
HAL Id: hal-00643880
https://inria.hal.science/hal-00643880

Submitted on 23 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Complexity of Sets of Free Lines and Line
Segments Among Balls in Three Dimensions

Marc Glisse, Sylvain Lazard

To cite this version:
Marc Glisse, Sylvain Lazard. On the Complexity of Sets of Free Lines and Line Segments Among
Balls in Three Dimensions. Discrete and Computational Geometry, 2012, 47 (4), pp.756-772.
�10.1007/s00454-012-9414-8�. �hal-00643880�

https://inria.hal.science/hal-00643880
https://hal.archives-ouvertes.fr


On the Complexity of Sets of Free Lines and Line Segments Among

Balls in Three Dimensions

Marc Glisse∗ Sylvain Lazard†

September 30, 2011

Abstract

We present two new fundamental lower bounds on the worst-case combinatorial complexity
of sets of free lines and sets of maximal free line segments in the presence of balls in three
dimensions.

We first prove that the set of maximal non-occluded line segments among n disjoint unit

balls has complexity Ω(n4), which matches the trivial O(n4) upper bound. This improves the
trivial Ω(n2) bound and also the Ω(n3) lower bound for the restricted setting of arbitrary-size
balls [Devillers and Ramos, 2001]. This result settles, negatively, the natural conjecture that this
set of line segments, or, equivalently, the visibility complex, has smaller worst-case complexity
for disjoint fat objects than for skinny triangles.

We also prove an Ω(n3) lower bound on the complexity of the set of non-occluded lines
among n balls of arbitrary radii, improving on the trivial Ω(n2) bound. This new bound almost
matches the recent O(n3+ε) upper bound [Rubin, 2010].

1 Introduction

Given a set of objects in R
3, a line is said to be free if it does not intersect the interior of any

object (we assume here that all objects have a non-empty interior). A maximal free line segment

is a (possibly infinite) segment that does not intersect the interior of any object and is not con-
tained in any other segment satisfying the same property. We are interested here in the worst-case
combinatorial complexity of sets of free lines, and sets of maximal free line segments.

Free lines and line segments play an important role in several topics in computational and
combinatorial geometry. In particular, they play a central role in 3D visibility problems, such
as the problem of determining the occlusion between two objects in a three-dimensional scene. In
many applications, visibility computations are well-known to account for a significant portion of the
total computation cost. Consequently, a large body of research is devoted to speeding up visibility
computations through the use of data structures (see [14] for a survey). One such structure, the
visibility complex [15, 23], encodes visibility relations by, roughly speaking, partitioning the set
of maximal free line segments into connected components of segments tangent to the same set of
objects. The vertices of this structure correspond, generically, to the maximal free line segments
that are tangent to four objects in the scene, and the total number of faces, from dimension zero
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Free lines Free line segments

Triangles Θ(n4) Θ(n4)

Polyhedral
Ω(n32c

√
log n) O(n4) Θ(n4)

terrain

n disjoint homoth.
Ω(n3) O(n2λ4(n)) Θ(n4)

polytopes

k polytopes
Ω(n2 + nk3) O(n2k2) Θ(n2k2)

of total size n

Unit balls Ω(n2) O(n3+ε) Θ(n4)

Arbitrary balls Ω(n3) O(n3+ε) Θ(n4)

Table 1: Known bounds on the worst-case combinatorial complexity of sets of free lines and maximal
free line segments (results presented in this paper are shown in bold).

to four, is exactly the combinatorial complexity of the space of maximal free line segments. The
space of free lines in the presence of balls is also closely related, as noted by Agarwal et al. [1], to
motion planning of a line among balls, or, equivalently, of a cylindrical robot (of infinite length)
moving among points or balls. This is also related to computing largest empty cylinders among
points in three dimensions, ray shooting, and other problems in geometric optimization.

Previous work. For scenes where the objects are n triangles, the worst-case complexity of the
space of free lines (or lines, for short) or maximal free line segments (or segments, for short) can
easily be seen to be Θ(n4) [8]. When the triangles form a terrain, the same bound of Θ(n4) holds
for segments [9] and a near-cubic lower bound was proved for lines by Halperin and Sharir [17]
and Pellegrini [22]. De Berg et al. [10] showed an Ω(n3) lower bound and an almost matching
O(n2λ4(n)) upper bound1 on the complexity of the set of free lines among n disjoint homothetic
polytopes (i.e., convex polyhedra) of constant complexity. For such objects, a construction similar
to the one for arbitrary triangles (see Figure 1) yields that the complexity of the set of free segments
is also Θ(n4).

When the triangles are organized into k polytopes of total complexity n, with k ≪ n, better
bounds can be obtained. For the case of disjoint polytopes in general position, Efrat et al. [16]
proved a worst-case bound of O(n2k2) on the complexity of the set of free segments. When the k
polytopes may intersect, Brönnimann et al. [5] proved, independently, the tight bound of Θ(n2k2);
their lower bound holds for disjoint polytopes, and their upper bound extends to polytopes in
degenerate configurations. Any upper bound on the complexity of the set of segments trivially
holds for lines as well. Thus, for free lines among k polytopes of total complexity n, the upper
bound of O(n2k2) holds. However, the best known lower bound is Ω(n2 + nk3), in which Ω(n2)
follows from the bound of Ω(n2k2) on maximal free line segments for k = 4, and Ω(nk3) can be
obtained by slightly modifying the lower-bound construction [12, Th. 9] proving that the umbra cast
on a plane by one segment light source in the presence of k disjoint polytopes of total complexity
n can have Ω(nk2) connected components (one simply has to consider k perturbed copies of the
segment light source).

