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Abstract—In this paper, we apply the concepts of Markov
decision evolutionary games to non-cooperative forwarding con-
trol of Delay Tolerant Networks (DTN). Specifically, we rely
on the design of mechanisms at the source node to study
forwarding probability of the message in a DTN using the two-
hop routing. We study the forwarding probability as a function
of the competition within a large population of mobiles which
need occasionally to make some action. In particular, for each
message generated by a source, each mobile may take a decision
that concerns the strategy by which the mobile participates to
the relaying of the message from source to destination. A mobile
that participates receives a unit of reward if it is the first to
deliver a copy of the packet to the destination. The action taken
by a mobile determine not only the immediate reward but also
the transition probability to its next battery energy state. We
characterize the Evolutionary Stable Strategies (ESS) for these
games and propose a method to compute them. We also propose a
mechanism design at the source in order to maximize the message
delivery probability to the destination, given the equilibrium
behavior (called Evolutionary Stable Strategy - ESS).

I. INTRODUCTION

Delay tolerant networks (DTNs) emerged recently as a novel

communication paradigm. Throughout this work, we focus on

a specific class of DTNs where persistent connectivity cannot

be guaranteed due to limited coverage and high mobility [1].

For such networks, forwarding strategies have been designed

purposely to solve the problem of intermittent connectivity: a

message is delivered to the intended destination leveraging the

motion of a subset of nodes, i.e., relays, which carry copies of

the message stored in their local memory. This is the so called

carry-store-and-forward routing. The DTN paradigm has been

validated by several experimental deployments [3], [4].

In order to reach the destination, a straightforward strategy

is to disseminate multiple copies of the message in the

network. This approach is known as epidemic forwarding [9],

in analogy to spread of infectious diseases. The aim in doing

so is to let some of such message copies reach the destination

with high probability within some target deadline [5], [6]. We

confine our analysis to the two hop routing protocol. In fact, it

has two major advantages: first, compared to epidemic routing,

it performs natively a better trade-off between the number

of released copies and the delivery probability [6]. Second,

forwarding control can be implemented on board of the source

node. Under two hop routing, the source transmits a message

copy to mobiles devices it encounters. Relays, conversely,

forward to the destination only.

In this context, the higher the number of relays joining

the forwarding process, the higher the success probability.

However, battery lifetime of mobile devices may deplete due to

continuous beaconing operations [8], which may be a critical

factor discouraging the usage of mobile devices as relays for

DTN-based applications. A solution is to design reward-based

forwarding mechanisms where the probability of forwarding

becomes function of the competition within a population of

mobiles: a relay receives a unit of reward if it is the first

to deliver the message to the destination. For each message

generated by the source, a relay may choose two different

actions that affect message relaying: full activation or partial

activation, i.e., being active for a shorter time period and then

go back to low power mode, thus saving batteries.

This paper extends a similar framework studied by El-

Azouzi et al. [7]. The novelty here is that the strategy of a

mobile relay determines not only the immediate reward but

also the transition probability to its next battery energy state.

The problem is formulated as a Markov Decision Evolution-

ary Game (MDEG), where each relay wishes to maximize

the expected utility. We characterize the Evolutionary Stable

Strategies (ESS) for these games and show a method to

compute them. Once determined the possible equilibria for

the game, the optimal forwarding control at the source node

that maximizes the forwarding probability has been derived.

We show that the success probability is not always increasing

with the number of message copies, and may well decrease

under some conditions, which is adding an intriguing novel

facet to the control of forwarding in DTNs.

II. BASIC NOTIONS ON EVOLUTIONARY GAMES

We consider the standard setting of evolutionary games :

• There is one population of users. The number of users in

the population is large.

• We assume that there are finitely many pure strategies or

actions. Each member of the population chooses from the

same set of strategies A = {1, 2, . . . , I}.
• Let M := {(y1, . . . , yI) | yj ≥ 0,

∑I
j=1 yj = 1} be the

set of probability distributions over the I pure actions.

I can be interpreted as the set of mixed strategies. It

is also interpreted as the set of distributions of strategies

among the population, where yj represents the proportion

of users choosing the strategy j.



