
HAL Id: hal-00643980
https://inria.hal.science/hal-00643980

Submitted on 23 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recoverable Robust Timetables: An Algorithmic
Approach on Trees

Gianlorenzo d’Angelo, Gabriele Di Stefano, Alfredo Navarra, Cristina Pinotti

To cite this version:
Gianlorenzo d’Angelo, Gabriele Di Stefano, Alfredo Navarra, Cristina Pinotti. Recoverable Robust
Timetables: An Algorithmic Approach on Trees. IEEE Transactions on Computers, 2011, 60 (3),
pp.433 - 446. �10.1109/TC.2010.142�. �hal-00643980�

https://inria.hal.science/hal-00643980
https://hal.archives-ouvertes.fr


1

Recoverable Robust Timetables: an Algorithmic
Approach on Trees

Gianlorenzo D’Angelo, Gabriele Di Stefano, Alfredo Navarra, and Cristina M. Pinotti

Abstract —In the context of scheduling and timetabling, we study a challenging combinatorial problem which is very interesting for
both practical and theoretical points of view. The motivation behind it is to cope with scheduled activities which might be subject to
unavoidable disruptions, such as delays, occurring during the operational phase. The idea is to preventively plan some extra time for
the scheduled activities in order to be “prepared” if a delay occurs, and absorb it without the necessity of re-scheduling all the activities
from scratch. This realizes the concept of designing robust timetables. During the planning phase, one should also consider recovery
features that might be applied at runtime if disruptions occur. This leads to the concept of recoverable robust timetables. In this new
concept, it is assumed that recovery capabilities are given as input along with the possible disruptions that must be considered. The
main objective is the minimization of the overall needed time. The quality of a robust timetable is measured by the price of robustness,
i.e. the ratio between the cost of the robust timetable and that of a non-robust optimal timetable. We show that finding an optimal solution
for this problem is NP -hard even though the topology of the network, which models dependencies among activities, is restricted to
trees. However, we manage to design a pseudo-polynomial time algorithm based on dynamic programming and apply it on both
random networks and real case scenarios provided by Italian railways. We evaluate the effect of robustness on the scheduling of the
activities and provide the price of robustness with respect to different scenarios. We experimentally show the practical effectiveness
and efficiency of the proposed algorithm.

✦

Index Terms —Timetable, Scheduling Activities, Robustness, Price of
Ribusteness, Combinatorial Optimization, Dynamic Programming

1 INTRODUCTION

In many real-world applications, the design of a solution
is divided in two main phases: a strategic planning phase
and an operational planning phase. The two planning
phases differ in the time in which they are applied. The
strategic planning phase aims to plan how to optimize
the use of the available resources according to some
objective function before the system starts operating. The
operational planning phase aims to have immediate
reaction to disturbing events that can occur when the
system is running. In general, the objectives of strategic
and operational planning might be in conflict with each
other. As disturbing events are unavoidable in large and
complex systems, it is fundamental to understand the
interaction between the objectives of the two phases. An
example of real-world systems, where this interaction is
important, is the timetable planning in railway systems.
It arises in the strategic planning phase and requires
to compute a timetable for passenger trains that deter-
mines minimal passenger waiting times. However, many

• G. D’Angelo and G. Di Stefano are with the Department of Electrical
and Information Engineering, University of L’Aquila, L’Aquila, Italy.
Email:{gianlorenzo.dangelo, gabriele.distefano}@univaq.it

• A. Navarra and C. M. Pinotti are with the Department of Mathe-
matics and Computer Science, University of Perugia, Perugia, Italy.
Email:{navarra, pinotti}@dmi.unipg.it

This work was partially supported by the Future and Emerging Technologies
Unit of EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project
ARRIVAL).
Preliminary results contained in this paper appeared in [6], [7], [8].

disturbing events might occur during the operational
phase, and they might completely change the scheduled
activities. The main effect of the disturbing events is the
arising of delays. The conflicting objectives of strategic
against operational planning are evident in timetable
optimization. In fact, a train schedule that lets trains
sit in stations for some time will not suffer from small
delays of arriving trains, because delayed passengers
can still catch potential connecting trains. On the other
hand, large delays can cause passengers to lose trains
and hence imply extra traveling time. The problem of
deciding when to guarantee connections from a delayed
train to a connecting train is known as delay management
(see [3], [9], [11], [12], [15], [16]). Despite its natural for-
malization, the problem turns out to be very complicated
to be optimally solved. In fact, it is NP -hard in the
general case, while it is polynomial in some particular
cases (see [3], [4], [11], [12], [15], [16]).

To cope with the management of delays, we follow
the recent recoverable robustness approach provided in [2],
[5] and [14], continuing the recent studying in robust
optimization. Our aim is the design of timetables in the
strategic planning phase in order to be “prepared” to
react against possible delays. If a delay occurs, the de-
signed timetable should guarantee to recover the sched-
uled events by means of allowed operations represented
by given recovery algorithms. Events and dependencies
among events are modeled by means of an event activity
network (see [3], [4], [16], [17]). This is a directed graph
where the nodes represent events (e.g., arrival or de-
parture of trains) and arcs represent activities occurring
between events (e.g., waiting in a train, driving between
stations or changing to another train). We assume that
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only one delay of at most α time might occur at a
generic activity of the scheduled event activity network.
An activity may absorb the delay if it is associated
with a so called slack time. A slack time assigned to an
activity represents some extra available time that can be
used to absorb limited delays. Clearly, if we associate
a slack time of at least α to each activity, every delay
can be locally absorbed. However, this approach is not
practical as the overall duration time of the scheduled
events would increase too much. We plan timetables able
to absorb the possible occurring delay within a fixed
amount of events, ∆. This means that, if a delay occurs,
it is not required that the delay is immediately absorbed
(unless ∆ = 0) but it can propagate to a limited number
of activities in the network. Namely, the propagation
might involve at most ∆ events. The objective function is
then to minimize the total time required by the activities
in order to serve all the scheduled events and to be
robust with respect to one possible delay. The challeng-
ing combinatorial problem arising by those restrictions
is of its own interest. We restrict our attention to event
activity networks whose topology is a tree. In fact, in [3],
the authors show that the described problem is NP -
hard when the event activity network topology is a
directed acyclic graph, and they provide approximation
algorithms which cope with the case of ∆ = 0. In [4],
these algorithms have been extended to ∆ ≥ 0.

