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Scheduling real-time mixed-criticality jobs

Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan Li,

Alberto Marchetti-Spaccamela, Nicole Megow, and Leen Stougie

Abstract

Many safety-critical embedded systems are subject to certification requirements; some systems may

be required to meet multiple sets of certification requirements, from different certification authorities.

Certification requirements in such “mixed-criticality” systems give rise to interesting scheduling prob-

lems, that cannot be satisfactorily addressed using techniques from conventional scheduling theory. In

this paper, we study a formal model for representing such mixed-criticality workloads. We demonstrate

first the intractability of determining whether a system specified in this model can be scheduled to meet

all its certification requirements, even for systems subject to merely two sets of certification requirements.

Then we quantify, via the metric of processor speedup factor, the effectiveness of two techniques,

reservation-based scheduling and priority-based scheduling, that are widely used in scheduling such

mixed-criticality systems, showing that the latter of the two is superior to the former. We also show

that the speedup factors we obtain are tight for these two techniques.

I. INTRODUCTION

Due to considerations of cost, energy efficiency, thermal dissipation, etc., there is an increasing

trend in embedded systems towards implementing multiple functionalities upon a single shared
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computing platform. The concept of mixed criticalities is fast coming to be regarded as an

important concept in such systems. (Indeed, mixed criticalities has been identified as one of

the core foundational concepts in the emerging discipline of Cyber Physical Systems.) In such

systems, mixed criticalities can mean two different things. The first meaning is the obvious one:

upon platforms that offer support for multiple functionalities, it is highly likely that some of these

functionalities will be more important (more “critical”) to the overall welfare of the platform than

others. For instance, it is more important to the correct behavior of an automotive control system

that the anti-lock brake system (ABS) works correctly than that the on-board radio does so. This

aspect of mixed criticalities is widely studied by embedded systems designers, who typically

address such differences in criticalities by means of priority-based scheduling approaches: more

critical functionalities are accorded greater priority so that they will be less likely to suffer

performance degradation in the event of system overload .

However, there is another aspect [4] to mixed criticalities that arises in application domains

(such as civilian and defense avionics) that are subject to mandatory certification requirements

by statutory organizations. Coming up with procedures that will allow for the cost-effective

certification of such mixed-criticality systems has been recognized as a unique, particularly chal-

lenging, collection of problems [4]. Recognizing these challenges, several US government R&D

organizations including the Air Force Research Laboratory, the National Science Foundation,

the National Security Agency, the National Aeronautics and Space Administration, etc., have led

initiatives such as the Mixed Criticality Architecture Requirements (MCAR) program aimed at

streamlining the certification process for safety-critical embedded systems; these initiatives have

brought together participants from industry, academia, and standards bodies to seek out more

advanced, efficient, and cost-effective certification processes. Within this setting, new interesting

scheduling problems arise that are the focus of this paper.

We introduce these problems by considering first an example from the domain of unmanned

aerial vehicles (UAV’s), used for defense reconnaissance and surveillance. The functionalities

on board such UAV’s may be classified into two levels of criticality:

• Level 1: the mission-critical functionalities, concerning reconnaissance and surveillance

objectives, like capturing images from the ground, transmitting these images to the base

station, etc.

• Level 2: the flight-critical functionalities: to be performed by the aircraft to ensure its safe
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operation.

For permission to operate such UAV’s over civilian airspace (e.g., for border surveillance), it

is mandatory that its flight-critical functionalities be certified correct by civilian Certification

Authorities (CA’s) such as the US Federal Aviation Authority (FAA), which tend to be very

conservative concerning the safety requirements. However, these CA’s are not concerned with the

mission-critical functionalities: these must be validated separately by the system designers (and

presumably the customers – those who will purchase the aircraft). The latter are also interested

in ensuring the correctness of the flight-critical functionalities, but the notion of correctness

adopted in validating these functionalities is typically less rigorous than the one used by the

civilian CA’s.

This difference in correctness criteria may be expressed by different Worst-Case Execution

Times (WCET) estimates for the execution of a piece of real-time code. In fact, the CA and the

system designers (and other parties responsible for validating the mission-critical functionalities)

will each have their own tools, rules, etc., for estimating WCET; the value so obtained by the

CA is likely to be larger (more pessimistic) than the one obtained by the system designer. We

illustrate via a (contrived) example.

Example 1: Consider a system comprised of two jobs: J1 is flight-critical while J2 has lower

mission-critical criticality. Both jobs arrive at time-instant 0, and have their deadlines at time-

instant 10. For i ∈ {1, 2}, let Pi(1) denote the WCET estimate of job Ji as made by the system

designer, and Pi(2) the WCET estimate of job Ji as made by the CA.

Suppose that P1(1) = 3, P1(2) = 5 and P2(1) = P2(2) = 6. Consider the schedule that first

executes J1 and then J2.

• The CA responsible for safety-critical certification would determine that J1 completes latest

by time-instant 5 and meets its deadline. (Note that if the execution time of J1 is 5 then

in the worst case it is not possible to complete J2 by its deadline; however, this CA is not

interested in J2; hence the system passes certification.)

• The system designers (and other parties responsible for validating the correctness of the

mission-critical functionalities) determine that J1 completes latest by time-instant 3, and J2

by time-instant 9. Since both jobs complete by their deadlines, the system is determined to

be correct by its designers.

We thus see that the system is deemed as being correct by both the CA and the designers,
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despite the fact that the sum of the WCET’s of the jobs at their own criticality levels (6 and 5)

exceeds the length of the scheduling window over which they are to execute.

Current practice in safety-critical embedded systems design for certifiability is centered around

the technique of “space-time partitioning,” as codified in, e.g., the ARINC-653 standard [1], [16].

Loosely speaking, space partitioning means that each application is granted exclusive access to

some of the physical resources on board the platform, and time partitioning means that the

time-line is divided into slots with each slot being granted exclusively to some (pre-specified)

application. Interactions among the partitioned applications may only occur through a severely

limited collection of carefully-designed library routines. This is one of several reservation-based

approaches, in which a certain amount of the capacity of the shared platform is reserved for

each application, that have been considered for designing certifiable mixed-criticality systems.

It is known that reservation-based approaches tend to be pessimistic (in the sense of under-

utilizing platform resource); for instance, a reservation-based approach to the example above

would require that 5 units of execution be reserved for job J1, and 6 units for job J2, over the

interval [0, 10).

The central thesis explored in our research, as illustrated in Example 1, is that efficient resource

utilization in systems that are subject to multiple different correctness criteria requires the

development of new approaches for resource-allocation and scheduling. This paper describes

our efforts to date towards developing such approaches.

1) We have proposed [5], [6] a formal model for representing mixed-criticality real-time

systems – this mixed-criticality (MC) model extends the conventional model of a real-time

job by allowing for the specification of different WCET’s for a job at different criticality

levels. This model is described in Section II.

2) We have studied the computational complexity of mixed-criticality scheduling problems.

In previous papers [5], [6], the problem of deciding schedulability of a given MC system

was conjectured to be NP-hard. We provide a proof of this result here, in Section III.

However, the exact complexity of the problem remains open, since it is not clear whether

the problem is actually in NP. We prove that it is, if the number of criticality levels is a

constant. Otherwise, we can only show that it is in PSPACE. In the same section we present

an algorithm that decides MC-schedulability efficiently for the special case in which all jobs
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have the same deadline.

3) In Section IV we quantitatively evaluate, via the metric of processor speedup factor (cf.

resource augmentation in performance analysis of approximation algorithms, as initiated

in [10]), two techniques that are currently widely used for resource-allocation and scheduling

in mixed criticality systems subject to certification. Our results here extend the results in [6],

which considered the techniques for dual-criticality systems, in which there are only two

different criticality levels (as in Example 1 above). Our results improve the results in [5],

where also the techniques for L criticality levels are studied. Moreover, we prove here that

our results are tight.