• The number of users interfering with a given randomly

selected user is a random variable K in the set {0, 1, . . .}.
• A player does not know how many players would interact

with it.

• The payoff function of all players depends of the player’s

own behavior and the behavior of the other players. The

expected payoff of a user playing strategy j when the

state of the population is y, is given by Uav(j, y) =
∑

k≥0 P(K = k)U(j, k, y), where U(j, k, y) is the payoff

of a user playing strategy j when the state of the popu-

lation is y and given that the number of users interfering

with a given randomly selected user is k. Hence the

average payoff of a population in state y is given by

F (y, y) =
∑I

i=1 yjUav(j, y).
• The game is played many times and there are many local

interactions at the same time

Evolutionary Stable Strategy Suppose that, initially, the

population profile is y ∈ M. Now suppose that a small

group of mutants enters the population playing according to a

different profile mut ∈M . If we call ǫ ∈ (0, 1) the size of the

subpopulation of mutants after normalization, then the popu-

lation profile after mutation will be ǫ mut+ (1− ǫ)y. After

mutation, the average payoff of non-mutants will be given by

F (y, ǫmut + (1 − ǫ)y) where F (x, y) :=
∑N

j=1 xjUav(j, y).
Note that Uav need not to be linear in the second variable.

Analogously, the average payoff of a mutant is F (mut, ǫmut+
(1− ǫ)x).

Definition 1: A strategy y∗ ∈ M is an ESS if for any

mut 6= y∗, there exists some ǫmut ∈ (0, 1), which may depend

on mut, such that for all ǫ ∈ (0, ǫmut) one has

F (y∗, ǫmut+ (1− ǫ)y∗) > F (mut, ǫmut+ (1− ǫ)y∗) (1)

which can be rewritten as
∑N

j=1(y
∗
j − mutj)Uav(j, ǫmut +

(1 − ǫ)y∗) > 0. That is, y∗ is ESS if, after mutation, non-

mutants are more successful than mutants. In other words,

mutants cannot invade the population and will eventually get

extinct.

III. MODEL

Consider a network with several sources si, destination di
and a large number of mobiles in the system. Each mobile

is equipped with some form of proximity wireless communi-

cations. We assume that the message that is transmitted by

a source, is relevant during some time τ . The network is

assumed to be sparse, so that, at any time instant, nodes are

isolated with high probability. Communication opportunities

arise whenever, due to mobility patterns, two nodes get within

mutual communication range. We refer to such events as

“contacts”. The time between subsequent contacts of a node

with the source si or the destination di is assumed to follow an

exponential distribution with parameter λ > 0. The validity of

this model for synthetic mobility models has been discussed

in [2].

The message contains a time stamp reporting its generation

time, so that it can be deleted at all nodes when it becomes

irrelevant. We do not assume any feedback that allows the

source or other mobiles to know whether the message has

been successfully delivered to the destination during time slot

τ . We consider the two hop routing scheme [2] in which a

mobile that receives a copy of the packet from the source can

only forward it to the destination. We use evolutionary games

to study the competition individual mobiles in a routing game

in DTN.

We apply evolutionary games to non-cooperative ‘live time’

selection in delay tolerant networks.Specifically, we assume

that each relay node can choose two different live times for

the message: τ , i.e. full activation and τ ′ i.e., partial activation,

where τ ′ < τ . At each slot, a mobile has to take a decision to

be fully active or partially active, based on his battery energy

sate. To simplify, we assume that the state can take three values

: {F,A,E} for Full, Almost empty or Empty. At state F only

action τ is available, and at E participation on forwarding

message is not possible any more. The life time of mobile

is defined as the number of slots during which its battery is

nonempty.

Local Interaction : Without loss of generality, we assume that

in each local interaction, there is a source-destination pair in

which the source has packet generated at each time ti+1−ti =
nτ where i = 1, 2.. and t0 = 0. Let N be the number of

mobiles (possibly random) in an area which is assumed fixed

during time slot. We denote by y (resp. 1− y) the fraction of

mobiles sharing the strategy τ (resp. τ ′). Consider an active

mobile in a local interaction with source si, destination di and

N opponents.