1Recall that λ4(n) denotes an almost linear function equal to the maximum length of an (n, 4)-Davenport-Schinzel
sequence [3].
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Figure 1: Two copies of such a set of n identical triangles induce an Ω(n4) bound on the complexity
of the set of maximal free line segments.

Much less is known for curved objects. For n unit balls, Agarwal et al. [1] proved an upper
bound of O(n3+ε), for any ε > 0, on the complexity of the space of free lines. Rubin [24] recently
extended this result to balls of arbitrary radii. Devillers et al. [13] showed a simple bound of Ω(n2)
on the number of vertices of this free space (note that a trivial Ω(n2) bound on the complexity of
the whole space is obtained by considering sparsely distributed balls on two parallel planes). For n
balls of arbitrary radii, Devillers and Ramos (personal communication 2001, see also [13]) showed
an Ω(n3) lower bound on the complexity of the set of free line segments and the trivial upper bound
of O(n4) holds.

The complexity of the space of maximal free line segments has also been studied in a random
setting. Devillers et al. [13] proved that, in the presence of uniformly distributed unit balls, this
structure has complexity Θ(n).

Related literature on free lines and line segments among objects fall in various categories. One
deals with characterizing sets of lines tangent to four objects, such as balls or triangles, possibly in
degenerate configuration (see [4, 6, 7, 19, 20, 21]). Another related line of research focuses on sets
of lines that intersect objects and, in particular, on the complexity of the space of line transversals
to a set of objects. For n balls, Agarwal, et al. [2] showed an Ω(n3) lower bound and a O(n3+ε)
upper bound. For k polytopes of total complexity n, Kaplan et al. [18] recently proved a O(n2k1+ε)
upper bound.

Our results. Our main contribution is a tight worst-case bound of Θ(n4) on the space of maximal
free line segments among unit balls, or, equivalently, on the visibility complex of unit balls. This
bound improves the trivial bound of Ω(n2) for unit balls and also the Ω(n3) lower bound for balls
of arbitrary radii. This result is particularly surprising because it was natural to conjecture that
the visibility complex of fat objects of similar size had a lower worst-case complexity than that for
thin triangles. Our result settles negatively this conjecture, and shows exactly the opposite, that
is, that fatness and similarity, alone, do not reduce the worst-case complexity of that structure.

Our second result is a worst-case lower bound of Ω(n3) on the complexity of the space of free
lines among balls of arbitrary radii. This bound improves the trivial Ω(n2) bound and almost
matches the O(n3+ε) upper bound recently proved by Rubin [24].
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Known worst-case complexities of sets of free lines and maximal free line segments are summa-
rized in Table 1.

Paper organization. We prove in Section 2 the Ω(n3) lower bound on the complexity of the
space of free lines among n balls. In Section 3, we prove the bound of Θ(n4) on the space of
maximal free line segments among n unit balls.

We will describe our lower-bound constructions using a Cartesian coordinate system (x, y, z).
In this coordinate system, we often denote by Mx, My and Mz the coordinates of a point M (or
also the coordinates of the center of a ball M).

2 Free lines tangent to balls

We prove here the following result.

Theorem 1. The combinatorial complexity of the space of free lines among n disjoint balls is Ω(n3)
in the worst case.

We prove Theorem 1 with a lower-bound construction. For convenience, our construction in-
volves 3n + 3 balls instead of just n, which does not affect the asymptotic complexity.

Refer to Figure 2. We define a set S of disjoint balls that consists of the following three subsets
of n + 1 balls. We consider first a set of unit balls B = {B0 . . . Bn} whose centers are aligned along
the x-axis with coordinates (3(i−n/2), 0, 0). We then consider two sets of balls, A− = {A−

0 . . . A−
n }

and A+ = {A+
0 . . . A+

n }, of sufficiently small radius ε and whose centers are aligned on two lines
parallel to the y-axis in the plane z = 1. As we will see in Lemma 4, we require ε < 1

540n2 . The
center of each ball A−

i has coordinates (−3n, 3(i − n/2)ε, 1), and A+
i is its reflection with respect

to the yz-plane.
We prove Theorem 1 by proving the following bound. A line tangent to a set of balls is said to

be isolated if it cannot be moved continuously while remaining tangent to these balls.

Proposition 2. There are Ω(n3) isolated free lines that are tangent to four of the balls of S.

The idea of the proof is as follows. Consider only two consecutive balls Bi and Bi+1. We study
the lines that are tangent to them close to their north poles (i.e., their points with maximum
z-coordinate). These lines are almost in the horizontal plane z = 1. Now, in this plane, the balls
in A− and A+ form two sets of gates which decompose the set of free lines in Ω(n2) connected
components defined by the gates the line goes through. On the boundary of each such component,
there are lines tangent to one ball of A− and one of A+. There are thus Ω(n2) free lines tangent
to one ball of A−, one of A+, and two consecutive balls of B. Since this can be done for any two
consecutive balls of B, there are Ω(n3) free lines tangent to four balls. Moreover, since the centers
of these balls are not aligned, these tangents are isolated [4].