4) In Section V we show that the bounds of Section IV do not hold for restricted classes of

mixed-criticality systems. We focus on systems in which the range of WCET parameter

estimate values is restricted. More specifically, we consider mixed-criticality systems in

which there are at most two distinct criticality levels (as in Example 1 above), and we

assume that the sum of the level 2 WCET estimates is bounded by a constant β times

the sum of the level 1 WCET estimates of these jobs. We show that, depending on β,

performance guarantees can be made that are superior to the tight bounds of the general

case.

II. PRELIMINARIES

Although the examples that we considered in Section I were characterized by just two criticality

levels, systems may in general have more criticality levels defined. (For instance, the RTCA

DO178-B standard, widely used in the aviation industry, specifies 5 different criticality levels,

with the system designer expected to assign one of these criticality levels to each job. The

ISO 26262 standard, used in the automotive domain, specifies 4 criticality levels, known in the

standard as “safety integrity levels” or SIL’s.)

Accordingly, the formal model that we propose allows for the specification of arbitrarily many

criticality levels. Let L ∈ N+ denote the number of distinct criticality levels in the MC system

being modeled. A job in this MC system is characterized by a 4-tuple of parameters: Jj =

(rj, dj, χj, Pj), where

• rj ∈ Q+ is the release time;

• dj ∈ Q+ is the deadline, dj ≥ rj;
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• χj ∈ N+ is the criticality of the job;

• Pj ∈ QL
+ is a vector, the `-th coordinate of which specifies the worst-case execution time

(WCET) estimate of job Jj at criticality level `. In a job-specification we will usually

represent it by (Pj(1), . . . , Pj(L)).

We will, for the most part, assume that Pj(`) is monotonically non-decreasing with increasing `.

This is a reasonable assumption: these Pj(`) values represent upper bounds, at different degrees

of confidence, on the WCET of the job. Larger values of ` correspond to greater degrees of

confidence, and are therefore likely to be larger. At any moment, we call a job available if its

release time has passed and the job has not yet completed execution.

An instance I of the MC-schedulability problem consists of a set of n jobs. In this paper

we assume that there is only one machine (processor) to execute the jobs. We assume that this

processor is preemptive: executing jobs may have their execution interrupted at any instant in

time and resumed later, with no additional cost or penalty.

To define MC-schedulability we define the notion of a scenario. Each job Jj requires an

amount of execution time pj within its time window [rj, dj]. The value of pj is not known from

the specification of Jj , but is only discovered by actually executing the job until it signals that it

has completed execution. This characterizes the uncertainty of the problem. We call a collection

of realized values (p1, p2, . . . , pn) a scenario of instance I .

We define the criticality level, or simply criticality, of a scenario (p1, p2, . . . , pn) of I as the

smallest integer ` such that pj ≤ Pj(`) for all j = 1, . . . , n. (If there is no such `, we define that

scenario to be erroneous.)

Definition 1: A schedule for a scenario (p1, . . . , pn) of criticality ` is feasible if every job Jj

with χj ≥ ` receives execution time pj during its time window [rj, dj].

A clairvoyant scheduling policy knows the scenario of I , i.e., (p1, . . . , pn), prior to determining

a schedule for I .

Definition 2: An instance I is clairvoyantly-schedulable if for each non-erroneous scenario

of I there exists a feasible schedule.

By contrast, an on-line scheduling policy discovers the value of pj only by executing Jj until

it signals completion. In particular, the criticality level of the scenario becomes known only

by executing jobs. At each time instant, scheduling decisions can be based only on the partial

information revealed thus far.
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Definition 3: An on-line scheduling policy is correct for instance I if for any non-erroneous

scenario of instance I the policy generates a feasible schedule.

Definition 4: An instance I is MC-schedulable if it admits a correct on-line scheduling policy.

The MC-SCHEDULABILITY problem is to determine whether a given instance I is MC-

schedulable or not. The following is obvious.

Proposition 1: If an instance I is MC-schedulable on a given processor, then I is clairvoyantly-

schedulable on the same processor.

Example 2: Consider an instance I of a dual-criticality system: a system with L = 2. I is

comprised of 2 jobs: job J1 has criticality level 1 (which is the lower criticality level), and the

other job has the higher criticality level 2.

J1 = (0, 2, 2, (1, 1))

J2 = (0, 3, 2, (1, 3))

For this example instance, any scenario in which p1 and p2, are no larger than 1, has criticality

1; while any scenario not of criticality 1 in which p1 and p2 are no larger than 1, and 3,

respectively, has criticality 2. All remaining scenarios are, by definition, erroneous. It is easy to

verify that this instance is clairvoyantly-schedulable.

Policy S0, described below, is an example of an on-line scheduling policy for instance I:

S0: Execute J2 over [0,1]. If J2 has no remaining execution (i.e., p2 is revealed to be no

greater than 1), then continue with scheduling J1 over (1, 2]; else continue by complete

scheduling J2.

It is easy to see that policy S0 is correct for instance I . However, S0 is not correct if we

modify the deadline of J1 obtaining the following instance I ′:

J1 = (0, 1, 2, (1, 1))

J2 = (0, 3, 2, (1, 3))

It is easy to see that I ′ is clairvoyantly schedulable but not MC-schedulable.

The above example shows that there are instances that are clairvoyantly schedulable but not

MC-schedulable. Indeed, this is true even if the machine upon which the on-line algorithm
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executes is faster than the one upon which the clairvoyant scheduler executes1. This is shown

in the following proposition.

Proposition 2: There are dual-criticality instances that are clairvoyantly schedulable on a given

processor, but that are not MC-schedulable on a processor that is less than (1 +
√

5)/2 times as

fast.

Proof: Let σ = (1 +
√

5)/2 and consider the following instance

• J1 = (0, 1, 1, (1, 1));

• J2 = (0, σ, 2, (σ − 1, σ)).

This system is clairvoyantly schedulable. To analyze its MC-schedulability, consider the possible

policies on a higher speed-s processor. The first one starts with J2 and runs it till P2(1) = (σ−
1)/s, and if it signals completion, schedule J1 which then finishes latest by (σ−1)/s+1/s = σ/s.

This is feasible only if σ/s ≤ 1, that is, s ≥ σ. The other policy is simply to first schedule J1 and

then J2, which may require a total execution time 1/s+σ/s, which is feasible only if (1+σ)/s ≤
σ, that is, s ≥ (σ + 1)/σ. Hence, if the processor has speed s < min{σ, (σ + 1)/σ}, neither

of the possible scheduling policies is correct. Taking σ = (σ + 1)/σ, that is, σ = (1 +
√

5)/2,

implies s ≥ σ.

III. COMPLEXITY OF MC-SCHEDULABILITY

In this section we investigate the complexity of MC-SCHEDULABILITY. We show that it is

NP-hard in the strong sense. However, a little thought should make it clear that it is not trivial to

decide if the problem belongs to NP or not. We prove that it actually belongs to NP if the number

of criticality levels is bounded by a fixed constant. For the general case, in which the number

of criticality levels is part of the input, we show that it belongs to the class PSPACE, leaving

membership to NP as an open question. We complete the section by presenting a well-solved

special case of MC-SCHEDULABILITY, in which all jobs have equal deadline.