In this paper, we study event activity networks which
have a tree topology. Surprisingly, the described problem
turns out to be NP -hard even in this restricted case. For
trees, we present an algorithm that solves the problem,
when ∆ ≥ 1, in O(∆2n) time and O(∆n) space, where n
is the number of events in the input event activity net-
work. Whereas, O(n) time and O(n) space are required
to solve the problem when ∆ = 0. The result implies that
the problem can be solved in pseudo-polynomial time.
In fact, the parameter ∆ can be clearly provided using
dlog∆e bits. Moreover, since we prove that the size of
some input event activity network instances, for which
the problem remains NP -hard, can be encoded by means
of O(log n) bits, the proposed algorithm is also pseudo-
polynomial in n. The algorithm exploits the tree topology
in order to choose which arc must be associated with
some slack time. On trees, intuitively, we prove that the
choice to carefully postpone the assignment of a slack
time to descendent activities as much as possible leads
to cheapest solutions. Another interesting property for
tree topologies when ∆ ≥ 1 shows that there is always
an optimal solution without two consecutive activities
both associated with a slack time. We also implement
the algorithm and test its performances on both real
case and random scenarios. Based on data provided by
Trenitalia [18], we make use of the devised algorithm
in order to obtain robust timetables with respect to the
possibility of an occurring delay of duration α. We show
and discuss the interesting obtained results about the
applicability and the low costs in terms of slack times
needed for making robust the considered timetables

with respect to different scenarios. The small execution
time elapsed by the algorithm on real-world instances
revels its effective applicability. Moreover, experiments
on random instances show that the good behavior of the
algorithm does not depend on the particular structure of
the input tree arising from the real-world instances.

1.1 Outline

The next section describes the model used to transform
an optimization problem into a recoverable robust prob-
lem as shown in [5]. Section 3 presents the timetabling
problem and its recoverable robust version. Section 4 is
devoted to the study of the computational complexity
required for solving the proposed recoverable robust
timetabling. Section 5 presents the pseudo-polynomial
time algorithm and provides its correctness. Section 6 is
devoted to the experimental studies obtained by apply-
ing the algorithm to real-world and random instances.
Finally, Section 7 provides conclusive remarks and useful
outcomes for further investigation on the studied prob-
lem.

2 RECOVERABLE ROBUSTNESS MODEL

In this section, we summarize the model of recoverable
robustness given in [5]. Such a model describes how an
optimization problem P can be turned into a robustness
problem P . Hence, concepts like robust solution, robust
algorithm for P and price of robustness are defined. In the
remainder, an optimization problem P is characterized
by the following parameters. A set I of instances of P ; a
function F that associates to any instance i ∈ I the set of
all feasible solutions for i; and an objective function f :
S → R where S =

⋃
i∈I F (i) is the set of all feasible solu-

tions for P . Without loss of generality, from now on we
consider minimization problems. Additional concepts to
introduce robustness requirements for a minimization
problem P are needed:

• M : I → 2I – a modification function for instances
of P . Let i ∈ I be the considered input to the
problem P . A disruption is meant as a modification
to the input i. Hence, M(i) represents the set of
disruptions of the input of P that can be obtained
by applying all possible modifications to i.

• A – a class of recovery algorithms for P . Algorithms
in A represent the capability of recovering against
disruptions. An element Arec ∈ A works as follows:
given (i, π) ∈ I×S, an instance/solution pair for P ,
and j ∈ M(i), a disruption of the current instance
i, then Arec(i, π, j) = π′, where π′ ∈ F (j) represents
the recovered solution for P .

Definition 2.1: A recoverable robustness problem P is de-
fined by the triple (P,M,A). All the recoverable robust-
ness problems form the class RRP.

Definition 2.2: Let P = (P,M,A) ∈ RRP. Given an
instance i ∈ I for P , an element π ∈ F (i) is a feasible
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solution for i with respect to P if and only if the following
relationship holds:

∃Arec ∈ A : ∀j ∈ M(i), Arec(i, π, j) ∈ F (j).

In other words, π ∈ F (i) is feasible for i with respect
to P if it can be recovered by applying some algorithm
Arec ∈ A for each possible disruption j ∈ M(i). The
solution π is called a robust solution for i with respect to
problem P . The quality of a robust solution is measured
by the price of robustness.

Definition 2.3: Let P = (P,M,A) ∈ RRP. A robust
algorithm for P is an algorithm Arob such that, for each
i ∈ I , Arob(i) is a robust solution for i with respect to P .

Definition 2.4: Let P ∈ RRP and let Arob be a robust
algorithm for P . The price of robustness of Arob is:

Prob(P, Arob) = max
i∈I

{
f(Arob(i))

min{f(π) : π ∈ F (i)}
}
.

The price of robustness of P is:

Prob(P) = min{Prob(P, Arob) : Arob is robust for P}.
Arob is P-optimal if Prob(P, Arob) = Prob(P). A robust
solution π for i ∈ I is P-optimal if

f(π) = min {f(π′) : π′ is feasible for i w.r.t. P} .

3 ROBUST TIMETABLING PROBLEM

In this section, we turn a particular timetable problem
(TT ) into a recoverable robustness problem, the Robust
Timetabling problem (RTT ).

Given a Directed Acyclic Graph (DAG) G = (V,A),
where the nodes represent events and the arcs represent
the activities1, the timetabling problem consists in assign-
ing a time to each event in such a way that all the
constraints provided by the set of activities are respected.
Specifically, given a function L : A → N that assigns
the minimal duration time to each activity, a solution
π ∈ R|V |

≥0 for the timetable problem on G is found by
assigning a time π(u) to each event u ∈ V such that
π(v)− π(u) ≥ L(a) for all a = (u, v) ∈ A.

Given a function w : V → R≥0 that assigns a weight
to each event, an optimal solution for the timetabling
problem minimizes the total weighted time for all events.
Formally, the timetabling problem TT is defined as fol-
lows.

TT

GIVEN: A DAG G = (V,A), functions L : A → N and
w : V → R≥0.

PROB.: Find a function π : V → R≥0 such that π(v) −
π(u) ≥ L(a) for all a = (u, v) ∈ A and f(π) =∑

v∈V w(v)π(v) is minimal.