Some notation

We introduce the following notations:

• Pi(a) is the probability of remaining at energy level i

when using action a. Since at state F only action τ is

available, we write PF instead of PF (τ)
• M2 := {(y, 1−y)} be the set of probability distributions

over the 2 pure actions τ and τ ′. M can be interpreted

as the set of mixed strategies. It is also interpreted as the

set of distributions of strategies among the population,

where y (resp. 1−y) represents the proportion of mobiles

choosing the strategy τ (resp. τ ′).

The probability that the tagged mobile relays the copy of the

packet to the destination within live time τ is given by 1−Qτ

where Qτ is given by Qτ = (1+λτ)e−λτ and the probability

that it relays the copy of the message if it chooses live time τ ′

is given by is given by 1−Qτ ′ where Qτ ′ = (1+λτ ′)e−λτ ′ .

Let Psucc(τ,N, y) (resp. Psucc(τ
′, N, y)) be the probability

that the tagged mobile receive the unit reward, if it chooses

live time τ (resp. τ ′). Now

Psucc(τ
′, N, y) = (1−Qτ ′)

N
∑

k=1

CN−1
k−1

(1−Qτ′ )
k−1(1−(1−Qτ′ ))

N−k

k

= 1−(Qτ′ )
N

N



The gain obtained by a mobile using live time τ ′ is given by

U(τ ′, y) =
∞
∑

N=1

P (K = N)Psucc(τ
′, N, y)

Now the probability that a mobile receives the unit award, if

it chooses live time τ , is given by Psucc(τ,N, y)

= Psucc(τ
′, N, y) + (Qτ ′)

Nβ

N
∑

k=1

CN−1
k−1

βk−1yk−1(1− yβ)N−k

k

= Psucc(τ
′, N, y) + (Qτ ′)

N 1− (1− βy)N

Ny

where β = 1− Qτ

Qτ′
. The utility for a mobile using live time τ

U(τ, y) =

∞
∑

N=1

P (K = N)Psucc(τ,N, y).

A general policy u is a sequence u = (u1, u2, ...) where ui is

the strategy used at time ti if the state is A. We shall use a

pure stationary policy in which there exist two pure stationary

policies ; the one always choose τ and the one that always

choose τ ′.

A. Fitness

An active mobile during [ti, ti+1], will receive a unit of

reward r if it is the first to deliver a copy of the packet to the

destination. Assume that y is fixed and does not change in time

(Note that assuming that y is fixed in time does not mean that

the actions of each player are fixed in time. It only reflects a

situation in which the system attains a stationary regime due

to the averaging over a very large population, and the fact

that all mobiles choose an action in a given individual state

using the same probability low). Then the expected optimal

fitness of an individual starting at a given initial state can

be computed using the standard theory of total-cost dynamic

programming, that states in particular that there exist optimal

stationary policy (i.e. a policy for which at any time that the

individual is at state A, the action ui of choosing T is the

same). We shall therefore restrict to stationary policies unless

stated otherwise.

Let Vτ (i, y) (respectively Vτ ′(i, y)) to be the total expected

fitness of a user given that it is in state i, that it uses action τ

and given the parameter y.

We proceed by computing the individual’s expected total

utility and remaining lifetime that correspond to a given initial

state and a stationary policy. We have Vτ (A, y) = U(τ, y) +
PA(τ)Vτ (A, y) which gives that

Vτ (A, y) =
U(τ, y)

1− PA(τ)

The total expected utility for a mobile starting from state F

and using strategy τ , is giving by

Vτ (F, y) = U(τ, y) + PFVτ (F, y) + (1− PF )Vτ (A, y)

Thus

Vτ (F, y) = U(τ, y)(
1

1− PF

+
1

1− PA(τ)
) (2)

Similarly, the total expected utility for a mobile starting from

state F and using strategy τ ′, is giving by

Vτ ′(F, y) =
U(τ, y)

1− PF

+
U(τ ′, y)

1− PA(τ ′)
)