We now give a formal proof of Proposition 2. The first step of the proof is to prove the following
technical lemma which formalizes the fact that the considered tangent lines to two consecutive balls
in B lie almost in the horizontal plane through their north poles.

Let B̃0 and B̃1 be two unit balls centered at (0, 0, 0) and (3, 0, 0) and let L be a line tangent to B̃0

and B̃1 respectively at M0 = (x0, y0, z0) and M1 = (x1, y1, z1) in their northern hemispheres (that
is, such that z0 and z1 are positive). Lemma 3 states, roughly speaking, that, as the y-coordinates
of M0 and M1 go to 0, the z-coordinates converge quadratically to 1.
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(a) 3D view.
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(b) Projection on the xy-plane.
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(c) Projection on the yz-plane.

Figure 2: Illustration of our construction for Theorem 1.
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Figure 3: For the proof of Lemma 3: balls B̃0 and B̃1 viewed from above.

Lemma 3. If |y0| and |y1| are smaller than some constant m < 1/15, then z0 and z1 are larger

than 1 − 100m2 and |z1 − z0| is smaller than 2m · |y1 − y0|.

Proof. We first argue that the result is intuitively clear by showing that it would be straightforward
if, instead of balls, we had discs parallel to the yz-plane. Writing that Mi is on B̃i gives x2

0+y2
0+z2

0 =
1 and (x1 − 3)2 + y2

1 + z2
1 = 1. Considering discs instead of balls (that is x0 = 0 and x1 = 3) gives

|zi| =
√

1 − y2
i >

√
1 − m2 > 1−m2 > 1−100m2. Furthermore, the difference of the two equations

gives |z1−z0| = |y1+y0|·|y1−y0|
|z1+z0| < 2m

2(1−m2)
·|y1−y0| which is less that 2m·|y1−y0| because 1

2(1−m2)
< 1

since m < 1/15.
Since the balls are not discs, we need a few more steps. Consider the vertical plane Π that

contains L and refer to Figure 3. Plane Π cuts the two spheres in two circles of centers N0 and N1

and radii R0 and R1. Let di denote the signed distance from the center of B̃i to Π (that is to Ni)
such that di has the same sign as Niy, the y-coordinate of Ni.

The proof is organized as follows. To prove the first inequality of the lemma (Claim 3), that
is that zi is close to 1, we first show that |di| is small (Claim 1). This directly implies that Ri is
close to 1 and it also gives a simple bound on the difference between R0 and R1 (Claim 2). We
then work in plane Π (see Figure 4(a)), where this latter bound implies that sin θ is small, or also
that cos θ is close to 1, and since zi = Ri cos θ, Claim 2 yields the desired bound on zi (Claim 3).
Finally, the second inequality of the lemma (Claim 4) follows from the bound on zi (Claim 3) in a
similar way as above when we considered disks instead of balls.

Claim 1: |di| 6 10m. Notice that, since the two angles shown on Figure 3 are equal, they have the
same cosine, that is

Niy/di = (x1 − x0)/
√

(x1 − x0)2 + (y1 − y0)2.

Since x1 − x0 > 1 > 0 and m < 1/15, the right-hand expression can be rewritten as

1
√

1 +
(

y1−y0

x1−x0

)2
>

1√
1 + 4m2

>
1

2
.

We thus have that |di| < 2|Niy| and we now show that |Niy| 6 5m which will yield the claim.
In projection on the xy-plane, since M0 and M1 are on L, the absolute value of the slope of the
projection of L is |y1−y0|

|x1−x0| 6 2m since |y1 − y0| 6 2m and |x1 − x0| > 1. Now, Ni is in Π so its

projection on the xy-plane is on the projection of L. Since |Nix − xi| 6 2 (Mi and Ni are in the
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R0

R1
z1

z0

M0

M1

N0 N1

w

z

L

θ

(a)

x
0 3x0 x1

L

M0

M1

(b)

Figure 4: For the proof of Lemma 3: (a) intersection of balls B̃i with plane Π (the distance between
the disks is not to scale). (b) Intersection of balls B̃i with plane ∆.

same unit ball), |Niy − yi| 6 2 · 2m and thus |Niy| 6 |yi| + 4m 6 5m, which conclude the proof of
Claim 1.

Claim 2: Ri >
√

1 − (10m)2 and |R1−R0| < 10m. The radii of the intersection circles satisfy d2
i +

R2
i = 1 which implies that Ri >

√

1 − (10m)2 (by Claim 1). Since both Ri are in [
√

1 − (10m)2, 1],
|R1 − R0| 6 1 −

√

1 − (10m)2 and it is straightforward to prove that 1 −
√

1 − (10m)2 < 10m is
equivalent to m < 1/10 which is satisfied by hypothesis.