Then, an instance i of TT is specified by a triple
(G,L,w), where G is a DAG, L associates a minimal

1. Indeed G is the so called event activity network described in the
introduction.

duration time to each activity, and w associates a weight
to each event. The set of feasible solutions for i is:
F (i) = {π : π(u) ∈ R≥0, ∀u ∈ V and π(v) − π(u) ≥
L(a), ∀a = (u, v) ∈ A}.

A feasible solution for TT may induce a positive slack
time sπ(a) = π(v) − π(u) − L(a) for each a ∈ A. That is,
the planned duration π(v)−π(u) of an activity a = (u, v)
is greater than the minimal duration time L(a).

When in TT the DAG is an out-tree T = (V,A), any
feasible solution satisfies, for each v ∈ V , π(v) ≥ π(r) +∑

a∈P (r,v) L(a), where r is the root of T and P (r, v) the
directed path from r to v in T . Moreover, without loss of
generality, we can focus our attention only on instances
of TT with L(a) = 1 ∀a ∈ A. Indeed, as proved below,
the cost f(π) of a feasible solution π for an instance of
TT with an arbitrary function L easily derives from the
cost f(π′) of a feasible solution π′ for the same instance
of TT with L′(a) = 1, ∀a ∈ A.

Lemma 3.1: Consider an out-tree T = (V,A), rooted at
r, and an instance i = (T, L,w) of TT . Let i′ = (T,L′, w)
be an instance such that L′(a) = 1, ∀a ∈ A. For any
feasible solution π for i, there exists a feasible solution
π′ for i′ such that

f(π) = f(π′) +
∑

v∈V

∑

a∈P (r,v)

w(v)(L(a)− 1).

Proof: Any feasible solution π of i is in the form:

π(v) = π(r) +
∑

a∈P (r,v)

(L(a) + sπ(a)), v ∈ V.

We define π′ as π′(r) = π(r) and

π′(v) = π′(r) +
∑

a∈P (r,v)

(1 + sπ(a)).

Note that, π′ is feasible for i′. The values of the
objective functions of π and π′ are

f(π) = π(r)w(r) +
∑

v∈V

π(v)w(v) =

= π(r)w(r) +
∑

v∈V

∑

a∈P (r,v)

(L(a) + sπ(a))w(v)

and
f(π′) = π′(r)w(r) +

∑

v∈V

π′(v)w(v) =

= π(r)w(r) +
∑

v∈V

∑

a∈P (r,v)

(1 + sπ(a))w(v),

respectively. Hence,

f(π) = f(π′) +
∑

v∈V

∑

a∈P (r,v)

w(v)(L(a)− 1).

Problem TT can be solved in linear time by assigning
the minimal possible time to each event (i.e. by using
the Critical Path Method [13]). However, such a solu-
tion cannot always cope with possible delays occurring
at running time to the activities. Recovery (on-line)
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strategies might be necessary. For this reason, let now
transform TT into a recoverable robustness problem
RTT = (TT ,M,A), according to Section 2. Given an
instance i = (G,L,w) for TT and a constant α ∈ N, we
limit the modifications on i by admitting a single delay
of at most α time. We model it as an increase on the
minimal duration time of the delayed activity. Formally,
M(i) is defined as follows: M(i) = {(G,L′, w) : ∃ ā ∈ A :
L(ā) ≤ L′(ā) ≤ L(ā) + α, L′(a) = L(a) ∀a 6= ā}.

We define the class of recovery algorithms A for TT
by introducing the concept of events affected by one delay.

Definition 3.2: Given a DAG G = (V,A), a function
s : A → R≥0, and a number α ∈ R≥0, a node x is α-
affected by a = (u, v) ∈ A (or a α-affects x) if there exists
a path p = (u ≡ v0, v ≡ v1, . . . , vk ≡ x) in G such that∑k

i=1 s((vi−1, vi)) < α. The set of nodes α-affected by an
arc a = (u, v) is denoted as Aff(a).

In the following, given a feasible solution π for TT , we
will use the slack times sπ defined by π as the function
s in the previous definition. Thus, an event x is affected
by a delay α occurring on the arc a = (u, v) if the sum of
the slack times assigned by the function π to the events
on the path from u to x is smaller than α. That is, the
planned durations of the activities are not able to absorb
the delay α and thus x will be delayed.

We assume that the recovery capabilities allow to
change the time of at most ∆ events. Formally, given
∆ ∈ N, each algorithm in A is able to compute a
feasible solution π′ if |Aff(a)| ≤ ∆ for each a ∈ A. This
implies that a robust solution for RTT must guarantee
that a delay of at most α time may affect at most ∆
events. Note that, RTT only requires to find a feasible
solution. Nevertheless, it is worth to find a solution that
minimizes the objective function of TT .

From now on, we restrict our attention to rooted out-
trees and we define the RTTopt optimization problem as
follows:

RTTopt

GIVEN: A tree T = (V,A), a function w : V → R≥0, and
α,∆ ∈ N.

PROB.: Find a function π : V → R≥0 s. t. each
arc in A α-affects at most ∆ nodes, according
to the function sπ : A → R≥0 defined as
sπ(a = (i, j)) = π(j) − π(i) − 1, a ∈ A, and
s. t. f(π) =

∑
v∈V π(v)w(v) is minimal

In the next lemma, we prove that, when the modifi-
cations are confined to a single delay of at most α time,
there exists a solution for the RTTopt problem which
assigns only slack times equal to α.

Lemma 3.3: Given an instance i of RTT , for each fea-
sible solution π for i there exists a solution π′ for i
such that f(π′) ≤ f(π) and either π′(y) = π′(x) + 1 or
π′(y) = π′(x) + 1 + α for each arc a = (x, y) ∈ A.

Proof: Let π0 = π, we define πk as the solution
obtained from πk−1 by applying one of following op-

erations starting from the root, downward to the leaves
until none of them can be applied.

1) For an arc a = (x, y) such that πk−1(y) > πk−1(x)+
1 + α, we assign πk(y) = πk−1(x) + 1 + α;

2) For an arc a = (x, y) such that πk−1(x) + 1 <
πk−1(y) < πk−1(x) + 1 + α, we assign πk(y) =
πk−1(x) + 1.

The last obtained solution is π′. By construction π′(x) ≤
π(x), for each x ∈ V , therefore f(π′) ≤ f(π).