A preliminary observation is that determining clairvoyant-schedulability has the same com-

plexity as the ordinary scheduling problem with only 1 criticality level: verify for each criticality

1This notion, of comparing the performance of an on-line algorithm executing upon a faster processor than the processor

available to the clairvoyant algorithm, is formalized in the concept of resource augmentation; this concept is explored further

in Section IV.
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level ` = 1, . . . , L if the jobs of that criticality level or higher can be scheduled to complete

before their deadlines if each such job j has execution time Pj(`). In particular this means

that clairvoyant-schedulability of any instance on a fully preemptive processor platform can be

verified in polynomial time. This also holds if Pj(`) is not monotonic in `.

We show that it is strongly NP-hard to determine whether a given clairvoyantly-schedulable

system is also MC-schedulable upon a fully preemptive single-processor platform.

Theorem 1: MC-SCHEDULABILITY is NP-hard in the strong sense, even when all release

times are identical and there are only two criticality levels.

Proof: The proof is by reduction from the strongly NP-complete problem 3-PARTITION [9].

In an instance I3P of 3-PARTITION, we are given a set S of 3m positive integers s0, s1, . . . , s3m−1

and a positive integer B such that B/4 < si < B/2 for each i and
∑3m−1

i=0 si = mB. The

problem is to decide whether S can be partitioned into m disjoint sets S0, S1, . . . , Sm−1 such

that, for 0 ≤ k < m,
∑

si∈Sk
si = B.

From a given instance I3P we construct an MC-SCHEDULABILITY instance IMC consisting

of 4m jobs with release time 0, which in the 4-tuple notation are:

• 3P-jobs: For each i, 0 ≤ i < 3m, job Ji = (0, 2mB, 2, (si, 2si));

• Blocking jobs: For each k, 0 ≤ k < m, job J3m+k = (0, 2(k + 1)B, 1, (B,B)).

Clairvoyant-schedulability can be verified easily. In each scenario of criticality level 2, the

blocking jobs do not need to be scheduled, and the total execution time of the 3P-jobs is at

most
∑3m−1

i=0 Pi(2) =
∑3m−1

i=0 2si = 2mB. For each scenario of criticality level 1, each blocking

job is scheduled for at most B time-units immediately preceding its deadline. The total available

execution time before the common deadline 2mB of the 3P-jobs is at least mB ≥∑3m−1
i=0 Pi(1).

We show that instance I3P is a YES-instance of 3-PARTITION if and only if the corresponding

instance IMC is MC-schedulable.

Suppose there is a feasible partition S0, S1, . . . , Sm−1 for instance I3P . Based on this partition,

a feasible online scheduling policy for jobs in IMC is as follows. For each k = 0, 1, . . . ,m −
1, reserve, for the 3P-jobs Ji corresponding to each si ∈ Sk, Pi(1) = si units in the time-

interval [2kB, (2k + 1)B). If all jobs associated with a set Sk signal that they have completed

execution in this time interval, then schedule the blocking job J3m+k over the interval [(2k +

1)B, (2k + 2)B). Else, discard job J3m+k and complete the execution of the jobs that had not

completed. Note that this is possible since
∑

i|si∈Sk
Pi(2) = 2B which is equal to the length of
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the interval [2kB, (2k + 2)B), which is now completely available for execution of 3P-jobs.

Suppose that there is no 3-partition for instance I3P . Consider any online policy. Since

preemption is allowed, we can assume w.l.o.g. that the policy schedules each blocking job

J3m+k as late possible, that is, in intervals [(2k + 1)B, 2(k + 1)B), k = 0, 1, . . . ,m − 1, as

long as the system’s scenario is in criticality level 1. Take a scenario in which each job needs

either Pi(1) or Pi(2). Let k′ be the smallest value of k for which there exists a 3P-job Jj which

receives execution time p′j , with 0 < p′j < Pj(1), during the interval [0, (2k′ + 1)B), and such

that the scenario is still of criticality level 1 at time (2k′+ 1)B. Because there is no 3-partition,

a scenario must exist such that k′ and Jj exist. Since the system’s scenario is still at criticality

level 1, the online policy must schedule a blocking job at [(2k′ + 1)B, 2(k′ + 1)B).

Now, let any 3P-job Ji be scheduled after time 2(k′+ 1)B report an execution time of Pi(2).

Clearly, any sensible online policy discards all blocking jobs J3m+k with k > k′, and uses all

the remaining available time up to the common deadline of the 3P-jobs, that is, 2mB − 2(k′ +

1)B, for processing 3P-jobs. However, the total remaining processing requirement of these jobs,

is 2(mB − (k′ + 1)B) + p′j > 2mB − 2(k′ + 1)B.

The question remains as to whether MC-SCHEDULABILITY belongs to the complexity class

NP or not. In case the number of criticality levels L is a constant, we answer this question

affirmatively; otherwise, the best we are able to show is that MC-SCHEDULABILITY ∈ PSPACE.

The proof is based on a polynomial-time checkable characterization of an online scheduling

policy.

Call a scenario (p1, . . . , pn) basic if for each j = 1, . . . , n there exists `j ≤ χj such that

pj = Pj(`j). Call an on-line scheduling policy basically correct for instance I if for any basic

scenario of I the policy generates a feasible schedule. We have the following.

Lemma 1: An instance is MC-schedulable if it admits a basically correct scheduling policy.

Proof: Let π be a basically correct policy for instance I . We modify π to obtain a new

policy π′. Policy π′ simulates π, except that when a job j does not follow a basic scenario (say,

Pj(k − 1) < pj < Pj(k)), then π′ runs π as if job j did not complete before executing Pj(k)

units. Whenever π prescribes the execution of a job that has already signaled completion, π′

idles the processor. The resulting simulated scenario is basic, so π feasibly schedules it. Thus

π′ feasibly schedules the original scenario (which has the same criticality level).
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In view of Lemma 1, any online policy can be represented as a finite-size decision tree in

which each path from the root to a leaf defines the scheduling decisions for a particular scenario.

More precisely, a scheduling decision encodes which job should be executed for which amount of

time. The decisions are based on when the jobs complete their execution. We show the following

lemma, which is crucial for significantly reducing the size of the decision tree for an optimal

dynamic policy.

Lemma 2: If an instance is MC-schedulable, then there exists an optimal online scheduling

policy that preempts each job j only at time points t such that at time t either some other job

is released, or j has executed for exactly Pj(i) units of time for some 1 ≤ i ≤ L.

Proof: Consider an optimal online scheduling policy that preempts some job j after it has

executed for Pj(i) < p < Pj(i + 1) units of time, for some 0 ≤ i < L (with the convention

that Pj(0) = 0). Let t be the first decision time when such a situation occurs, that is, in the

optimal decision tree representation this decision is closest to the root for all paths to leaves, and

assume t is not the release time of any job. Now, we modify the policy in the following way: we

change the decision to preempt j after p units of time into preempting j already after Pj(i) < p

units of time. Furthermore, at the next decision point (or next release time) t′, we simply add

the remaining amount of processing p − Pj(i) to the scheduled amount of processing. Clearly,

this modification has to be done for each scenario affected by that change, that is, in the full

subtree below the first modified decision. Notice that by preempting j earlier, we do not lose any

information on job completions because by Lemma 1 we can assume the scenario is basic. If

the original policy completed j no later than its deadline for all scenarios that require this, then

this is still true for the modified policy. Moreover, we do not change the amount of execution

for jobs that are scheduled between t and t′. Thus, if the original policy was feasible, then the

modified one is feasible as well. Repeated applications of this argument completes the proof.

Theorem 2: The problem of deciding MC-schedulability for L criticality levels is in NP when

L is a constant.