Claim 3: zi > 1 − 100m2. We now work in the plane Π, using a Cartesian coordinate system
(w, z) (see Figure 4(a)). Let θ be the (unsigned) angle between L and the w-axis. Consider the
line in Π parallel to L through N1 if R1 6 R0 and through N0 otherwise, as shown on Figure 4(a).
Remember that the distance between N0 and N1 is at least 1 since the balls B̃0 and B̃1 are distance
1 apart. We thus have that sin θ = |R1 − R0|/||N1 − N0|| < 10m by Claim 2, and thus that
cos θ >

√

1 − (10m)2. Since zi = Ri cos θ (see Figure 4(a)) and Ri >
√

1 − (10m)2 (Claim 2), we
have that zi > 1 − (10m)2 which is the claim and the second inequality of the lemma.

Claim 4: |z1 − z0| < 2m · |y1 − y0|. We first observe that x0 + x1 = 3. Indeed, consider the plane ∆
parallel to the x-axis and containing line L, and refer to Figure 4(b). Since ∆ is parallel to the x-
axis, it intersects the two balls B̃0 and B̃1 in disks of equal radii whose centers lie, respectively, in the
planes x = 0 and x = 3. L is also tangent to the two disks in plane ∆ thus, by symmetry, x0+x1 = 3.
Now, similarly as at the beginning of the proof, writing that Mi is on B̃i gives x2

0 + y2
0 + z2

0 = 1 and

(x1−3)2 +y2
1 +z2

1 = 1, whose difference is y2
0 +z2

0 −y2
1 −z2

1 = 0. Thus, |z1−z0| = |y1+y0|·|y1−y0|
|z1+z0| and

since |yi| < m and zi > 1− 100m2 (Claim 3), we have that |z1 − z0| < 2m
2(1−100m2)

· |y1 − y0| which is

less that 2m · |y1 − y0| because 1
2(1−100m2)

< 1 since m < 1/15. This proves the first inequality of

the lemma and concludes the proof.

We now prove that, roughly speaking, a line tangent to two consecutive balls of B near their
north poles intersects each of the convex hulls of A− and of A+ and thus that the balls of A± play
the role of gates as discussed earlier.

Let L be a line tangent to Bi and Bi+1 (0 6 i 6 n − 1) at some points with positive z-
coordinate and let L+ and L− be the points of intersection of L with the planes x = 3n and
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Bi Bi+1

x
z

y

−3n 3i − 3n/2 3(i + 1) − 3n/2 3n

−1

3nε/2

−3nε/2

1

0
L

P
Q

S+

L−

L+

S−

Figure 5: A line L for Lemma 4.

x = −3n, respectively (see Figure 5).

Lemma 4. If |L+
y | and |L−

y | are smaller than 3nε/2 with ε < 1
540n2 , then |L+

z − 1| and |L−
z − 1|

are smaller than ε/2.

Proof. Let P and Q denote the tangency points of L on Bi and Bi+1 (refer to Figure 5). L−, P ,
Q and L+ are aligned in this order on L, and |L+

y | and |L−
y | are both smaller than 3nε/2, so |Py|

and |Qy| are smaller than 3nε/2. Furthermore, the slope of the projection of L in the xy-plane

is
L+

y −L−
y

L+
x −L−

x

=
Qy−Py

Qx−Px
and, by hypothesis, |L+

y − L−
y | 6 3nε, L+

x − L−
x = 6n and |Qx − Px| 6 5,

so |Qy − Py| 6 5ε/2. We can now apply Lemma 3 because |Py| and |Qy| are both smaller than
m = 3nε/2 which is smaller than 1/15 since ε < 1/540n2. We thus get |Qz −Pz| < 23nε

2 |Qy −Py| 6

3nε5ε
2 = 15

2 nε2 and Qz > 1 − 100(3nε
2 )2. Moreover, since Qz 6 1, we have |Qz − 1| < 100(3nε

2 )2.
L−, P , Q and L+ are still aligned on L and we now consider the slope of the projection of L

on the xz-plane. Similarly as for the projection on the xy-plane, we have: L+
z −Qz

L+
x −Qx

= Qz−Pz

Qx−Px
. By

construction, |L+
x − Qx| < 6n and Qx − Px > 1 so

|L+
z − 1| − |Qz − 1| 6 |L+

z − Qz| < 6n|Qz − Pz| < 6 · 15

2
n2ε2.

Moreover, since |Qz − 1| < 1009
4n2ε2 and 1009

4 + 6 · 15
2 = 270, we have |L+

z − 1| < 270n2ε2 < ε/2
since ε < 1

540n2 . The same holds for |L−
z − 1|.

We can now prove that there are Ω(n3) isolated free lines tangent to four of the balls of S.

Proof of Proposition 2. We prove the proposition by showing that any pair of consecutive balls Bi,
Bi+1 (0 6 i < n) and any two balls A−

j and A+
k (j, k ∈ {0, . . . , n}) admit at least one common

tangent free line.
Notice first that any line tangent to Bi and Bi+1 cannot intersect the interior of any ball Bj

and thus can only be occluded by a ball in A±.
In the xy-plane, consider the two segments S+ and S− defined by x = ±3n and −3nε/2 < y <

3nε/2 (see Figure 5); as in Lemma 4, we assume ε < 1
540n2 . Any pair of points, one on each of

these two segments, defines uniquely a line L that lies in the vertical plane containing these two
points and such that L is tangent to Bi and Bi+1 at points in their northern hemispheres (at points
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3ε

(3i − 3n/2, 0, 0)

ε

Bi

A±
l

z = 1

x y

z

ε/2
√

3
2 ε

A±
lε/2

z = 1
Bi

Figure 6: For the proof of Proposition 2: lines L intersect planes x = ±3n in the shaded region.

with positive z coordinates). We parameterize these lines by the y-coordinates, u and v, of the two
points on S− and S+, respectively, defining the line. In the following, u and v are thus restricted
to the interval [−3nε/2, 3nε/2].