To show that π′ is a feasible solution, we prove that πk

is feasible if πk−1 is feasible. To this end, it is sufficient to
show that if a node z is α-affected by an arc b in πk then
it was also α-affected by the same arc in πk−1. If a is not
in the path from b to z, the statement easily follows. We
then assume a in the path from b to z.

Let us suppose that πk is obtained from πk−1 by
operation 1) on arc a. Since z is not α-affected by b in πk

because the sum of the slack times on the path from b to
z is at at least α, we don’t care whether it was α-affected
or not by b in πk−1.

Now, let us assume that πk is obtained from πk−1 by
operation 2) on arc a = (x, y). First of all, observe that the
sum S of the slack times on the path C from b = (u,w)
to z is given by S =

∑
c∈C sπk(c) = πk(z) − πk(u) −∑

c∈C L(c). If a is not incident to z, then sum S is equal
to the same sum computed at πk−1. In fact, the durations
L(c) of the activities c on the path C are unchanged and
the operation 2) modifies only the time assigned to y,
hence obtaining πk−1(z)− πk−1(u) = πk(z)− πk(u).

On the other hand, if a = (x, y) is the last arc in the
path C to z, i.e., y = z, the sum S of the slack times
changes. By contradiction, assume z is not affected at
πk−1, but it is α-affected at πk. Then, there must exist at
least another arc c on C such that either sπk−1(c) ≥ α or
0 < sπk−1(c) < α. In the former case, z is not α-affected
by b in πk. In the latter case, the hypothesis that the
operations are applied from the root downward to the
leaves is contradicted, since operation 2) is applicable to
c.

Lemma 3.3 implies that, without loss of generality we
can focus on solutions that assigns only slack times of
either 0 or α.

4 COMPLEXITY

Let RTTdec be the underlying decision problem of RTTopt.

RTTdec
GIVEN: A tree T = (V,A), function w : V → R≥0, α,∆ ∈

N, and K ′ ∈ R≥0.
PROB.: Is there a function π : V → R≥0 such that each

arc in A α-affects at most ∆ nodes, according
to the function sπ : A → R≥0 defined as
sπ(a = (i, j)) = π(j) − π(i) − 1, and such that∑

v∈V π(v)w(v) ≤ K ′?

In the next theorem, we show that RTTdec is NP -

complete by a transformation from Knapsack [10].
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w(z2) = v(u2)

w(z1) = v(u1)

x2
|U|
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|U|

S(u1)

S(u2) S(u|U|)

w(z|U|) = v(u|U|)

Fig. 1. Instance of RTT used for the transformation from
an instance of knapsack.

Knapsack

GIVEN: A finite set U , for each u ∈ U a size S(u) ∈
Z>0, a value v(u) ∈ Z>0, and positive integers
B,K ∈ Z>0.

PROB.: Is there a subset U ′ ⊆ U s. t.
∑

u∈U ′ S(u) ≤ B
and

∑
u∈U ′ v(u) ≥ K?

Theorem 4.1: RTTdec is NP -complete.
Proof: A solution for RTTdec can be verified in poly-

nomial time, as we only need to find out whether there
exists a subtree of size bigger than ∆ where no slack time
α has been added. This can be performed by counting for
each node v, how many descending nodes are affected
if a delay of α is assumed to occur at the in-arc of x.
Starting from the leaves of the tree and moving up until
the root, the procedure needs a simple visit of the tree,
hence RTTdec is in NP .

Given an instance IKnapsack of Knapsack where U =
{u1, u2, . . . , u|U |}, we define an instance IRTT of RTTdec.
See Fig. 1 for a visualization of IRTT . Without loss of
generality, we assume that S(ui) ≤ B, for each ui ∈ U .
The set of nodes is made of: nodes r, r′ and the sets of
nodes Xi = {x1

i , x
2
i , . . . , x

S(ui)
i ≡ zi}, for each ui ∈ U .

The set of arcs A is made of: arc (r, r′); arcs (r′, x1
i ),

for each i = 1, 2, . . . , |U |; and arcs (xj
i , x

j+1
i ), for each

i = 1, 2, . . . , |U | and for each j = 1, 2, . . . , S(ui)− 1.
The weight of each node in V is 0 except for nodes zi,

i = 1, 2, . . . , |U |, where w(zi) = v(ui). Finally, ∆ = B +1,
α = 1 and K ′ =

∑
ui∈U v(ui)(S(ui) + 2)−K. It is worth

noting that the particular tree construction preserves the
size of the Knapsack instance, as each path of nodes of
the same weight w can be compacted and implicitly
be represented by two numbers, namely, the number

of nodes of the path and the weight w of each node.
This implies that each path (x1

i , x
2
i , . . . , x

S(ui)−1
i ) of our

construction will be represented by the pair (S(ui)−1, 0).
Also the operations performed on such paths do not
need the explicit representation of the tree. In particular,
the check needed to verify whether a solution is feasible
can be done efficiently with respect to the compacted
instance.

Now we show that, if there exists a “yes” solution for
Knapsack, then there exists a “yes” solution for RTTdec.

Given a “yes” solution U ′ ⊆ U for IKnapsack, we define
the following solution π for IRTT : π(r) = 0; π(r′) = 1;
π(x1

i ) = 2 for each ui ∈ U ′ and π(x1
i ) = 3 for each ui 6∈

U ′; π(xj
i ) = π(x1

i ) + j − 1, for each i = 1, 2, . . . , |U | and
for each j = 2, 3, . . . , S(ui).

Note that, for each ui ∈ U ′, π(zi) = S(ui) + 1
while for each ui 6∈ U ′, π(zi) = S(ui) + 2. As the
weight of each node in V is 0 except for nodes zi, then
f(π) =

∑|U |
i=1 π(zi) · w(zi) =

∑
ui∈U ′(S(ui) + 1) · v(ui) +∑

ui 6∈U ′(S(ui) + 2) · v(ui) =
∑

ui∈U (S(ui) + 2) · v(ui) −∑
ui∈U ′ v(ui) ≤ ∑

ui∈U (S(ui) + 2) · v(ui) − K = K ′. We
have to show that each arc in A α-affects at most ∆
nodes. As ∆ = B + 1 > S(ui), for each ui ∈ U , then all
the arcs but (r, r′) do not α-affect more than ∆ nodes.
Moreover, for each ui 6∈ U ′, π(x1

i )−π(r′) = 1+α. Hence,
the arc (r, r′) α-affects r′ and nodes xj

i for each ui ∈ U ′

and for each j = 1, 2, . . . , S(ui). Then, the overall number
of affected nodes is 1 +

∑
ui∈U ′ S(ui) ≤ 1 +B = ∆.