Proof: We show that an online policy can be represented and verified in polynomial time

and space, if L is constant. Consider an optimal online policy and the corresponding decision

tree in which each path from the root to a leaf defines the scheduling decisions for a particular

scenario. By Lemma 2, we can assume that the decision times of the policy are those points in

time when some job j has completed Pj(i) units of time for some 1 ≤ i ≤ L.
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Let N(n, L) denote the number of nodes of an optimal decision tree for an instance with n

jobs and L criticality levels. We show by induction that N(n, L) = O(nL). For L = 1, there

is no decision to be made since the earliest deadline first (EDF) policy is optimal. For larger

L, any optimal policy starts by executing some job j for some time Pj(i). If j completes,

we are left with an instance with one less job. If not, the criticality level of the scenario is

increased by at least one and thus (by updating the input parameters appropriately) we are

left with an instance with n jobs and (at most) L − 1 levels. Thus, we have the recurrence

N(n, L) ≤ N(n−1, L) +N(n, L−1) + 1. Since by induction N(n, L−1) = O(nL−1), we have

N(n, L) ≤ N(n− 1, L) +O(nL−1), implying N(n, L) = O(nL).

Thus, the tree has polynomial size. To verify that the policy is feasible for any possible

scenario, we check for each individual path from the root to a leaf if the decisions of the policy

lead to a feasible schedule for any scenario compatible with the information extracted by the

algorithm. This takes polynomial time.

Theorem 3: The problem of deciding MC-schedulability is in PSPACE.

Proof: Consider the tree representation of an optimal online policy as in the proof of

Theorem 2. Notice that we cannot store the whole tree in space that is polynomial in n when L

is large. However, we can still check that such a tree exists by generating in depth-first order all

paths from the root to a leaf, while making sure that the common portion of consecutive paths

is consistent. It is enough to store two paths at a time. Each path requires space proportional to

its depth, which is O(nL), and to keep track of the depth-first search a counter of size O(nL) is

enough, because there are O(2nL) potential paths, the tree being binary. Finally, as in the proof

of Theorem 2 we verify for each path that the decisions of the policy generate a valid schedule.

This yields a nondeterministic algorithm for deciding MC-schedulability that uses polynomial

space. The claim follows by the well-known fact that nondeterminism can be removed from the

algorithm, at the cost of squaring the required space.

a) Equal deadlines.: Theorem 1 above shows that MC-SCHEDULABILITY is in general

NP-hard even if release times are identical. We will now show that the special case in which

all jobs have equal deadlines (dj = D, j = 1, . . . , n) can be solved in polynomial time. We

first derive a necessary condition for such an instance I to be MC-schedulable. Consider the

criticality level ` scenario of I in which each job Jj needs exactly pj = Pj(`) execution time.
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Necessary condition: If I is MC-schedulable then for each `, a scheduling policy exists that

allocates to each job Jj with χj ≥ ` at least Pj(`) execution time within time window [rj, D],

i.e., the makespan of the scenario is at most D.

This condition is easily checked: Let I` = {Jj ∈ I | χj ≥ `} and |I`| = n`. Let (after

renumbering) J1, J2, . . . , Jn`
denote the jobs in I` in order of non-decreasing release times: r1 ≤

r2 ≤ . . . ≤ rn`
. Clearly, the makespan of I` is given by

C`
max := max

j=1,...,n`

rj +

n∑̀

i=j

Pj(`). (1)

The necessary condition is then verified by checking if

max
`=1,...,L

C`
max ≤ D. (2)

Consider the criticality-monotonic (CM) on-line scheduling policy, which schedules at each

time instant an available job of highest criticality.

Theorem 4: CM is correct for all for MC-schedulable instances in which all jobs have the

same deadline.

Proof: We prove this by showing that the necessary condition is also sufficient. Consider any

scenario of I that has criticality level `. In a CM-schedule, the scheduling of jobs of criticality ` or

higher is not effected by the presence of lower-criticality jobs, since their execution is postponed

as soon as jobs in I` become available. Hence, a CM-schedule can be thought of as a schedule

that minimizes the makespan of the jobs in I`. By the necessary condition, this does not exceed

the common deadline D.

We observe that this theorem also holds when Pj(`) is not monotonic in `.

Using essentially the same arguments as were used above for systems with equal deadlines,

it can also be shown that

Theorem 5: CM is correct for all for MC-schedulable instances in which job deadlines are

monotonic with criticality level: χi > χj ⇒ di ≤ dj .

IV. ALGORITHMS FOR MC SCHEDULING

Since MC-SCHEDULABILITY is intractable even for dual-criticality instances, we concentrate

here on sufficient (rather than exact) MC-schedulability conditions that can be verified in poly-

nomial time. We study two widely-used scheduling policies that yield such sufficient conditions
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and compare their capabilities under the resource augmentation metric: the minimum speed of

the processor needed for the algorithm to schedule all instances that are MC-schedulable on a

unit-speed processor. We show that the second policy we present outperforms the first one in

terms of the resource augmentation metric, in the sense that it needs lower-speed processors to

ensure such schedulability.

Run-time support for mixed criticality. In scheduling mixed-criticality systems, the kinds of

performance guarantees that can be made depend upon the forms of support that are provided by

the run-time environment upon which the system is being implemented. A particularly important

form of platform support is the ability to monitor the execution of individual jobs, i.e., being

able to determine how long a particular job has been executing.

Why is such a facility useful? In essence, knowledge regarding how long individual jobs have

been executing allows the system to become aware, during run-time, when the criticality level of

the behavior changes from a value k to the next-higher value k + 1, due to some job executing

beyond its level-k WCET without signalling completion; this information can then be used by

the run-time scheduling and dispatching algorithm to no longer execute criticality-k jobs once

the transition has occurred.

In the remainder of this section, we assume that this facility to monitor the execution of

individual jobs is provided by the run-time environment. We may therefore make the assumption

that for each job Jj , Pj(`) = Pj(χj) for all ` ≥ χj . That is, no job executes longer than the WCET

at its own specified criticality. This is without loss of generality for any correct scheduling policy:

any such policy will immediately interrupt (and no longer schedule) a job Jj if its execution

time pj exceeds Pj(χj), since this makes the scenario of higher criticality level than χj , and

therefore the completion of Jj becomes irrelevant for the scenario.

A. Reservations-based scheduling

As stated in Section I, one straightforward approach is to map each MC job Jj into a

“traditional” (i.e., non-MC) job with the same arrival time rj and deadline dj and process-

ing time pj = Pj(χj) = max` Pj(`) (by monotonicity), and determine whether the resulting

collection of traditional jobs is schedulable using some preemptive single machine scheduling
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algorithm such as the Earliest Deadline First (EDF) rule2. This test can clearly be done in

polynomial time. We will refer to mixed-criticality instances that are MC-schedulable by this

test as worst-case reservations schedulable (WCR-schedulable) instances.

Theorem 6: If an instance is WCR-schedulable on a processor, then it is MC-schedulable on

the same processor. Conversely, if an instance I with L criticality levels is MC-schedulable on

a given processor, then I is WCR-schedulable on a processor that is L times as fast, and this

factor is tight.

Proof: If instance I is WCR-schedulable then for each job the maximum amount of time the

job may execute is reserved between its arrival time and its deadline. Hence it is MC-schedulable.

Suppose now that instance I is MC-schedulable. If we were to use a separate processor for

each of the L criticality levels, then each job will receive its maximum processing time between

arrival time and deadline e.g. by using EDF on the machine corresponding to its criticality level.

Hence, by processer sharing, WCR-schedulability on one processor of speed L times faster

follows immediately.

Finally, we show that there exist instances with L criticality levels that are MC-schedulable

on a given processor, but not WCR-schedulable on a processor that is less than L times as fast.