Using this parameterization, we consider the set of lines L(u, v) (or, for simplicity, L) represented
as a square in the (u, v)-parameter space. As in the proof of Lemma 4, let L± denote the point
of intersection of L and plane x = ±3n (note that u = L−

y and v = L+
y ) and recall that the

y-coordinate of the center of ball A−
j is denoted A−

jy.
We first show that there exist nonempty intervals Ij ⊂ Jj of u such that (see Figure 7) the

intervals Jj are pairwise disjoint and for all v: (i) for all u ∈ Ij , L(u, v) intersects ball A−
j , (ii) for

all u /∈ Jj , L(u, v) does not intersect ball A−
j . The same result will also hold by exchanging the

roles of u and v and of the A−
j and A+

j .

Refer to Figure 6. By Lemma 4, |L−
z − 1| < ε/2. It follows that |L−

y − A−
jy| 6

√
3

2 ε implies that

L intersects A−
j since the squared distance between L− and the center of A−

j is less than or equal

to (1
2ε)2 + (

√
3

2 ε)2 = ε2. Hence, any line L(u, v) such that u = L−
y is in Ij = [A−

jy −
√

3
2 ε, A−

jy +
√

3
2 ε]

intersects ball A−
j .

We now show that any line L(u, v) that intersects A−
j satisfies u ∈ Jj = [A−

jy − 5
4ε, A−

jy + 5
4ε].

The slope of the projection of line L onto the xy-plane is (in absolute value)
|L+

y −L−
y |

|L+
x −L−

x | 6
3nε
6n = ε

2

(see Figure 5) which is less than 1
8 since ε < 1

540n2 . Thus, the y-coordinate of points on L varies by
at most ε

4 in the slab −3n − ε 6 x 6 −3n + ε. If L intersects A−
j , one point of L in this slab has

its y-coordinate in [A−
jy − ε, A−

jy + ε], hence u = L−
y ∈ Jj .

We now partition the set of lines L in parameter space (u, v) as follows (see Figure 7): the dark
gray region is the set of (u, v) such that u or v is in some Ij ; the white region is the set of (u, v)
such that neither u nor v belongs to

⋃

j Jj ; the light gray region is the complement of the dark gray

and white regions in [−3nε
2 , 3nε

2 ]2.
Finally, consider a line L(u, v) for (u, v) in a connected component of the white region bounded

by the u-strips Jj and Jj+1 and by the v-strips Jk and Jk+1 (the hatched region in Figure 7). By
the above properties of intervals Ij and Jj , if we decrease u (resp. increase u), the line L(u, v) while
remaining free becomes, at some point in the gray region, tangent to A−

j (resp. A−
j+1). Similarly,

while L(u, v) remains free and tangent to A−
j or A−

j+1, if we decrease (resp. increase) v (u may

vary slightly in order to maintain the tangency), L(u, v) becomes, at some point, tangent to A+
k

9



v

uIj

Jj

Ij+1

Jj+1

IkJk

Ik+1Jk+1

Figure 7: For the proof of Proposition 2: A line parameterized by a point (u, v) in the dark gray
region intersects a ball in A±. If (u, v) lies in the white region, the line intersects no ball in A±.

(resp. A+
k+1). In other words, in parameter space (u, v), the white cell is contained in a connected

component of the set of free lines L(u, v) which is bounded by lines L(u, v) that are tangent to A−
j ,

A−
j+1, A+

k , or A+
k+1; moreover, the vertices of the boundary of the cell correspond to lines L(u, v)

that are tangent to A−
j or A−

j+1 and to A+
k or A+

k+1.

Hence, any two consecutive balls Bi and Bi+1 (0 6 i < n) and any two balls A−
j and A+

k

(j, k ∈ {0, . . . , n}) admit at least one common tangent free line. This concludes the proof because
any four balls with nonaligned centers admit finitely many common tangents [4].

Remark. Although our construction admits Ω(n3) isolated free lines tangent to four balls, many
four-tuples of balls are aligned and thus have infinitely many common tangents. Perturbing all
the balls by a sufficiently small amount would easily ensure that all the four-tuples of balls admit
finitely many common tangents while all the Ω(n3) isolated free lines remain free and tangent to
their respective balls.

3 Free line segments tangent to unit balls

We prove here the following theorem.

Theorem 5. The combinatorial complexity of the space of maximal free line segments among n
disjoint unit balls is Θ(n4) in the worst case.

First notice that the O(n4) upper bound is trivial. We prove the lower bound by giving a
construction. Refer to Figure 8. We define a set S of disjoint balls that consists of the four subsets
A±,B± of n or n + 1 balls each. We consider first a set of unit balls A− = {A−

1 . . . A−
n } whose

centers are almost aligned on the x-axis, except that each ball is slightly higher than the one in

10



(a) 3D view.

z

x
y

A−
nA−

1

B−

0 B−
n

(b) Balls in A
− and B

− viewed in the −x-
direction.