Now we show that, if there exists a “yes” solution for
RTTdec, then there exists a “yes” solution for Knapsack.
Given a “yes” solution π′ for IRTT , we define a “yes”
solution π that assigns slack times only to arcs (r′, x1

i ),
i = 1, 2, . . . , |U | as follows: π(r) = 0; π(r′) = 1; π(x1

i ) = 3
for each i such that π′ assigns at least a slack time in
the path from r′ to zi, i.e. π′(zi) − π′(r′) ≥ S(ui) + α;
π(x1

i ) = 2 for each i such that π′(zi)−π′(r′) < S(ui)+α;
π(xj

i ) = π(x1
i ) + j − 1, for each i = 1, 2, . . . , |U | and for

each j = 2, 3, . . . , S(ui). Note that, if π′ is a “yes” solution
for IRTT then π is also a “yes” solution for IRTT . In fact,
π(zi) ≤ π′(zi) and then f(π) ≤ f(π′) ≤ K ′. Moreover, the
number of nodes α-affected by (r, r′) in π is less than or
equal to the number of nodes α-affected by (r, r′) in π′.

We define a “yes” solution for IKnapsack as U ′ = {ui :
π(x1

i ) = 2}. We have to show that
∑

u∈U ′ S(u) ≤ B and∑
u∈U ′ v(u) ≥ K. As the number of nodes α-affected

by (r, r′) in the solution π is less than or equal to ∆,
then ∆ ≥ 1 +

∑
i:π(x1

i )=2 |Xi| = 1 +
∑

ui∈U ′ S(ui). Hence∑
ui∈U ′ S(ui) ≤ ∆− 1 = B. As the weight of each node

in V is 0 except for nodes zi, then f(π) =
∑|U |

i=1 π(zi) ·
w(zi) =

∑
i:π(x1

i )=2(S(ui)+1) ·w(zi)+
∑

i:π(x1
i )=3(S(ui)+

2)·w(zi) =
∑

i:π(x1
i )=2(S(ui)+1)·v(ui)+

∑
i:π(x1

i )=3(S(ui)+

2) · v(ui) =
∑|U |

i=1(S(ui) + 2) · v(ui) −
∑

i:π(x1
i )=2 v(ui)

=
∑

ui∈U (S(ui) + 2) · v(ui) − ∑
ui∈U ′ v(ui) ≤ K ′ =∑

ui∈U (S(ui) + 2) · v(ui) −K. Hence
∑

ui∈U ′ v(ui) ≥ K.

Corollary 4.2: RTTopt and computing Prob(RTT ) are
NP -hard.
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5 PSEUDO-POLYNOMIAL TIME ALGORITHM

Based on the dynamic programming techniques, in this
section we devise a pseudo-polynomial time algorithm
for RTTopt.

Let us introduce further notation. Note that, a solu-
tion for RTTopt is RTT -optimal. Let T = (V,A) be an
arbitrarily ordered rooted tree, i.e. for each node v we
can distinguish its children, denoted as No(v), as an ar-
bitrarily ordered set {v1, v2, . . ., v|No(v)|}. For an arbitrary
subtree S(v) rooted at v ∈ V , let No(S(v)) denote the set
of nodes y such that (x, y) ∈ A, x ∈ S(v) and y 6∈ S(v).
Clearly, when S(v) = {v}, No(S(v)) ≡ No(v). In addition,
for each node v ∈ T , let T (v) be the full subtree of T
rooted in v and let Ti(v) denote the full subtree of T
rooted at v limited to the first (according to the initially
chosen order) i children of v. Moreover, recalling that T
is a weighted tree, let c(v) =

∑
x∈T (v) w(x) be the sum

of the weights of the nodes in T (v) and let |T (v)| be the
number of nodes belonging to T (v). Note that, the values
|T (v)| and c(v) for all v ∈ V can be computed in linear
time by visiting T (r) where r is the root of T . Finally,
given a node v, let us denote as d(r, v) the number of
arcs on the path from the root r of T and v.

In the next lemma, we prove that when the slack time
of an arc (u, v) changes, all the times associated with the
events in T (v) changes accordingly.

Lemma 5.1: Given a tree T , consider two feasible so-
lutions π′ and π such that, for an arc ā = (u, v),
sπ′(ā) = sπ(ā) − α and sπ(a) = sπ′(a), for each a 6= ā.
Then, f(π′) = f(π)− αc(v).

Proof: By construction, all the events contained in the
subtree T (v) are delayed in π of α time with respect to
π′ due to the slack time associated with arc ā. For each
node x ∈ T (v) then, it holds π′(x) = π(x) − α. Hence,
f(π′) = f(π)− αc(v).

Definition 5.2: Given a feasible solution π for the RTT
problem and a node v ∈ V , the ball Bπ(v) is the
largest subtree rooted at v such that each node in Bπ(v)
(including v) has its incoming arc a with sπ(a) = 0.
Given a feasible solution π, Bπ(v) represents the set of
nodes in π which are surely affected by each possible
delay occurring at a = (u, v). Due to the feasibility of
π, no more than ∆ nodes can belong to Bπ(v), that is
|Bπ(v)| ≤ ∆. Note that, if sπ(a) = α, then Bπ(v) is empty.
We say that Bπ(v) can be extended if there exists an arc
(x, y) such that x ∈ Bπ(v), y 6∈ Bπ(v), w(y) > 0, and for
each a ∈ A such that x ∈ Aff(a), |Aff(a)| < ∆. A ball is
said maximal if it cannot be extended.

Lemma 5.3: For each instance of RTT , with ∆ ≥ 1,
there exists an RTT -optimal solution such that at most
one of two consecutive arcs has a slack time of α.