Our game is different and has a more complex structure than

a standard evolutionary game. In particular, the fitness that is

maximized is not the outcome of a single interaction but of

the sum of fitnesses obtained during all the opportunities in

the mobile’s lifetime. Let H be the function defined as

H : y ∈ (0, 1)→ Vτ (F, y)− Vτ ′(F, y)

= U(τ,y)
1−PA(τ) −

U(τ ′,y)
1−PA(τ ′) )

= U(τ,y)(1−PA(τ ′))−U(τ ′,y)(1−PA(τ))
(1−PA(τ ′))(1−PA(τ))

= H̃(y)
(1−PA(τ ′))(1−PA(τ))

thus H(y) =
∞
∑

N=1

P (K=N)

[

(Qτ′ )
N 1−(1−βy)N

Ny
(1−PA(τ ′))− 1−(Q

τ′
)N

N
(PA(τ ′)−PA(τ))

]

(1−PA(τ ′))(1−PA(τ))

B. Existence and Uniqueness of ESS

In this section, we are now looking at the existence and

uniqueness of the ESS

Proposition 1: (1) The strategy τ dominates the strategy

τ ′ if and only if PA(τ
′) − PA(τ) ≤

∑∞
N=1 P (K =

N)
[

Q′Nτ

(

(1− β)N (1− PA(τ
′))

)

+ 1− PA(τ)
]

, A1

(2 The strategy τ ′ dominates the strategy τ if and only

if PA(τ
′) − PA(τ) ≥

∑∞
N=1 P (K = N)QN

τ ′

(

Nβ(1 −

PA(τ
′)) + PA(τ

′)− PA(τ
′)
)

, A0

(3) If PA(τ
′) − PA(τ) > A1 and PA(τ

′) − PA(τ) < A0,

then there exists an unique ESS y∗ which is given by

y∗ = H̃−1(0)

Proof

(1) The strategy τ dominates the strategy τ ′ if and only

if Vτ (F, y) ≥ Vτ ′(F, y) for all y ∈ [0, 1]. Since H̃

is decreasing function and H̃(1) = A1 − (PA(τ
′) −

PA(τ)) ≥ 0, thus H̃(y) ≥ 0 for all y ∈ (0, 1). Then

Vτ (F, y)−Vτ ′(F, y) = H(y) = H̃(y)
(1−PA(τ ′))(1−PA(τ)) ≥ 0

for all yT ∈ [0, 1]. This completes the proof for (1)

(2) The strategy τ ′ dominates the strategy τ if and only if

Vτ ′(F, y) ≥ Vτ (F, y) for all y ∈ [0, 1]. Since the func-

tion H̃ is decreasing function and H̃(0) = A0−(PA(τ
′)−

PA(τ)) ≤ 0, thus H̃(y) ≤ 0 for all y ∈ (0, 1). Then

Vτ ′(F, y)−Vτ (F, y) = H̃(y) = H̃(y)
(1−PA(τ ′))(1−PA(τ)) ≤ 0

for all β ∈ [0, (1−Qτ ]. This completes the proof for (2)

(3) A strictly mixed equilibrium y∗ is characterized

Vτ (F, y
∗) = Vτ ′(F, y

∗). The function H̃ is continuous

and strictly decreasing monotone on (0, 1) with H̃(0) > 0
and H̃(1) < 0. Then the equation H̃(y) = 0 has a unique

solution in the interval (0, 1). This completes the proof.



C. Poisson distribution

We consider that nodes are distributed over a plan following

a Poisson distribution with density γ. The probability that

there is N nodes in local interaction is given by the following

distribution : P(K = k) = γk−1

(k−1)!e
−γ , k ≥ 1. Considering

those node distributions and from previous theorems, the

unique ESS y∗ is unique solution of the following equation:

eγQτ′ − eQτ′ (1−βy∗)γ

y∗
= (eγ − eQτ′γ)

PA(τ
′)− PA(τ)

1− PA(τ)

Thus, the equilibrium is given by

y∗ =
LambertW (−αβe

−
α(βeα−c)

c

c
)c+ αβeα

cαβ

where α = Qτ ′γ and c = (eγ − eQτ′γ)PA(τ ′)−PA(τ)
1−PA(τ)

D. Dirac distribution

We consider that at a given time there is a fixed number of

nodes in a local interaction. In this part, we suppose that the

population of nodes is composed with many local interaction

between n nodes where N > 2. The unique ESS y∗ of this

game is the unique solution of the following equation:

1− (1− βy∗)N

y
=

1− (Qτ ′)
N

(Qτ ′)N

Since this polynome is of order N we can have an explicit

expression only for N ≤ 5 but we show some properties of

the stable equilibrium by numerical computations in the next

section.