Figure 8: Illustration of our construction for Theorem 5.

front of it (looking from x = +∞). The center of each ball A−
i has coordinates (−M − 3i, 0, iε) for

some large M and some small positive ε. The set B− = {B−
0 . . . B−

n } consists of unit balls whose
centers lie on a helix around the x-axis; in particular, the centers project onto the yz-plane on a
circle centered at the origin and of radius slightly smaller than 2. Note that the purpose of this
helix is to ensure that the balls are disjoint; if we allowed intersecting balls, we could simply place
all these centers on a circle in the plane x = −M . The center of each ball B−

i has coordinates
(−M + 3i, (2 − η) sin(αi), (2 − η) cos(αi)) where αi = α(−1

2 + i
n), α is a positive constant and η

is a small positive constant. Finally, the sets A+ and B+ are the mirror images of A− and B−,
respectively, with respect to the yz-plane. We consider, in the sequel, α = π

4 , η = 1
14n2 , ε = 2

45n3

and M = 1170n3.
We prove Theorem 5 by proving the following bound on the balls of S, where a line segment

tangent to a set of balls is said to be isolated if it cannot be moved continuously while remaining
tangent to these balls.

Proposition 6. There are Θ(n4) isolated free line segments that are tangent to four of the balls

of S.

The idea of the lower-bound construction is as follows. Consider the affine transformation
changing x into x/M which flattens the spheres into ellipsoids. When M tends to infinity, the scene
changes (as it depends on M) and the transformed scene tends to two flat versions of Figure 8(b)
on the planes x = ±1, facing each other. Joining the Θ(n2) intersections on each side defines Θ(n4)

11



A′
iA′′

i

B′
j+1

B′′
j+1

B′′
j

B′
j

Cj
Cj+1

Oi

(a)

O0

Cj+1

Cj

Dj

Ej

α
2n

1 + δ

2 − η

B′
j

B′
j+1

(b)

Figure 9: For the proof of Lemma 7.

free line segments tangent to 4 of the discs. We prove that, for M sufficiently large, the free line
segments tangent to 4 of the ellipsoids still exist. Moreover, each of the free line segments tangent
to four ellipsoids remains free and tangent to four balls by the inverse affine transformation.

In order to ensure that the set of balls looks like Figure 8(b), η and ε need to be small enough
so that, when viewed in the −x direction, the boundary of A−

i is visible between B−
j and B−

j+1.

Furthermore, M needs to be large enough so that the view of A− and B− remains combinatorially
the same from any point of A+ and B+.

We now give a formal proof of Proposition 6, which trivially follows from the next two lemmas.

Lemma 7. Ignoring all the balls of A− but one, A−
i , and all the balls of A+ but one, A+

i′ , there

are Ω(n2) free lines tangent to A−
i , A+

i′ , a ball of B− and a ball of B+.

Proof. We consider the set of lines L that intersect the plane x = −M , in point L−, and the plane
x = M , in point L+, such that −1 6 L±

y 6 1 and −1 6 L±
z 6 2. Note that this includes all

the lines that touch a ball of A− and a ball of A+ since 1 + nε < 2. Between L− and L+, the
x-coordinate changes by 2M while the y-coordinate changes by at most 2. Two points of L in
the slab −M − 3n − 1 6 x 6 −M + 3n + 1 thus have their y-coordinates that differ by at most

2
2M (6n + 2). Similarly, the z-coordinates differ by at most 3

2M (6n + 2). Hence the projections on
x = −M of two points of L in the slab −M − 3n − 1 6 x 6 −M + 3n + 1 are at distance at most

δ =
√

22+32

2M (6n + 2) < 13n
M = 1

90n2 (for n > 2).

Let Ãi and B̃j be the projections of balls A−
i and B−

j on the plane x = −M . We construct new

disks A′
i and B′

j (resp. A′′
i and B′′

j ) of radius 1 + δ (resp. 1 − δ) with the same centers as Ãi and

B̃j . We thus have the property that a line L that intersects A′′
i or B′′

j must intersect A−
i or B−

j ,

and a line L that intersects A−
i or B−

j must intersect A′
i or B′

j .
The gist of the proof is that the projections on x = −M look like Figure 9(a). More precisely,
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there is a point on x = −M between A′
i, B′

j and B′
j+1 such that any line L through this point is

free from B− and A−
i and L cannot “escape” by a continuous motion without intersecting one of

A−
i , B−

j and B−
j+1. The situation is exactly the same on the other side with A+

i′ , B+
j′ and B+

j′+1.

We can thus start from a free line L, move it down until it is tangent to A−
i and A+

i′ and then keep
moving it until is is tangent to B−

j or B−
j+1 and B+

j′ or B+
j′+1.