Proof: Suppose that there is some RTT -optimal so-
lution π that assigns a slack time to both of two con-
secutive arcs, i.e. there exist (x, y), (y, z) ∈ A such that
sπ(x, y) = α, spi(y, z) = α, and sπ(w) = 0 for each
w ∈ No(z). Then, we can define a solution π′ such
that sπ′(x, y) = α, sπ′(y, z) = 0, and spi′(z, w) = α

for each w ∈ No(z). Note that π′ is feasible because
|Bπ′(z)| = 1 ≤ ∆, |Bπ′(w)| ≤ |Bπ′(w)| for w ∈ No(z), and
the remaining balls are not changed. Moreover, π′ differs
from π only in z. Specifically, π′(z) = π(x)+2+α, while
π(z) = π(x)+2+2α, whereas, for every node w ∈ No(z),
π′(w) = π′(z)+1+α = π′(y)+2+α = π(x)+3+2α = π(w).
Clearly, π′ remains unchanged for every other node of
T . Thus, f(π′) = f(π)− αw(z) ≤ f(π) because w(z) ≥ 0.
Therefore, π′ is a feasible solution, with cost no greater
than the optimal one, with no two consecutive arcs
having a slack time α.
The above proof implies a stronger result: no RTT -
optimal solution can have two consecutive arcs with a
slack time α when all the events have positive weights.
For arbitrary weights, there is an optimal solution that
satisfies such a property. Thus, from now on, without
loss of generality we can focus on optimal solutions that
do not have two consecutive arcs with a slack time α.

Lemma 5.4: There exists an RTT -optimal solution π
such that Bπ(v) is maximal for each v ∈ V .

Proof: By contradiction, we assume that there exists
an instance such that, for an RTT -optimal solution π
there exists a non empty set of nodes V which contradicts
the thesis: for each v ∈ V , Bπ(v) can be extended by
adding a node from No(Bπ(v)). Let v ∈ V be a node
such that the distance d(r, v) from r to v is minimal. As
Bπ(v) can be extended, then there exists an arc (x, y)
such that x ∈ Bπ(v), y 6∈ Bπ(v) and for each a ∈ A
such that x ∈ Aff(a), |Aff(a)| < ∆. It follows that π(y) =
π(x)+1+α. Then, let us define π′ as the solution derived
by setting sπ′(x, y) = 0 and sπ′(y, w) = α for each w ∈
No(y). Specifically, π′ assigns π′(y) = π(x) + 1, π′(w) =
π′(y)+1+α, for w ∈ No(y). Clearly, π′ is feasible. Indeed,
|Bπ′(u)| = |Bπ(u)|+1 ≤ ∆ for each u such that x ∈ Bπ(u)
and |Bπ′(y)| ≤ |Bπ(y)| ≤ ∆. Finally, since by Lemma 5.3
sπ(y, w) = 0 for each w ∈ No(y), it holds π′(u) = π(u)
for each u ∈ V \{y}. In fact, for each w ∈ No(y), π′(w) =
π(x)+2+α = π(w). Thus, f(π′) = f(π)−αw(y) and thus
f(π′) ≤ f(π) because w(y) ≥ 0. Repeating the above
construction for each node in V , a feasible solution is
built, with cost no greater than the optimal one, such
that Bπ(v) is maximal for each v ∈ V .
From now on, without loss of generality, we focus on
optimal solutions with maximal balls.

As regards to compute an optimal solution for the
RTTopt problem on T , it is easy to see that, when ∆ = 0,
there is a trivial optimal solution π̂ which associates to
each arc a ∈ T a slack time equal to α. From now on, let
f̂ =

∑
v∈T π̂(v)w(v) denote the cost of π̂ on T .

When ∆ > 0, we are now in position to describe a
dynamic programming algorithm to compute an RTT -
optimal solution π∗. Let us start deriving the slack time
on the arcs outgoing from the root r of T . Since r has
no incoming arcs, it cannot be affected by any delay.
Thus, r can be considered as a node having an incoming
arc associated with a slack time of α. Therefore, by
Lemma 5.3, for each arc a outgoing from the root r it
holds sπ∗(a) = 0. Moreover, according to Lemma 5.4,
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for each v ∈ No(r), π∗ must have a ball Bπ∗(v) of size
min{|T (v)|,∆}.

In order to complete π∗, let us introduce the following
notations. For any RTT solution π, let fv

i (π) denote
the value of the objective function

∑
u∈Ti(v)

π(u)w(u)
computed only on the nodes of Ti(v). Moreover, let fv(π)
be the objective function

∑
u∈T (v) π(u)w(u) evaluated on

T (v).
With Gv[i, j], with i, j 6= 0, we mean the maximum gain

with respect to the solution π̂ achievable with any solu-
tion π that has a ball Bπ(v) of size at most j in the subtree
limited to its first i children Ti(v) rooted at v, i.e. |Bπ(v)∩
Ti(v)| ≤ j. As Gv[i, j] must be the maximum gain, solu-
tion π must be optimal with respect to Ti(v), and thus
|Bπ(v)∩Ti(v)| = min{j, |Ti(v)|}. Formally, when i, j 6= 0,
Gv[i, j] = maxπ {fv

i (π̂)− fv
i (π) : |Bπ(v) ∩ Ti(v)| ≤ j} =

{fv
i (π̂)− fv

i (π
∗) : |Bπ∗(v) ∩ Ti(v)| = min{j, |Ti(v)|}}.

Moreover, with Gv[0, j], for 1 ≤ j ≤ ∆, we desig-
nate the maximum gain with respect to the solution π̂
achievable with any solution π that has a ball Bπ(v)
of size at most j in the subtree limited to node v, i.e.
|Bπ(v) ∩ v| ≤ j. As Gv[i, j] must be the maximum gain,
solution π must be optimal with respect to T0(v), and
thus |Bπ(v) ∩ T0(v)| = min{j, |T0(v)|} = 1. Thus, Gv[0, j],
for 1 ≤ j ≤ ∆ denotes the gain of a solution π∗ that
has a ball of size 1 in node v, that is π∗ differs from π̂
only for the slack time on the incoming arc a to v, i.e.
sπ(a) = 0. As proved in Lemma 5.1, we can directly set
Gv[0, j] = fv(π̂)− fv(π∗) = αc(v) for 1 ≤ j ≤ ∆.

Finally, we denote with Gv[i, 0], for 0 ≤ i ≤ |No(v)|,
the maximum gain with respect to π̂ achievable with an
optimal solution π∗ that, having a slack time of α on the
incoming arc in v, must set (by Lemma 5.3) the slack time
equal to 0 for each arc (v, v`), for 1 ≤ ` ≤ i. Thus, π∗ must
have a ball of size min{∆, |T (v`)|} in each subtree rooted
at the first i children v1, . . . , vi of v. Formally, Gv[i, 0] =∑i

`=1{fv`(π̂)− fv`(π∗) : |Bπ∗(v`)| ≤ min{∆, |T (v`)|}}.
Lemma 5.5: When i, j 6= 0, the gains Gv[i, j] can be

recursively computed as Gv[i, j] = max0≤s<j{Gv[i−1, j−
s] + Gvi [|No(vi)|, s]}.

