Skip to Main content Skip to Navigation
New interface
Journal articles

Scheduling Real-time Mixed-criticality Jobs

Abstract : Many safety-critical embedded systems are subject to certification requirements; some systems may be required to meet multiple sets of certification requirements, from different certification authorities. Certification requirements in such "mixed-criticality'' systems give rise to interesting scheduling problems, that cannot be satisfactorily addressed using techniques from conventional scheduling theory. In this paper, we study a formal model for representing such mixed-criticality workloads. We demonstrate first the intractability of determining whether a system specified in this model can be scheduled to meet all its certification requirements, even for systems subject to merely two sets of certification requirements. Then we quantify, via the metric of processor speedup factor, the effectiveness of two techniques, reservation-based scheduling and priority-based scheduling, that are widely used in scheduling such mixed-criticality systems, showing that the latter of the two is superior to the former. We also show that the speedup factors we obtain are tight for these two techniques.
Document type :
Journal articles
Complete list of metadata

Cited literature [15 references]  Display  Hide  Download
Contributor : Gianlorenzo D'Angelo Connect in order to contact the contributor
Submitted on : Wednesday, November 23, 2011 - 12:33:27 PM
Last modification on : Friday, November 25, 2022 - 7:04:09 PM
Long-term archiving on: : Friday, February 24, 2012 - 2:23:07 AM


Files produced by the author(s)




Sanjoy K. Baruah, Vincenzo Bonifaci, Gianlorenzo d'Angelo, Haohan Li, Alberto Marchetti-Spaccamela, et al.. Scheduling Real-time Mixed-criticality Jobs. IEEE Transactions on Computers, 2012, 61 (8), pp.1140-1152. ⟨10.1109/TC.2011.142⟩. ⟨hal-00643942⟩



Record views


Files downloads