui[t
∗
i ] of the game under

study. Indeed, the strategy of player 1 can be individuated

without knowing the strategies of the other players, then,

recursively, the strategy of player i can be derived only on

the basis of the strategies of the previous i− 1 players.

V. LARGE NUMBER OF PLAYERS

Let us now reformulate our game from a mean field per-

spective. To this end, let m(x, t) be the distribution of the

players’ states at time t. Hereafter, we always assume that the

support of m(x, t) is a subset of R+. Let us also define the

function ã(·) : Rn−1
+ 7→ R as ã(x−i) := b +

∫ +∞

xi(t)
dm(x, t).

Then, we can rewrite K̂i as

K̂i =
K

ã(x−i)
. (15)

The considerations over the state trajectories that precede

Lemma 3 imply that
∫ +∞

xi(t)
dm(x, t) =

∫ +∞

x0
i

dm(x, 0) is

invariant over time and, indeed, the arguments in Section IV

allow to determine Nash equilibrium strategies only on the

basis of the initial state distribution.

We are interested in determining the generic player best

strategy in presence of a large number of players. Also, in

the same context, we are interested in determining the evo-

lution over time of the players’ state cumulative distribution

Q(y, t) :=
∫∞

y
dm(x, t).

A. Generic player i best strategy

Let us first consider the generic player i best strategy.

The recursive equation (14) allows player i to determine the

switching time instant t∗i of its best strategy ui[t
∗
i ] and hence

to individuate the strategy itself. Unfortunately, equation (14)

is of no practical use in presence of a large number of players

as it would force player i to wait for the decision of all the

players from 1 to i−1 before being able to compute t∗i . For this

reason, player i may decide to play an approximatively optimal

strategy ui[t̃
∗
i ] based on an estimate t̃∗i of t∗i . In particular, we

observe that we may rewrite equation (14) as

t∗1 = max{t̂i,max
j<i

{t̂j}}.

Then, for any subset S ⊆ {1, 2, . . . , i− 1}, the value

t̃∗i = max{t̂i,max
j∈S

{t̂j}} ≤ t∗i

is an estimate, and in particular a lower bound, of the switching

time instant t∗i . Needless to say that the t̃∗i becomes a better

and better estimate of t∗i , and hence ui[t̃
∗
i ] a better and better



approximation of the best strategy ui[t
∗
i ], as the subset S

includes more and more elements of {1, 2, . . . , i− 1}.

The above kind of approximate strategy requires that player

i communicates with the players in S to acquire the values

of t̂j . Player i can play a different approximate strategy that

just needs the observation of the behavior of player i − 1 as

described in the following.

Player i remains active as long as i − 1 is active. Then,

at the switching time instant ti−1 of i − 1, player i decides

whether it is convenient to remain active or not and for how

long. If all the players use such an approximate strategy, this

approximation identifies the best strategy from the switching

time instant of i−1 on. Indeed, from such time instant player i
can determine its best strategy based on the number of active

players: all the players from 1 to i − 1 are not active any

more, viceversa, all the players from i+ 1 to n remain active

at least as long as i is active. Unfortunately, player i cannot

play its best strategy until the switching time instant of i− 1
as it cannot a priori know its value. As the optimal choice

would be a strategy of type ũi(t) = f(t)x(t), player i can

approximate such a strategy, as an example fixing the value

of f(t) to a constant.

B. Evolution of the cumulative distribution

We now study how Q(y, t) =
∫∞

y
dm(x, t) evolves over

time. Specifically, as the trajectories of players with different

initial states do not cross, it must satisfy the transport equation

∂

∂t
Q(y, t) = −u(y, t)

∂

∂y
Q(y, t), (16)

where u(y, t) is the control applied at time t by a player with

state x(t) = y.

As the best strategy of a player depends only on its initial

state, we observe that, for each initial state x0 and time instant

t we can write x(t) − x0 =
∫ t

0
ũ(τ)dτ , where ũ is the best

strategy of a player with initial state x0. Then the solution

of (16) is

Q(y, t) = Q(y −
∫ t

0

ũ(τ)dτ, 0),

as it can be directly verified computing the partial derivatives

of Q(y, t) and exploiting the fact that ũ(t) = u(x(t), t).
The above results generalize to all the cases in which players

choose strategies that depend only on the initial states. We also

observe that the more the time to go T − t gets closer to 0

the higher must be the state of a player for being convenient

for the player to be active. Formally, there exists an increasing

function λ : [0, T ] → R such that

u(y, t) =

{

0 for y ≤ λ(t)

f(t)y for y > λ(t)
.