Proof: By definition, let π∗ be an optimal solution
such that Gv[i, j] = {fv

i (π̂)− fv
i (π

∗)} and let the ball
Bπ∗(v), associated with the optimal solution π∗, be of
size t = min{j, |Ti(v)|}. As trees T (vi) and Ti−1(v) are
node-disjoint, Bπ∗(v) ∩ Ti−1(v) and Bπ∗(v) ∩ T (vi) are
two disjoint subtrees, which represent the balls of π∗

restricted to Ti−1(v) and to T (vi), respectively. Let s be
the size of the latter ball (which can be empty), and
t− s the size of the former one (which cannot be empty
because contains at least the node v).

Therefore, Gv[i, j] can be rewritten as Gv[i, j] =
{fv

i (π̂)− fv
i (π

′)}+ {fvi(π̂)− fvi(π′′)}, where

π′(u) =
{

π∗(u) if u ∈ Ti−1(v)
π̂(u) otherwise,

and
π′′(u) =

{
π∗(u) if u ∈ T (vi)
π̂(u) otherwise.

Note that both π′ and π′′ must be optimal, otherwise
one can contradict the optimality of π∗ by using a cut-
and-paste argument. Indeed, suppose, by contradiction,
that π′(u) is not optimal. Then, there is another solution
in Ti−1(v), say π, with |Bπ(v)| = t − s, whose gain
{fv

i (π̂)− fv
i (π)} is greater than that of π′. Substituting

π′ with π, one can build a new solution

π(u) =





π(u) if u ∈ Ti−1(v)
π′′(u) if u ∈ T (vi)
π̂(u) otherwise,

which contradicts the optimality of the solution π∗. Thus,
Gv[i, j] = Gv[i−1, j−s]+Gvi [|No(vi)|, s], for some s ∈ [0, j).

Finally, since it is not known in advance how the
optimal ball Bπ∗(v) is partitioned between Ti−1(v) and
T (vi), one has to check all the feasible combinations, that
is: Gv[i, j] = max0≤s<j {Gv[i− 1, j − s] + Gvi

[|No(vi)|, s]}.

In order to compute an RTT -optimal solution, we
propose a dynamic programming algorithm which re-
quires O(∆2n) time complexity and O(∆n) space, when
∆ ≥ 1, whereas it requires O(n) time and O(n) space
when ∆ = 0. The algorithm makes use of the two
procedures SA-DP and BUILD, given below. Algorithm
SA-DP (which stands for Slack Assignment with Dy-
namic Programming) considers an arbitrarily ordered
tree T in input and performs a visit of T . It uses for
each node v ∈ T two matrices Gv and SOLv , both of
size (No(v) + 1) × (∆ + 1). Concerning a generic node
v in T and the matrix G, the SA-DP algorithm stores in
each entry Gv[i, j] the corresponding value Gv[i, j].

 

1 + α

1 1
v

1
v1

Gv [i, 0] Gv [0, j] Gv[i, j]

(a) (b) (c)

1
v

. . .

1 + α

1

. . . . . .

1 + α
vi

. . .

. . .

vi

v1

v1

Fig. 2. The three configurations that must be considered
when computing matrix Gv.

Fig. 2 shows the possible configurations to consider
when evaluating Gv[i, j].

Note that when j > |Ti(v)|, we set Gv[i, |Ti(v)|] =
Gv[i, |Ti(v)|+ 1] = . . . = Gv[i, j].

If j = 0 (Fig. 2(a)), since as discussed above Gv[i, 0] =∑i
`=1{fv`(π̂) − fv`(π∗) : |Bπ∗(v`)| ≤ min{∆, |T (v`)|}},

we compute Gv[i, 0] =
∑i

`=1 Gv` [|No(v`)|,∆].
If i = 0 and j > 0 (Fig. 2(b)), by the above discussion,

Gv[0, j] = αc(v), for each 1 ≤ j ≤ ∆.
Finally, if i > 0 and j > 0 (Fig. 2(c), by Lemma 5.5),

Gv[i, j] = max0≤s<j {Gv[i− 1, j − s] +Gvi [|No(vi)|, s]}.
Concerning a generic node v in T and the matrix

SOLv , the SA-DP algorithm memorizes in SOLv the
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Algorithm SA-DP
Input: v ∈ V
Output: SOLu, for each u ∈ T (v)

1. for i = 1 to k
2. SA-DP(vi)
3. Gv[i, 0] =

∑i
`=1 Gv` [|No(v`)|,∆], for 0 ≤ i ≤ No(v)

4. Gv[0, j] = αc(v), for 1 ≤ j ≤ ∆
5. for i = 1 to k
6. for j = 1 to ∆
7. if j ≤ |Ti(v)| then
8. Gv[i, j] = max

0≤s<j
{Gv[i− 1, j − s] +Gvi [|No(vi)|, s]}

9. let s∗ be the index giving the maximum at Line 8
10. SOLv[i, j] = s∗

11. else Gv[i, j] = Gv[i, j − 1]
12. SOLv[i, j] = SOLv[i, j − 1]

choices that lead to the optimal gains computed in
the corresponding matrix Gv (Lines 10 and 12 of the
algorithm). All matrices SOLv , v ∈ T , are first initialized
by assigning 0 to each entry. Then, if i, j > 0, the entry
SOLv[i, j] stores the size s of the ball Bπ(vi) rooted at
the i-th child vi of v which gives the maximum gain
when evaluating Gv[i, j]. Basically, if SOLv[i, j] 6= 0,
then the arc (v, vi) has no slack time. Viceversa, if
SOLv[i, j] = 0, either the arc (v, vi) has a slack time of α
(i.e., |Bπ(vi)| = 0 that is j = 0) or such an arc does not
exist (i.e., i = 0).

Now, we have to show how to construct the optimal
solution π from matrices SOLv , i.e. how to assign to each
v ∈ T the value π(v). Recall first that, by the discussion
after Lemma 5.3, π(r) = 0 and, for each v` ∈ No(r),
π(v`) = π(r) + 1 = 1. Moreover, a ball Bπ(v`) of size
min = {|T (v`)|,∆} is rooted at each v` ∈ No(r). An
optimal solution is computed by calling, for each child
v` ∈ No(r), the procedure BUILD(v`, |No(v`)|,∆).