Consider the instance I comprised of the following L jobs:

J1 = (0, 1, 1, (1, 1, . . . , 1, 1))

J2 = (0, 1, 2, (0, 1, . . . , 1, 1))
...

...

JL = (0, 1, L, (0, 0, . . . , 0, 1))

This instance is MC-schedulable on a unit-speed processor by the scheduling policy of assigning

priority in criticality-monotonic (CM) order: JL, JL−1, . . . .J2, J1. Any scenario (p1, p2, . . . , pL)

with ph > 0, h ≥ 2, and pj = 0 for all j > h, has criticality level h, hence all jobs of lower

criticality level, in particular J1, are not obliged to meet their deadline, and job h will meet its

deadline. On the other hand, in any scenario of criticality level 1, p2 = p3 = . . . = pL = 0 and

p1 ∈ [0, 1], hence all jobs meet their deadline.

2In fact, this approach forms the basis of current practice, as formulated in the ARINC-653 standard: each Jj is guaranteed

Pj(χj) units of execution in a time partitioned schedule, obtained by partitioning the time-line into distinct slots and only

permitting particular jobs to execute in each such slot.
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However, WCR-schedulability requires that each job Jj is executed for Pj(χj) = 1, j =

1, . . . , L before common deadline 1, which clearly can only be achieved on a processor with

speed at least L.

B. Priority-based scheduling

We now consider another schedulability condition, OCBP-schedulability, that offers a perfor-

mance guarantee (as measured by the processor speedup factor) that is superior to the perfor-

mance guarantee offered by the WCR-approach. OCBP-schedulability is a constructive test: we

determine off-line, before knowing the actual execution times, a total ordering of the jobs in a

priority list and for each scenario execute at each moment in time the available job with the

highest priority.

The priority list is constructed recursively using the approach commonly referred to in the

real-time scheduling literature as the “Audsley approach” [2], [3]; it is also related to a technique

introduced by Lawler [13]. First determine the lowest priority job: Job Ji may be assigned the

lowest priority if there is at least Pi(χi) time between its release time and its deadline available

when every other job Jj is executed before Ji for Pj(χi) time units (the WCET of job Jj

according to the criticality level of job i). This can be determined by simulating the behavior of

the schedule under the assumption that every job other than Ji has priority over Ji (and ignoring

whether these other jobs meet their deadlines or not — i.e., they may execute under any relative

priority ordering, and will continue executing even beyond their deadlines). The procedure is

repeatedly applied to the set of jobs excluding the lowest priority job, until all jobs are ordered,

or at some iteration a lowest priority job does not exist. If job Ji has higher priority than job Jj

we write Ji B Jj .

Because the priority of a job is based only on its own criticality level, the instance I is called

Own Criticality Based Priority OCBP)-schedulable if we find a complete ordering of the jobs.

If at some recursion in the algorithm no lowest priority job exists, we say the instance is not

OCBP-schedulable. We can simply argue that this does not mean that the instance is not MC-

schedulable: Suppose that scheduling according to the fixed priority list J1, J2, J3 with χ2 = 1

and χ1 = χ3 = 2, proves the instance to be schedulable. It may not be OCBP-schedulable since

this does not take into account that J2 does not need to be executed at all if J1 receives execution

time p1 > P1(1).
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It is evident that the OCBP priority list for an instance of n jobs can be determined in time

polynomial in n: at most n jobs need be tested to determine whether they can be the lowest-

priority job; at most (n−1) jobs whether they can be the 2nd-lowest priority jobs; etc. Therefore,

at most x + (n − 1) + · · · + 3 × 2 + 1 = O(n2) simulations need be run, and each simulation

takes polynomial time.

We illustrate the operation of the OCBP priority assignment algorithm by an example:

Example 3: Consider the instance comprised of the following three jobs. J1 is not subject to

certification, whereas J2 and J3 must be certified correct.
Ji ri di χi Pi(1) Pi(2)

J1 0 4 1 2 2

J2 0 5 2 2 4

J3 0 10 2 2 4
Let us determine which, if any, of these jobs could be assigned lowest priority according to

the OCBP priority assignment algorithm:

• If J1 were assigned lowest priority, J2 and J3 could consume P2(1) + P3(1) = 2 + 2 = 4

units of processor capacity over [0, 4), thus leaving no execution for J1 prior to its deadline.

• If J2 were assigned lowest priority, J1 and J3 could consume P1(2) + P3(2) = 2 + 4 = 6

units of processor capacity over [0, 6), thus leaving no execution for J2 prior to its deadline

at time-instant 5.

• If J3 were assigned lowest priority, J1 and J2 could consume P1(2) + P2(2) = 2 + 4 = 6

units of processor capacity over [0, 6). This leaves 4 units of execution for J3 prior to its

deadline at time-instant 10, which is sufficient for J3 to execute for P3(2) = 4 time units.

Job J3 may therefore be assigned the lowest priority.

Next, the OCBP priority assignment algorithm would consider the instance {J1, J2}, and seek

to assign one of these jobs the lower priority:

• If J1 were assigned lower priority, J2 could consume P2(1) = 2 units of processor capacity

over [0, 2). This leaves 2 units of execution for J1 prior to its deadline at time-instant 4,

which is sufficient for J1 to execute for P1(1) = 2 time units. Job J1 may therefore be

assigned the lowest priority from among {J1, J2}.
• It may be verified that J2 cannot be assigned the lowest priority from among {J1, J2}. If

we were to do so, then J1 could consume P1(2) = 2 units of processor capacity over [0, 2).
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This leaves 3 units of execution for J1 prior to its deadline at time-instant 5, which is not

sufficient for J2 to execute for the P2(2) = 4 time units it needs to complete on time.

The final OCBP priority ordering is therefore as follows. Job J2 has the greatest priority, job J1

has the next-highest priority, and J3 has the lowest priority. It may be verified that scheduling

according to these priorities is a correct MC scheduling strategy for the instance {J1, J2, J3},
(recall from Section II the definition of “correct” scheduling strategies).

The following theorem shows that the OCBP-test is more powerful than the WCR-test ac-

cording to the speedup criterion.

Theorem 7: If an instance is OCBP-schedulable on a processor, then it is MC-schedulable on

the same processor. Conversely, if instance I with L criticality levels is MC-schedulable on a

given processor, then I is OCBP-schedulable on a processor that is sL times as fast, with sL

equal to the root of the equation xL = (1 + x)L−1, and this factor is tight. Furthermore, it holds

that sL = Θ(L/ lnL).

Proof: We present this proof in several parts:

(i) OCBP-schedulability implies MC-schedulability.

(ii) A speedup of sL is sufficient.

(iii) The factor of sL is tight.

(iv) sL = Θ(L/ lnL).

i): OCBP-schedulability implies MC-schedulability. Suppose that I is OCBP-schedulable and

suppose, after renumbering jobs, that J1BJ2B· · ·BJn. Notice that in every behaviour of criticality

level χk, the criticality level of job Jk, each job Jj has pj ≤ Pj(χk). OCBP-schedulability

of I implies that Jk can receive Pk(χk) units of execution before its deadline if each Ji ∈
{J1, . . . , Jk−1} executes for no more than Pi(χk) units.

ii): A speedup of sL is sufficient. Notice that s1 = 1, and that (as one can verify using elementary

calculus) sL′ ≥ sL if L′ > L. Let I be an instance with at most L criticality levels that is

MC-schedulable on a speed-1 processor, but not OCBP-schedulable on a speed-s processor for

some s ≥ sL, and amongst such instances let it be minimal with respect to L and the number

of jobs. Suppose I has n jobs. Minimality of I implies that there is no time-instant t such

that t /∈ ∪nj=1[rj, dj], otherwise either the jobs with deadline before t or the jobs with release

time after t would comprise a smaller instance with the same property.
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Claim 1: Any job in I with the latest deadline must be of criticality L.