We now prove that Figure 9(a) is a faithful representation. Let Oi and Cj denote the centers of
the discs Ãi and B̃j (O0 has coordinates (0, 0) in the yz-coordinate system of plane x = −M). The
distance between O0 and Cj is 2 − η. Using the triangle inequality, the distance between Oi and
Cj is at most 2 − η + nε. For the discs B′′

j and A′′
i of radius 1 − δ to intersect, it is thus sufficient

to have 2 − η + nε < 2 − 2δ, i.e., nε + 2δ < η, which is satisfied here (nε = 2
45n2 , 2δ = 1

45n2 and
η = 1

14n2 ).
In order to prove that A′

i, B′
j and B′

j+1 have an empty common intersection, we show that the
distance between Oi and Dj is larger than 1 + δ where Dj is the intersection point of B′

j and B′
j+1

closest to O0 (refer to Figure 9(b)). For convenience, we also consider the midpoint Ej of Cj and
Cj+1.

O0Dj = O0Ej − DjEj = (2 − η) cos
α

2n
−

√

(1 + δ)2 − (2 − η)2 sin2 α

2n
.

Using the classical inequalities
√

1 + x 6 1+x
2 , cos x > 1−x2

2 and, for 0 < x 6
π
16 , sinx > x sin π/16

π/16 >
154
155x, and the properties that, for n > 2, η 6

1
56 and δ 6

1
360 , we obtain (after factorizing (1 + δ)

outside of the square root):

O0Dj > (2 − η)(1 − α2

8n2
) − (1 + δ) +

(2 − η)2

1 + δ

1542α2

8 · 1552n2

> 1 − η − δ − α2

4n2
+

1.9822

1.003

1542α2

8 · 1552n2

> 1 − η − δ + 0.233
α2

n2
.

Using the triangle inequality, OiDj > O0Dj − O0Oi, so

OiDj − (1 + δ) > 0.233
α2

n2
− η − 2δ − nε >

1

n2

(

0.14 − 1

14
− 1

45
− 2

45

)

> 0,

which concludes the proof that A−
i , A+

i′ , B−
j and B+

j′ admit a common tangent, which is free except

possibly for the balls of A±.

Lemma 8. For every choice of balls A−
i and A+

i′ , each of the Ω(n2) lines of Lemma 7 contains a

maximal free line segment tangent to A−
i , A+

i′ , a ball of B− and a ball of B+.

Proof. For any given balls A−
i and A+

i′ , let L denote one of the Ω(n2) lines of Lemma 7. Notice
first that the balls A−

k , for k > i, may intersect L but they cannot intersect L between its tangency
points with A−

i , A+
i′ and the balls B± (recall that all the balls project on the x-axis to pairwise

distinct intervals).
It thus suffices to prove that, for k < i, A−

k cannot intersect line L. Instead of looking at
the slab −M − 3n − 1 6 x 6 −M + 3n + 1, we now restrict our analysis to the thinner slab
−M−3i−1 6 x 6 −M−3k+1. Similarly as in the proof of Lemma 7, any two points of L in that slab
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Figure 10: For the proof of Lemma 8.

project on the plane x = −M −3i−1 to two points that are at most distance δ′ =
√

13
2M (3(i−k)+2)

apart. The disks A′
ℓ and A′′

ℓ are also defined similarly, in the plane x = −M − 3i − 1, except that
δ′ is used instead of δ. Let L−

i denote the intersection point of L with the plane x = −M − 3i − 1
and recall that L− denotes the intersection point with the plane x = −M .

We show that in the strip −a 6 y 6 a of the plane x = −M − 3i − 1, with a = 2 sin α
2 ≈ 0.77,

the upper arc of A′′
i is above A′

k (see Figure 10). Assuming temporarily that L intersects the plane
x = −M − 3i − 1 in that strip, this proves that A−

k does not intersect L. Indeed, on one hand,
since L is tangent to A−

i , they do not properly intersect, thus L−
i lies outside disk A′′

i , and thus
above it; hence L−

i lies strictly outside disk A′
k. On the other hand, if L intersected A−

k , L−
i would

lie inside disk A′
k, a contradiction.

We first show that L does intersect the plane x = −M − 3i − 1 in the strip −a 6 y 6 a.
Temporarily reusing the notations of Lemma 7 and referring to Figure 9(a), |L−

iy| 6 |L−
y |+δ, and L−

is in the triangle OiCjCj+1 so L−
y is between the y-coordinates of C0 and Cn, i.e., |L−

y | 6 (2−η) sin α
2 .

As δ < η sin α
2 , |L−

iy| 6 a = 2 sin α
2 , which proves the claim.

Now, refer to Figure 10. First notice that for y = 0, the top of A′′
i is above the top of A′

k since

2δ′ < (i − k)ε. Indeed, 2δ′

(i−k)ε =
√

13
Mε

(

3 + 2
i−k

)

6
5
√

13
Mε < 1

2 . We thus only need to prove that the

two circles do not intersect for y 6 a = 2 sin α
2 . Let Oi denote, similarly as before, the projection of

the center of A−
i on x = −M − 3i − 1, let X be one of the two intersections of A′′

i and A′
k, and let

ã = |Xy|, l1 = ‖OiOk‖, l2 = ‖OiX‖ and l3 = ‖OkX‖. We prove that ã > a. The area of triangle
OiOkX can be computed in two ways (the second one uses Heron’s formula):

1

2
ãl1 =

1

4

√

(l1 + l2 + l3)(l1 + l2 − l3)(l1 − l2 + l3)(−l1 + l2 + l3).