For example:

N = 2 =⇒ y∗ =
(1− (Qτ ′)

2)G− 2Qτ ′(Qτ ′ −Qτ )

(Qτ ′ −Qτ )2

with G = PA(τ ′)−PA(τ)
1−PA(τ) . One can easily show that y∗ > 1

thus y∗ = 1.

For N = 3, y∗ is the solution of the equation

y2 +
3

β
y − k = 0

with k = 3
β2 −

1−(Qτ′ )
3

β3(Qτ′ )
3 G. δ = 9

β2 + 4k with

k =
3(Qτ ′)

2[Qτ ′ −Qτ ]
2 + (Qτ ′)

4 − [Qτ ′ −Qτ ]

β2(Qτ ′)2[Qτ ′ −Qτ ]2
> 0

The realizable solution is y∗ =
− 3

β
+
√
δ

2 . In this case the

solution y∗ is positive when the conditions from proposition

1 are satisfied.
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(b) N = 60 users in local interaction

Figure 1. Population profile and probability of success for different values
of N using Dirac distribution

IV. MECHANISM DESIGN

In sight of the characterization of the ESS, we are interested

in controlling the system in order to optimize for the energy

consumption and the delivery probability. Let us assume that

the source node controls the forwarding of message copies:

a copy of the message is relayed with constant probability

u upon meeting a node with no message during a local

interaction, i.e., using a static forwarding policy [6]. The

main quantity of interest is denoted Ps and it is the success

probability of a message at a local interaction; under the same

assumptions of linearity in [6], the average energy expenditure

at the source node is E = εΨ, where ε > 0 is the source

energy expenditure per relayed message copy and Ψ is the

corresponding expected number of copies released.



A. Activation control

Let us consider first the activation control. Due to the

forwarding control, the probability that the tagged mobile

relays the copy of the packet to the destination within live time

τ is given by 1−Qu
τ where Qu

τ is given by Qu
τ = e−λuτ−ue−λτ

1−u

and the probability that it relays the copy of the message

if it chooses live time τ ′ is given by is given by 1 − Qu
τ ′

where Qu
τ ′ is given by Qu

τ ′ = e−λuτ′−ue−λτ′

1−u
so that the

success probability in a local interaction with N mobiles

Ps(u|N = k) = 1−
(

Qu
τ

)kyT (u,k)

⇒ Ps(u) = 1 −
∑∞

k=0 P (N = k)
(

Qu
τ

)kyT (u,k)

where

yT (u, k) is the fraction of mobiles playing T when there are

k nodes in the local interaction. At the equilibrium

Ps(u|N = k) = 1−
[(

Qu
τ ′

)k(1−y(u))

.
(

Qu
τ

)ky(u)]

⇒ Ps(u) = 1−
∞
∑

k=1

P (N = k)
[(

Qu
τ ′

)k(1−y(u))

.
(

Qu
τ

)ky(u)]

Using the same notations for the ESS and the Poisson

distribution, at the equilibrium we have :

y∗(u) =
LambertW (−αβe

−
α(βeα−c)

c

c
)c+ αβeα

cαβ

where α = Qu
τ ′γ , c = (eγ − eQ

u
τ′

γ)PA(τ ′)−PA(τ)
1−PA(τ) and β =

1−
Qu

τ

Qu
τ′
.

The probability of success is:

Ps(u) = 1− e−γ
[

eγ(Q
u
τ′)

(1−y(u))
.(Qu

τ )
y(u)

− 1
]

The following theorem gives some results on the probability

of success according to the behavior of the ESS when the

controls change at the source.