Proof: Suppose that a job Ji with χi = h < L has latest deadline. Create from I an

instance Ih with level h by “truncating” all jobs with criticality level greater than h to their

worst-case level-h scenarios:

Jj = (rj, dj, χj, (Pj(1), . . . , Pj(L))) ∈ I →

J ′j = (rj, dj,min(χj, h), (Pj(1), . . . , Pj(h))) ∈ Ih.

Clearly, Ih being a restricted instance of I , is MC-schedulable as well, and, by minimality of I , Ih

is OCBP-schedulable on a speed-sh processor.

That Ji has latest deadline in I but cannot be assigned lowest priority on a speed-s processor

implies that the scenario with pj = Pj(h) cannot be feasibly scheduled on a speed-s processor;

thus Ih is not clairvoyantly schedulable on a speed-s processor. But Ih not being clairvoyantly

schedulable implies Ih not being OCBP-schedulable, and because s ≥ sL ≥ sh, this contradicts

the OCBP-schedulability of Ih on a speed-sh processor and completes the proof of the claim.

For each ` ∈ {1, . . . , L}, let d(`) denote the latest deadline of any criticality-` job in I:

d(`) = maxJj |χj=` dj . A work-conserving schedule on a processor is a schedule that never leaves

the processor idle if there is a job available. Consider any such a work-conserving schedule on a

unit-speed processor of all jobs in I of the scenario in which pj = Pj(`) for all j. We define Λ`

as the set of time intervals on which the processor is idle before d(`), and λ` as the total length

of this set of intervals.

Claim 2: For each ` and each Jj ∈ I with χj ≤ ` we have [rj, dj] ∩ Λ` = ∅.
Proof: Observe that since s ≥ sL ≥ 1, all idle intervals of Λ` are also idle intervals in

any work-conserving schedule of I on a speed-s processor. Hence, any job Jj with χj ≤ `

with [rj, dj] ∩ Λ` 6= ∅ would meet its deadline in such a schedule if it were assigned lowest

priority. Since I is assumed to be non-OCBP schedulable on a speed-s processor, this implies

that (I \ {Ji}) is non-OCBP schedulable on a speed-s processor, contradicting the minimality

of I . This completes the proof of the claim.

It follows that ΛL = ∅ and λL = 0.
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For each h = 1, . . . , L and ` = 1, . . . , L, let

ch(`) =
∑

Jj |χj=h

Pj(`)

Notice that by assumption

∀ ` ∀h ≤ ` : ch(`) = ch(h). (3)

Since instance I is clairvoyantly schedulable on a unit-speed processor, clearly we must have

∀ ` : c`(`) ≤ d(`)− λ`. (4)

But also, due to clairvoyant schedulability, the criticality-` scenario, in which each job Jj with

criticality ≥ ` receives exactly Pj(`) units of execution, completes by the latest deadline d(L):

∀` :
L∑

i=`

ci(`) ≤ d(L)− λ`. (5)

Instance I is not OCBP-schedulable on a speed-s processor, which translated in terms of the

introduced notation is:

∀` :
L∑

i=1

ci(`) > s(d(`)− λ`). (6)

(This follows from Claim 2, which shows that no job can execute during the idle intervals Λ`.

Consequently, all the execution on the jobs must have occurred during the remaining d(`)− λ`)
time units.)

Hence, for each `,

s(d(`)− λ`) <
`−1∑

i=1

ci(`) +
L∑

i=`

ci(`)

=
`−1∑

i=1

ci(i) +
L∑

i=`

ci(`) (by (3))

≤
`−1∑

i=1

(d(i)− λi) + (d(L)− λ`) (by (4) and (5))

≤
`−1∑

i=1

(d(i)− λi) + d(L).

Therefore, for all ` = 1, . . . , L,

s <
d(L) +

∑`−1
i=1(d(i)− λi)

d(`)− λ`
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Using notation δ` = d(`)− λ` (hence δL = d(L) since λL = 0) this yields

s < min
`=1,...,L

δL +
∑`−1

i=1 δi
δ`

(7)

The minimum is maximized if all L terms are equal. Let x be this maximum value. Then for

all ` = 1, . . . , L,

x =
δL + δ1 + δ2 + · · ·+ δ`−1

δ`
=
xδ`−1 + δ`−1

δ`
=

(
1 + x

δ`

)
δ`−1.

Hence,

δ` =
(1 + x

x

)
δ`−1 ∀` = 1, . . . , L which implies δL =

(1 + x

x

)L−1

δ1 .

Since, in particular, x = δL
δ1

, we have

x =
(1 + x

x

)L−1

,

which concludes the proof that a speedup of sL is sufficient.

iii): The factor of sL is tight. We now show that the factor sL is tight by giving instances with

L criticality levels that are MC-schedulable on a unit-speed processor, but not OCBP-schedulable

on a processor that is less than sL times as fast.

Consider the following instance consisting of 2L− 1 jobs:

• J1 = (0, d1 = σ1 = 1, 1, (

L times︷ ︸︸ ︷
1, 1, . . . , 1)).

• For each i, 2 ≤ i ≤ L, there are two jobs:

– J2(i−1) = (0, σi−1, i, (

(i−1) times︷ ︸︸ ︷
0, 0, . . . , 0, σi−1, . . . , σi−1︸ ︷︷ ︸

L−(i−1) times

))

– J2i−1 = (0, σi, i, (σi − σi−1, . . . , σi − σi−1︸ ︷︷ ︸
L times

)), where σi > σi−1.

This instance is MC-schedulable by the following policy. Assign greatest priority to the jobs J2i

in reverse order of their indices: J2L, J2(L−1), . . . , J2. Consider the scenario in which p2h > 0,

h ≥ 1, and p2j = 0, j > h. Then we execute J2h, J2h+1, J2h+3, . . . , J2L+1 in this order; it is

evident that each of them completes by its deadline.

For job J2h−1, h = 1, . . . , L to be assigned lowest priority in an OCBP-schedule, we would

need a speedup factor s of the processor such that

(σL − σL−1) + (σL−1 − σL−2) + · · ·+ (σ2 − σ1) + σ1 + (1 + σ2 + · · ·+ σj−1)

s
=

σL + (1 + σ2 + · · ·+ σj−1)

s
≤ σh.
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Hence, for all h = 1, . . . , L, it requires

s ≥ σL + (1 + σ2 + · · ·+ σj−1)

σh
.

We refer to the end of part (ii) of the proof to show that the right hand side is maximized for

the root of the equation xL = (1 + x)L−1.

iv): sL = Θ(L/ ln L). Rewrite the equation as x = (1 + 1/x)L−1 and let x∗ be its largest real

root. The left hand side (resp., r.h.s.) is increasing (resp., decreasing) in x. The l.h.s. is larger

(resp., smaller) than the r.h.s. precisely when x > x∗ (resp., x < x∗). So if substituting (say)

f(L) in place of x gives a l.h.s. larger (resp., smaller) than the r.h.s., it means that f(L) is an

upper (resp., lower) bound on x∗.

Substituting 2(L− 1)/ lnL in place of x, we get for the r.h.s.:

(1 + 1/x)L−1 ≤ e(L−1)/x = e(L−1)(lnL)/2(L−1) = L1/2

(where we have used 1 + y ≤ ey). The l.h.s. becomes instead 2(L − 1)/ lnL, which is larger

than the r.h.s. for all L ≥ 2. So x∗ ≤ 2(L− 1)/ lnL for all L ≥ 2.