Hence, we can rewrite Q(y, t) as

Q(y, t) =







Q(y −
∫ t

0
ũ(τ)dτ, 0) for 0 ≤ t ≤ λ−1(y)

Q(y, λ−1(y)) for λ−1(y) < t ≤ T
.

n T α β K xi(0) τ
200 20 20 1 1600 [0, 150] 1, 1.5, . . . , T

TABLE I
SIMULATIONS DATA.

VI. NUMERICAL ILLUSTRATIONS

In this section we provide numerical illustrations for a large

number of players evolving according to system (1) and with

simulations data as reported in Table I.

In particular, the number of players is n = 200 and the

horizon is T = 20.

The parameters appearing in the cost (5) are set as follows:

α = 20, β = 1, and K = 1600. Initial states xi(0) for

all i are uniformly distributed over the interval [0, 150]. We

also discretize the set of possible switching times and so

τ ∈ {1, 1.5, . . . , T}.

The Algorithm used to numerically illustrate the players’

behavior accepts the simulations data as input and returns the

best response strategies ui[t
∗
i ] as in (9) and the associated state

distribution dm(x, t).
The algorithm is designed as follows. First, we initialize the

state by using the Matlab in-built functions rand to generate

a realization of the random variable x(0) and sort to reorder

the agents for increasing states.

For every possible value of the switching time τ ∈
{1, 1.5, . . . , T}, and for all players i = 1, . . . , n, we compute

the optimal (we say optimal as for fixed τ the strategy ui[τ ]
is independent of the other players’ behaviors) strategy ui[τ ]
as in (8).

To do this, we solve the following differential Riccati

equation in the scalar variable p(t) t ∈ [0, τ ]:

ṗ(t) =
1

2α
p(t)2 − 2, p(τ) = 2(T − τ) + β.

The solution of the above ordinary differential equation with

boundary value on final time is obtained using the Matlab

in-built function ode45 with step size 0.1. Function f(t, τ)
appearing in (8) is then derived by setting f(t, τ) = − 1

2αp(t).
As a result we have ui[τ ](t) = − 1

2αp(t)xi(t) for all t ∈ [0, τ ].
We also compute the cost associated to each ui[τ ] as

illustrated in Fig. 2. From Fig. 2 one observes that the costs

are convex and increasing on the initial state value xi(0)
(higher curves correspond to higher xi(0)). Also the minimum

is increasing on the initial state value xi(0) and this is in

accordance with the fact that the players’ trajectories preserve

their order through time as recalled repeatedly throughout the

paper.

For every player i = 1, . . . , n, we then extract by brute force

comparison, the strategy ui[t
∗
i ] as in (9). Hence, we simulate

the state evolution with ui[t
∗
i ] and illustrate the results in

Fig. 3. One can observe that for most of the players, especially

those with a higher initial state, the switching time t∗i is around

15. Players usually stop before reaching zero as expected in

consequence of the presence of a fixed cost K in the cost



Algorithm

Input: Simulations data
Output: best response strategies ui[t

∗

i
] (9) and associated

state distribution dm(x, t).
1 : Initialize state x(0)← rand[0, 150],
2 : for τ = 1, 1.5, . . . , T do

3 : for player i = 1, . . . , n do

4 : compute ui[τ ] (8) and associated cost,
5 : end for

6 : end for

7 : for player i = 1, . . . , n do

8 : extract ui[t
∗

i
] as in (9);

simulate state evolution with ui[t
∗

i
];

compute distribution dm(x, t).
9 : end for

function. A player with a state relatively close to zero at a

time t ≈ T (t is approaching the end of the horizon T ) will

be inactive to avoid paying the fixed cost.

Finally, we compute the distribution dm(x, t) at three

different times, t = 0, T/5, T , and display the results in

Fig. 4. One observes that at t = 0 (top) the players are

uniformly random distributed over the interval [0, 150]. For

t = 4 (approximately one fifth of the horizon, i.e., t = T/5)

players are all distributed over the interval [0, 60] (middle).

For t = 20 (end of the horizon) all players have reached an

equilibrium state close to but different from zero as evidenced

by the peaks of dm(x, T ) (bottom).

Fig. 2. Cost of switching feedback strategies at τ , ui[τ ] as in (8), for
different values of τ = 1, . . . , T .

VII. CONCLUSIONS

Inspired by joint replenishment inventory systems, we have

introduced linear quadratic games with set up costs monotonic

on the number of active players, namely, players whose action

is non-zero. We have first analyzed the properties of the best

response strategies and Nash equilibria for the given game.

The obtained results are extended to the same game under

large population.

Fig. 3. Time plot of state x(t) with best response strategies ui[t
∗

i
] as in (9).

Fig. 4. Distribution dm(x, t) for t = 0 (top), t = T/5 (middle), and t = T
(bottom) with best response strategies ui[t

∗

i
] as in (9).
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