Theorem 1: The maximum value of the probability of

success is attained for y∗ = argmax{Ps(1), Ps(u0)}, where

u0 satisfies ȳ∗(u0) = 1 and y∗(u0 + δ) ≤ 1, δ > 0.

To proove this theorem we need the two following lemma

on the costs function H(y, u), and other genral results.

Lemma 1: For a fixed number of users N in a local

interaction, the function H is concave in u for a given y.

Lemma 2: Let ỹ∗ the solution of the equation H(y) = 0.

The following assertions are verified:

• Qu
τ ′ is a decreasing function in u.

• Qu
τ is a decreasing function in u.

• ỹ∗ is a decreasing function in u .

• Under some specific conditions we have ỹ∗(ǫ) ≥ 1
otherwise ỹ∗(ǫ) ≤ 0 with ǫ a very small positive number.

Poofs of lemma 1 and 2 are given in the appendix of this

paper. We give now the proof of the theorem 1.

Table I
PARAMETERS VALUES

- λ τ τ ′ PA(τ) PAτ ′ γ
Optimal between [0, 1] 0.01 140 30 0.4 0.9 30
Optimal on the edge 0.01 100 40 0.3 0.8 30

Proof: Given the expression of the probability of success,

maximizing Ps(u) comes down to minimize the expression

(Qu
τ ′)

(1−y(u))
. (Qu

τ )
y(u)

. Let

f(u) = (1− y(u)) log(Qu
τ ′) + y(u) log(Qu

τ )

, we need to minimize f(u).

f ′(u) = y′(u)
[

log(Qu
τ ) − log(Qu

τ ′)
]

+ (1 −

y(u))
(

(Qu
τ′

)′

(Qu
τ′

) −
(Qu

τ )
′

(Qu
τ )

)

+
(Qu

τ )
′

(Qu
τ )

.

For u small, using lemma 2, we have: y∗ = 1 or y∗ = 0
If y∗ = 0, given that y∗ is decreasing in u then y∗ = 0 ∀ u.

f ′(u) =
(Qu

τ′
)′

(Qu
τ′

) ≤ 0 thus, f is decreasing and Ps(u) is always

increasing on [0, 1].

On the other hand, if y∗ = 1 for u small, we need to

prove that if Ps(u) = Pmax then u ∈ [u0, 1]. Since y∗ is

a decreasing function of u, we have, ȳ∗(0) = 1 =⇒ ∃u0

s.t. ȳ∗(u0) = 1 and ȳ∗(u0 + δ) ≤ 1, δ > 0.Where ȳ∗ is the

projection of y∗ on the interval [0, 1].
y∗ = 1 for u small ⇒ f is decreasing and Ps is always

increasing for u ∈ [0, u0].

Figure IV-A shows the shape of the ESS using the Poisson

distribution for different set of values for the parameters.

Values are set in table I for each cases. As we can see from the

figures, the optimal value of the source control ( maximizing

the probability of successful delivevry) is sometime obtained,

according to the notations of theorem 1, inside the interval

[u0, 1[. This means that increasing the control at the source

does not alway insure a higher probability of success given

that the ESS y∗ changes accordingly. A similar observation can

also be deduced from Figure III-D for the Dirac distribution.

V. CONCLUSION

In this paper Markov decision evolutionary games are used

to model competition between individual mobiles acting as

relay nodes in a DTN routing game. The objective of the

source node is to maximize the probability of success of

delivering a message to destination. However, mobiles decide

to join message relaying based on their current energy state,

which in turn is influenced by the forwarding control used by

the source, in trade for reward.

Under this framework, we studied a source-controlled evo-

lutionary game aimed at optimizing the energy consumed

by relays. We observed a clear trade-off, where the optimal

solution in general does not correspond to forwarding at

full rate at the source node, and we showed cases where

such a greedy strategy is well sub-optimal in maximizing the

probability of success at the equilibrium.
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(a) Optimal value in the interval
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(b) Optimal on the edge

Figure 2. Population profile and probability of success using Poisson
distribution: (Two main observed cases)

VI. APPENDIX

A. Activation control

We recall lemma 1. We state that: For a fixed number of

users N in a local interaction, the function H is concave in

u for a given y.