Substituting (L− 1)/(2 lnL) in place of x, we get for the r.h.s.:

(1 + 1/x)L−1 ≥ e(L−1) 1
2x = L

(where we have used 1 + 2y ≥ ey for all y ∈ [0, 1.2], and assumed L ≥ 3). The l.h.s. becomes

instead (L− 1)/(2 lnL), which is smaller than the r.h.s. for all L ≥ 2. So x∗ ≥ (L− 1)/(2 lnL)

for all L ≥ 3.

We note that for L = 2 in the above theorem, s2 = (1 +
√

5)/2 is equal to the golden

ratio φ; thus the result is a true generalization of an earlier result in [6]. In general, sL =

Θ(L/ lnL); hence, this priority-based scheduling approach asymptotically improves on the worst-

case reservations-based approach by a factor of Θ(lnL) from the perspective of processor

speedup factors.

Notice that the proof of the speedup bound for OCBP-schedulability in Theorem 7 only

uses the clairvoyant-schedulability of the instance, which is a weaker condition than MC-

schedulability (recall Proposition 1). Moreover, Proposition 1 shows that it is not possible to get

an improved test if the proof of its speedup bound is based on clairvoyant-schedulability alone.
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Nevertheless, the question remains if a test other than OCBP can test MC-schedulability within

a smaller speedup bound. We do not give a full answer to this question. However, we can rule

out fixed-priority policies, that is, policies which execute the jobs in some ordering fixed before

execution. This ordering is not adapted during execution, except that we do not execute jobs of

criticality level i < h after a scenario was revealed to be a level-h scenario. Such a policy admits

a simple representation as a sequence of jobs and we say that an instance I is Π-schedulable if

there exists an ordering of jobs Π that is feasible for for any non-erroneous scenario.

The following result shows that OCBP is best possible among fixed-priority policies.

Theorem 8: There exist instances with L criticality levels that are clairvoyantly-schedulable,

but that are not Π-schedulable for any fixed priority policy Π on a processor that is less that sL

times as fast, with sL being the root of the equation xL = (1 + x)L−1.

Proof: Consider an instance with L criticality levels and L jobs:

J1 : (0, 1, 1, (

L times︷ ︸︸ ︷
1, 1, . . . , 1)),

and, for each i = 2, . . . , L,

Ji : (0, σi, i, (

i−1 times︷ ︸︸ ︷
σi − σi−1, . . . , σi − σi−1,

L−i+1 times︷ ︸︸ ︷
σi, . . . , σi )),

where σi will be specified later and satisfies σi−1 < σi.

For L = 3 we have the following example:

J1 : (0, 1, 1, (1, 1, 1))

J2 : (0, σ2, 2, (σ2 − 1, σ2, σ2))

J3 : (0, σ3, 3, (σ3 − σ2, σ3 − σ2, σ3)).

The system is clairvoyantly schedulable as, for each scenario of level i and for each job Jj ,

j ≥ i,
∑j

`=i P`(i) = σj . It follows that a schedule that executes job Ji in the interval [0, σi] and

each job Jj , j > i, in the interval [σj−1, σj] is feasible.

We now show that the system is Π-schedulable for a s-speed machine only if s ≥ sL where

sL is the positive real-valued solution of the equation

xL = (x+ 1)L−1.

Each fixed priority work-conserving policy is a sequence of jobs. Let us consider a sequence

where the last scheduled job is Ji and a level i scenario. In this case the overall execution time
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is
∑L

j=1 Pj(i) = σL+
∑i−1

j=1 σj . Hence the schedule is feasible for a s-speed machine if and only

if:

sσi ≥ σL +
i−1∑

j=1

σj.

By using the same arguments for each possible schedule, it follows that a fixed priority policy

Π system is correct for a s-speed machine if and only if

s ≥ min
1≤i≤L

{
σL +

∑i−1
j=1 σj

σi

}
.

As we showed in the proof of Theorem 7, sL is the maximum value of s′ satisfying the inequality:

min
1≤i≤L

{
σL +

∑i−1
j=1 σj

σi

}
≥ s′,

hence the system is Π-schedulable for a s-speed machine if and only if s ≥ sL.

V. MC-SCHEDULABILITY WITH BOUNDED WCET

Although Theorems 7 and 8 above provide tight bounds on the performance of OCBP and

similar algorithms, better performance than is implied by these bounds may be possible when

further restrictions are placed on the kinds of instances that could need to be scheduled. We

illustrate this phenomenon in this section, by analyzing the OCBP scheduling policy upon dual-

criticality instances when the overall WCET at level two of criticality-two jobs is a priori known

to be bounded by a constant times the level-one WCET’s of these jobs. That is, let c1 =
∑

j|χj=1 Pj(1) denote the cumulative WCET for jobs with criticality level 1, and let c2(1) =
∑

j|χj=2 Pj(1) and c2(2) =
∑

j|χj=2 Pj(2) denote the cumulative WCETs for jobs with criticality

level 2 at levels 1 and 2, respectively. We consider the situation that c2(2) ≤ βc2(1) for a certain

constant β, whose value is known3.

The following theorem shows that if β < 1+φ, φ = (1+
√

5)/2, the speed required by OCBP

to give a necessary condition for MC-schedulability is smaller than the bound of Theorem 7.

3This would hold in, for instance, systems in which the higher-criticality-level WCET of each job is no more than β times the

lower-criticality-level WCET of that job. That is, the constant β could simply be the maximum degree of pessimism exhibited

by the WCET-analysis tool used in the higher criticality level as compared to the tool used in the lower criticality level.
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Theorem 9: If an instance I with 2 criticality levels is MC-schedulable on a given processor

and c2(2) ≤ βc2(1) for a certain constant β, then I is OCBP-schedulable on a processor that

is s times as fast, where s is given by

s =





√
β2+β+1+β

β+1
if β ≤ 1 + φ

φ if β > 1 + φ.

Proof: Let I be a minimal instance that is MC-schedulable on a given processor and not

OCBP-schedulable on a processor that is s times as fast for some s > 1. We show that

s <





√
β2+β+1+β

β+1
if β ≤ 1 + φ

φ if β > 1 + φ.

Let d1 and d2 denote the latest deadlines at level 1 and 2, respectively, and let j1 and j2 be

the jobs with deadlines d1 and d2. Recall from the first claim in the proof of Theorem 7 that the

jobs in I with latest deadline must be of criticality 2. Define λ1 as in the proof of Theorem 7.

That is, consider any work-conserving schedule on a unit-speed processor of all jobs in I of

the scenario in which pj = Pj(1) for all j: λ1 is defined to be the total amount of time during

which the processor is idle before d1.

Since I is MC-schedulable then c1 cannot exceed d1 in any criticality 1 scenario. Moreover,

in scenarios where all jobs execute for their WCET at criticality 1, c1 + c2(1) cannot exceed d2

and in scenarios where all jobs execute for their WCET at criticality 2, c2(2) cannot exceed d2.

Hence, by instantiating Inequality 4 for ` = 1 we have

c1 ≤ (d1 − λ1) (8)

By instantiating Inequality 5 for ` = 1 and noting that (d2 − λ1) ≤ d2 we have

c1 + c2(1) ≤ d2 (9)

By instantiating Inequality 4 for ` = 2 and noting that λ2 = 0 for dual-criticality systems (L = 2)

we have

c2(2) ≤ d2. (10)

Since I is not OCBP-schedulable on a speed-s processor, j1 and j2 cannot be the lowest priority

jobs on such a processor. Hence by instantiating Inequality 6 for ` = 1 we have

c1 + c2(1) > s(d1 − λ1) (11)

25



Similarly, by instantiating inequality (6) for ` = 2 and noting that λ2 = 0 for dual-criticality

systems (L = 2) we have

c1 + c2(2) > sd2. (12)

As c2(2) ≤ βc2(1), inequality (12) implies

c1 + βc2(1) > sd2. (13)

We analyze the following two cases.