Recall that l1 = (i − k)ε, l2 = 1 − δ′ and l3 = 1 + δ′. The factors under the square root are
then (2 + (i − k)ε), (−2δ′ + (i − k)ε), (2δ′ + (i − k)ε) and (2 − (i − k)ε). Since 1 6 i − k 6 n,

this yields the inequality ã >

√

1 − n2ε2

4

√

1 −
(

2δ′

(i−k)ε

)2
. Since nε < 1

2 and 2δ′

(i−k)ε < 1
2 , we get

ã >

√

1 − 1
16

√

1 − 1
4 ≈ 0.84. Hence ã > a, which concludes the proof.
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4 Conclusion

We proved a Θ(n4) bound on the worst-case combinatorial complexity of the space of maximal free
line segments among n balls of unit or arbitrary radii. This closes the problem of bounding the
complexity of this space for balls and it improves on the previously known Ω(n3) lower bound for
balls of arbitrary radii and on the trivial Ω(n2) bound for unit balls. This result also settles nega-
tively the natural conjecture that this space of free line segments has smaller worst-case complexity
for disjoint fat objects than for skinny triangles.

We also proved an Ω(n3) lower bound on the worst-case combinatorial complexity of the space
of free lines among n balls of arbitrary radii, improving over the trivial Ω(n2) bound. This bound
almost matches the upper bound of O(n3+ε) from [24] and essentially closes the problem of deter-
mining tight worst-case bounds on the complexity of the space of free lines among balls of arbitrary

radii. On the other hand, the case of unit balls remains open with a complexity between Ω(n2)
and O(n3+ε) [11, Problem 61].
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[7] H. Brönnimann, H. Everett, S. Lazard, F. Sottile, and S. Whitesides. Transversals to line
segments in three-dimensional space. Discrete and Computational Geometry, 34(3):381–390,
2005.

[8] B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, and J. Stolfi. Lines in space: combinatorics
and algorithms. Algorithmica, 15:428–447, 1996.

15



[9] R. Cole and M. Sharir. Visibility problems for polyhedral terrains. Journal of Symbolic

Computation, 7(1):11–30, 1989.

[10] M. de Berg, H. Everett, and L. Guibas. The union of moving polygonal pseudodiscs – combina-
torial bounds and applications. Computational Geometry: Theory and Applications, 11:69–82,
1998.

[11] E. Demaine, J. Mitchell, and J. O’Rourke. The Open Problems Project. http://maven.

smith.edu/~orourke/TOPP/.

[12] J. Demouth, O. Devillers, H. Everett, M. Glisse, S. Lazard, and R. Seidel. On the complexity
of umbra and penumbra. Computational Geometry: Theory and Applications, 42(8):758–771,
2009.

[13] O. Devillers, V. Dujmovic, H. Everett, X. Goaoc, S. Lazard, H.-S. Na, and S. Petitjean. The
expected number of 3D visibility events is linear. SIAM Journal on Computing, 32(6):1586–
1620, 2003.

[14] F. Durand. A multidisciplinary survey of visibility, 2000. ACM Siggraph course notes, Visibil-
ity, Problems, Techniques, and Applications. http://people.csail.mit.edu/fredo/PUBLI/
surv.pdf.

[15] F. Durand, G. Drettakis, and C. Puech. The 3D visibility complex. ACM Transactions on

Graphics, 21(2):176–206, 2002.

[16] A. Efrat, L. J. Guibas, O. A. Hall-Holt, and L. Zhang. On incremental rendering of silhouette
maps of a polyhedral scene. Computational Geometry: Theory and Applications, 38(3):129–
138, 2007.

[17] D. Halperin and M. Sharir. New bounds for lower envelopes in three dimensions, with appli-
cations to visbility in terrains. Discrete and Computational Geometry, 12:313–326, 1994.

[18] H. Kaplan, N. Rubin, and M. Sharir. Line transversals of convex polyhedra in R
3. In 20th

Annual ACM-SIAM Symposium on Discrete Algorithms - SODA’09, pages 170–179, 2009.

[19] I. Macdonald, J. Pach, and T. Theobald. Common tangents to four unit balls in R
3. Discrete

and Computational Geometry, 26(1):1–17, 2001.

[20] G. Megyesi and F. Sottile. The envelope of lines meeting a fixed line and tangent to two
spheres. Discrete and Computational Geometry, 33(4):617–644, 2005.

[21] G. Megyesi, F. Sottile, and T. Theobald. Common transversals and tangents to two lines and
two quadrics in P

3. Discrete and Computational Geometry, 30(4):543–571, 2003.

[22] M. Pellegrini. On lines missing polyhedral sets in 3-space. Discrete and Computational Ge-

ometry, 12:203–221, 1994.

[23] M. Pocchiola and G. Vegter. The visibility complex. Internat. J. Comput. Geom. Appl.,
6(3):279–308, 1996.

[24] N. Rubin. Lines avoiding balls in three dimensions revisited. In 26th Annual ACM Symposium

on Computational Geometry - SCG’10, pages 58–67, 2010.

16

http://maven.smith.edu/~orourke/TOPP/
http://maven.smith.edu/~orourke/TOPP/
http://people.csail.mit.edu/fredo/PUBLI/surv.pdf
http://people.csail.mit.edu/fredo/PUBLI/surv.pdf

	Introduction
	Free lines tangent to balls
	Free line segments tangent to unit balls
	Conclusion