Proof: For N fixed and a given y, let

hN (u) = (Qu
τ ′)

N 1− (1− βy)N

Ny
A−

1− (Qu
τ ′)

N

N
η

with A = (1−PA(τ
′)) and η = (PA(τ

′)−PA(τ)) , from the

expression of H(y, u). If h is concave in u for any N then

H(y, u) is also concave. Using β(u) = 1−
Qu

τ

Qu
τ′

we have,

hN (u) = (Qu
τ ′)

N
1−

[

1−(1− Qu
τ

Qu
τ′

)y

]N

Ny
A−

1−(Qu
τ′

)N

N
η

=
(Qu

τ′
)N−

[

Qu
τ′
−(Qu

τ′
−Qu

τ )

]N

Ny
A−

1−(Qu
τ′

)N

N
η

= −1
Ny

[

(Qu
τ ′(1− y) +Qu

τ y)
NA− (Qu

τ ′)
N (A+ yη)

]

− η
N
.

Let B = A+ yη; we express the derivative of hN (u):

dhN (u)

du
= −1

y

[

A[Qu
τ ′(1− y) +Qu

τ y]
N−1[ ˙(Qu

τ ′)(1− y) + ˙(Qu
τ )y]

−(Qu
τ ′)

N−1 ˙(Qu
τ ′)

]

Let f(y, u) = Qu
τ ′(1− y) +Qu

τ y then f(0, u) = Qu
τ ′ .

dhN (u)

du
= 1

y

[

AfN−1(y, u)(−f ′(y, u))−B(f(0, u))N−1(−f ′(0, u))
]

= 1
y

(

(f(0, u))N−1[A(−f ′(y, u))−B(−f ′(0, u))]

+A(−f ′(y, u))[fN−1(y, u)− fN−1(0, u)]
)

We know that ˙(Qu
τ ) ≤

˙(Qu
τ ′), f is decreasing in u and ˙(Qu

τ ′) =
˙(Qu
τ ′)(1− y) + ˙(Qu

τ ′)y then ˙(Qu
τ ′) ≥

˙(Qu
τ ′)(1− y) + ˙(Qu

τ )y
=⇒ f ′(0, u) ≥ f ′(y, u) and fN−1(y, u) − fN−1(0, u) is

decreasing.

Let’s show that A(−f ′(y, u)) − B(−f ′(0, u)) is also de-

creasing.

A(−f ′(y, u))−B(−f ′(0, u)) = A[f ′(0, u)−f ′(y, u)]+yηf ′(0, u)

⇒

d(A(−f ′(y, u))−B(−f ′(0, u)))

du
= Ay( ¨(Qu

τ ′)−
¨(Qu
τ )) + yη ¨(Qu

τ ′)

=
B
[

e−λuτ ′((λτ ′)2(1− u)2 + 2)− 2ue−λτ ′
]

(1− u)3

−
A
[

e−λuτ ((λτ)2(1− u)2 + 2)− 2ue−λτ
]

(1− u)3

Though the negativity of this last expression has been observed

for all the several set of values we experimented, it is not

obvious to see here. We will then assume that it is negative

and conclude that the function H is concave in u.

We recall lemma 2. We state that: Let ỹ∗ the solution of the

equation H(y) = 0. The following assertions are verified:

• Qu
τ ′ is a decreasing function in u.

• Qu
τ is a decreasing function in u.

• ỹ∗ is a decreasing function in u .

• Under some specific conditions we have ỹ∗(ǫ) ≥ 1
otherwise ỹ∗(ǫ) ≤ 0 with ǫ a very small positive number.

Proof: We proove here the two last points.



• To show that ỹ∗ is a decreasing function in u, we first

show that H is a non-increasing function of y. Indeed,

We have,

H(y) =
∞
∑

N=1

P (K=N)

[

(Qτ′ )
N 1−(1−βy)N

Ny
(1−PA(τ ′))− 1−(Q

τ′
)N

N
(PA(τ ′)−PA(τ))

]

(1−PA(τ ′))(1−PA(τ)) .