Case i): βc2(1) ≤ d2.

In this case we have
β2c2(1)

β + 1
≤ βd2

β + 1
. (14)

Multiplying (8) by 1
β+1

, (9) by β
β+1

and adding them to (14) yields:

c1 + βc2(1) ≤ 1

β + 1
(d1 − λ1) +

2β

β + 1
d2.

This together with (13) implies

sd2 <
1

β + 1
(d1 − λ1) +

2β

β + 1
d2.

which rewritten using x = (d1−λ1)
d2

is

s <
1

β + 1
x+

2β

β + 1
.

By (9) and (11) we have s(d1 − λ1) < d2 and hence xsd2 < d2, implying that s < 1
x
. Hence

s < min

{
1

β + 1
x+

2β

β + 1
,

1

x

}
.

The largest value of s satisfying the above inequality is

s =

√
β2 + β + 1 + β

β + 1
.

Case ii): βc2(1) > d2.

Inequality (9) and c2(1) > d2
β

imply c1 < d2− d2
β

which together with inequality (12) implies

d2 −
d2

β
+ c2(2) > sd2

As c2(2) ≤ d2, we have d2 − d2
β

+ d2 > sd2 and hence

s < 2− 1

β
.

26



s =

√
β2 + β + 1 + β

β + 1
.

Case ii): βc2(1) > d2.
By inequality (9) and by c2(1) > d2

β it follows c1 < d2 − d2
β which together

with inequality (12) implies

d2 −
d2

β
+ c2(2) > sd2

As c2(2) ≤ d2, we have d2 − d2
β + d2 > sd2 and hence

s < 2− 1
β

.

2− 1
β

√
β2+β+1+β

β+1

β

43.532.521.51

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

Fig. 1. Upper bounds for cases A and B.

See Figure 1 for a plot of the upper bounds given by cases i) and ii) as a
function of β. The upper bounds are monotonically non increasing with β and
both of them are equal to φ for β = 1 + φ. Moreover, the upper bound given
by case i) is greater that the upper bound given by case B for each β < 1 + φ.
Hence, by taking the worst of the above cases, for β < 1 + φ we obtain a better
bound for OCBP. In detail:

s <

{ √
β2+β+1+β

β+1 if β ≤ 1 + φ

φ if β > 1 + φ.
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By (9) and (11) we have s(d1 − λ1) < d2 and hence xsd2 < d2, implying that s < 1
x
. Hence

s < min

{
1

β + 1
x+

2β

β + 1
,

1

x

}
.

The largest value of s satisfying the above inequality is

s =

√
β2 + β + 1 + β

β + 1
.

Case ii): βc2(1) > d2.
Inequality (9) and c2(1) > d2
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which together with inequality (12) implies
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Moreover, the upper bound given by case i) is greater that the upper bound given by case (ii) for
each β < 1 + φ. Hence, by taking the worst of the above cases, for β < 1 + φ we obtain a better
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φ if β > 1 + φ.
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See Figure 1 for a plot of the upper bounds given by cases i) and ii) as a function of β.

The upper bounds are monotonically non-increasing with β and both of them are equal to φ for

β = 1 + φ. Moreover, the upper bound given by case i) is greater that the upper bound given

by case (ii) for each β < 1 + φ. Hence, by taking the worst of the above cases, for β < 1 + φ

we obtain a better bound for OCBP. In detail:

s <





√
β2+β+1+β

β+1
if β ≤ 1 + φ

φ if β > 1 + φ.

VI. RELATED WORK

As we have stated in Section I, the strategic significance of mixed criticality certification is

widely recognized and has been the subject of multiple workshops and working-group meetings,

some of the findings of which are highlighted in a white paper [4]. To our knowledge, the

scheduling problem that arises from multiple certification requirements, at different criticality

levels, was first identified and formalized by Vestal in [15], in the context of the fixed-priority

preemptive uniprocessor scheduling of recurrent task systems.
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Although many other real-time scheduling papers deal with mixed-criticality systems, they

do not really deal with scheduling for certification. Lakshmanan et al. [8], [11], [12] deal

with a different aspect of mixed-criticality systems from the one we focus on here, in that

they do not directly address the certification issue. Nevertheless, [8], [11], [12] contain very

interesting and novel ideas that merit mention. This body of work observes that the complete

inter-criticality isolation offered by the reservations approach may cause criticality inversion:

preventing a higher-criticality job from meeting its deadline while allowing lower-criticality jobs

to complete. On the other hand, assigning priorities according to criticality may result in very

poor processor utilization. An innovative slack-aware approach is proposed that builds atop

priority-based scheduling (with priorities not necessarily assigned according to criticality), to

allow for asymmetric protection of reservations thereby helping to lessen criticality inversion

while retaining reasonable resource utilization. The schedulability guarantee that their proposed

algorithm can make may be stated as follows in the context of systems with only two criticality

levels: all deadlines of high-criticality tasks are guaranteed to be met regardless of the run-time

behavior of the lower-criticality tasks, provided the execution of at most one higher-criticality

job overruns its WCET estimated at the lower criticality level (to no more than its WCET

estimated at a level of assurance consistent with the higher criticality level). Although this

represents a significant improvement over prior approaches, it is far removed from what would

pass certification: for that, we would need to guarantee that all higher-criticality tasks complete

by their deadlines even if they all execute for up to their WCET requirements specified at the

higher level of assurance.

Pellizzoni et al. [14], use a reservations-based approach to ensure strong isolation among

sub-systems of different criticalities; this paper proposes innovative design and architectural

techniques for preserving such isolation despite some necessary interaction (e.g., in the sharing

of additional non-preemptable resources) between jobs of different criticalities. The focus differs

from ours in that the goal is not to optimize resource utilization, but to ensure isolation amongst

the different criticalities.

VII. CONCLUSIONS

As safety-critical real-time embedded systems become larger and more complex, the cost

and complexity of obtaining certification for such systems is becoming a serious concern [4]. In
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mixed-criticality systems, these certification considerations give rise to fundamental new resource

allocation and scheduling challenges; results from conventional real-time scheduling theory do

not appear to be adequate for dealing with these challenges.

The research described in this document represents our efforts at devising new formal models,

analysis, and algorithms for mixed-criticality scheduling. We have described a model for repre-

senting a simple kind of mixed-criticality system – those that can be represented as collections of

independent jobs executing upon a single preemptable processor. We have studied the complexity

of MC-SCHEDULABILITY: determining whether a given mixed-criticality instance, specified

according to our model, is schedulable or not. We show that this is an NP-hard problem. For

instances with a fixed (constant) number of criticality levels, it is NP-complete. We have also

shown that the problem is in PSPACE for instances with arbitrarily many distinct criticality

levels, but leave establishing the precise complexity as an open problem.

We gave an example of a special case of MC-SCHEDULABILITY that is solvable in polynomial

time: when all the jobs have the same deadline. It is left for future research to investigate the

boundaries between hardness and well-solvability further.

We have also provided a framework for comparing the powerfulness of MC-schedulability

analysis algorithms via the metric of the speed-up factor. We have proposed a mixed-criticality

scheduling algorithm (OCBP), and have quantified its performance guarantees according to the

speedup-factor. We conjecture that the OCBP-schedulability test is the best possible in terms of

the speedup factor metric, but we have only been able to prove this within a restricted class of

scheduling policies.
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