Only the term f(y) = 1−(1−βy)N

Ny
, in the expression of

H is dependent on y. For every parameters (other than

y) fixed, we have:

df(y)

dy
=

Nβ (1− βy)
N−1

Ny −N
(

1− (1− βy)
N
)

(Ny)
2

=
Nβy (1− βy)

N−1
− 1 + (1− βy)

N

Ny2

=
(1− βy)

N−1
(Nβy + 1− βy)− 1

Ny2

=
(1− βy)

N−1
((N − 1)βy + 1)− 1

Ny2

Let’s show that (1− βy)
N−1

((N − 1)βy + 1) − 1 is

negative.

(1− βy)
N−1

((N − 1)βy + 1) − 1 ≤ 0 ⇒
(N − 1)βy + 1 ≤ 1

(1−βy)N−1 which is true since

d((N−1)βy+1)
dy

|(y=0)=
d
(

1

(1−βy)N−1

)

dy
|(y=0)= β(N − 1)

and
d2

(

1

(1−βy)N−1

)

d2y
= β2(N−1)(N+1)

(1−βy)N+2 > 0 . Thus H is a

non-increasing function of y.

Using lemma 1 we have if ∃ u s.t H(u) =
0 for a given y then, u is unique in [0, 1].
∀y1 ≤ y2, H(y1, u) ≥
H(y2, u), then if ∃ u1, u2 s.t. H(y1, u1) =
H(y2, u2) = 0 then u1 ≥ u2 and ỹ∗ is a decreasing

funtion of u.

• We have, H(y, u) = Vτ (F, y) − Vτ (F, y), let’s find a

condition on τ and τ ′ so that H(y, u) ≥ 0,

⇒ Vτ (F, y) ≥ Vτ (F, y), ⇐⇒

U(τ, y)(
1

1− PF

+
1

1− PA(τ)
) ≥ U(τ,y)

1−PF
+ U(τ ′,y)

1−PA(τ ′)

U(τ, y)

1− PA(τ)
≥ U(τ ′,y)

1−PA(τ ′)

1− PA(τ
′)

1− PA(τ)

U(τ, y)

U(τ ′, y)
≥ 1

T
U(τ, y)

U(τ ′, y)
≥ 1

with T = 1−PA(τ ′)
1−PA(τ) ≤ 1. When u is taken very small, we

have,

U(τ, y)

U(τ ′, y)
=

∑

∞

N=1 P (K=N)(Psucc(τ
′,N,y)+(Qτ′ )

N 1−(1−βy)N

Ny
)

∑

∞

N=1 P (K=N)Psucc(τ ′,N,y)

= 1 +
∑

∞

N=1 P (K=N)(Qτ′ )
N 1−(1−βy)N

Ny

∑

∞

N=1 P (K=N)
1−(Q

τ′
)N

N

= 1 +
∑

∞

N=1 P (K=N) d
du

1−(1−βy)N

Ny
∑

∞

N=1 P (K=N) d
du

(−(Qτ′ ))

Considering u small, we have, d
du

(−(Qτ ′)) = λτ ′ +

e−λτ ′ − 1 and

d

du
(
1− (1− βy)N

Ny
) =

d
du

[1−(1−βy)N ](Ny−(Nẏ(1−(1−βy))))

Ny2

=
(1−βy)N−1 d

du
(βy)

y

assuming that ẏ is bounded

d

du
(
1− (1− βy)N

Ny
) = βẏ+β̇y

y

= β̇. (3)

Thus,

U(τ, y)

U(τ ′, y)
= 1 +

β̇

λτ ′ + e−λτ ′ − 1
=

λτ + e−λτ − 1

λτ ′ + e−λτ ′ − 1

and H(y, u) ≥ 0 ⇐⇒ 1
T
≤ λτ+e−λτ−1

λτ ′+e−λτ′−1
.

– If 1
T
≤ λτ+e−λτ−1

λτ ′+e−λτ′−1
then H(y, u) > 0 and y∗ = 1.

– If 1
T
> λτ+e−λτ−1

λτ ′+e−λτ′−1
then H(y, u) ≤ 0 and y∗ = 0.
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