Algorithm BUILD
Input: v ∈ V , i ∈ [0, |No(v)|], j ∈ [0,∆]

1. if i > 0 then
2. if SOLv[i, j] > 0 then
3. s := SOLv[i, j]; π(vi) := π(v) + 1
4. BUILD(vi, |No(vi)|, s)
5. BUILD(v, i− 1, j − s)
6. else
7. π(vi) := π(v) + 1 + α
8. for each w ∈ No(vi)
9. π(w) := π(vi) + 1
10. BUILD(w, |No(w)|,∆)
11. BUILD(v, i− 1, j)

Algorithm BUILD(v, i, j) recursively builds the most
profitable ball Bπ(v) of size j with respect to Ti(v).
At first, it determines the slack time on the arc (v, vi)
depending on SOLv[i, j]. If SOLv[i, j] > 0, then the slack
time on the arc (v, vi) is equal to 0, and the ball Bπ(v)
consists of two sub-balls: one of size SOLv[i, j] in T (vi)
and one of size j − SOLv[i, j] in Ti−1(v). Whereas, if
SOLv[i, j] = 0, the ball of size j in the subtree T (v) does

not contain nodes in T (vi) but only in Ti−1(v). However,
since the slack time on the arc (v, vi) is equal to α, by
Lemma 5.3, all the arcs outgoing from vi, say (vi, wk) for
1 ≤ k ≤ |No(vi)|, have slack time equal to 0. The balls
of size at most ∆ rooted at the nodes w ∈ No(vi), are
recursively built by invoking |No(vi)| times Algorithm
BUILD, one for each child of vi.

Finally, we define Algorithm SA-DP BUILD which out-
puts a robust timetable π by performing first SA-DP(r)
and BUILD(v`, |No(v`)|,∆), for each v` ∈ No(r). By
construction, the following theorem can be stated.

Theorem 5.6: For any ∆ ≥ 0, SA-DP BUILD is RTT -
optimal.
Moreover:

Theorem 5.7: For ∆ ≥ 1, SA-DP BUILD requires
O(∆2n) time and O(∆n) space. For ∆ = 0, SA-DP BUILD
requires O(n) time and O(n) space.

Proof: The time complexity of the SA-DP proce-
dure follows by observing that, for a given v ∈ T , to
fill the entry of Gv[i, j] requires O(i) time if j = 0
(Line 3), O(1) if i = 0 and j > 0 (Line 4), and O(j)
if i, j > 0 (see the recurrence defined by Lines 5–
12), and hence the matrices Gv and SOLv are filled in
O(|No(v)|∆2) time. Thus, to fill all the matrices in T , it
costs

∑
v∈T O(|No(v)|∆2) = O(n∆2). On the other side,

procedure BUILD performs a visit of T to compute the
assignment π(v) for each node v ∈ T and thus, it takes
O(n) time.

If ∆ = 0, Lines 6–12 of procedure SA-DP are not
executed and hence SA-DP only performs a visit of T
requiring O(n) time.

Theorem 5.8: For ∆ ≥ 1, Prob(RTT ,SA-DP BUILD) ≤
1 + α

2 and Prob(RTT ) ≥ 1 + α
∆+1 .

Proof: For the first part of the theorem, as ∆ ≥ 1,
SA-DP does not leave slack times associated to two
consecutive arcs. In fact, for any pair of consecutive arcs
a = (x, y), b = (y, z) ∈ A either π(z) = π(x) + 2 or
π(z) = π(x)+2+α. Then, for each v ∈ V , π(v) ≤ d(r, v)+

αbd(r,v)
2 c ≤ d(r, v)

(
1 + α

2

)
. For any optimal solution π′ of

TT , π′(v) ≥ d(r, v). When ∆ = 0, π′(v) ≥ d(r, v)α and
this is equal to the solution provided by SA-DP BUILD,
as it does not remove any slack time. Therefore, the
statement holds.

Regarding the second part of the theorem, it is suffi-
cient to give an instance such that any robust solution π
implies f(π) ≥ (1 + α

∆+1 ) · f(π′), where π′ is an optimal
solution for TT . Let us consider a tree consisting of a
single path of ∆+1 arcs (xi, xi+1), i = 0, 1, . . . ,∆, x0 ≡ r.
For each i = 0, 1, . . . ,∆, w(xi) = 0 and w(x∆+1) >
0. Each solution π of RTT is such that π(x∆+1) ≥
d(x0, x∆+1) + α = ∆+ 1 + α. An optimal solution π′ for
TT is such that π′(x∆+1) = d(x0, x∆+1) = ∆+ 1. Hence,
f(π) = (∆+1+α)w(x∆+1) = (1+ α

∆+1 )·(∆+1)w(x∆+1) =
(1 + α

∆+1 ) · f(π′).

6 EXPERIMENTAL STUDY

We present the experimental results first on real-world
data provided by Trenitalia [18] and, then, on randomly
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generated data.

6.1 Real-world data

We consider real case scenarios of Single-Line Corridors.
A corridor is a sequence of stations linked by multiple
tracks. Each station is served by many trains of different
types. Types of trains mostly concern the locations that
each train serves and its maximal speed. For an example,
see Figure 3. In these systems, it is a practical evidence
that slow trains wait for faster trains in order to serve
passengers to small stations. This situation is modelled
with the only assumption that the changes of passengers
from one train to another at a station must be guaranteed
only when the second train is starting its journey from
the current station. In practice, the only restriction is
that we do not require as a constraint the possibility
for passengers to change for a train which has already
started its journey. This does not mean that passengers
cannot change train at some station in the middle of
a train journey, but only that this is not considered as
a constraint. Further motivations for this model can be
found in [6], [7].

Let us consider the real-world example provided in
Figure 3 where three trains serve the same line. The
slowest train, the Espresso, goes from Verona to Bologna,
the Interregionale goes from Fortezza to Bologna, and
the fastest one, the Euro-City, goes from Brennero to
Bologna.

The Euro-City starts its journey before all the other
trains, and it arrives at Fortezza station before the depar-
ture event of the Interregionale. At Verona Station, the
Espresso is scheduled to start its journey after the arrival
event of the Euro-City. Hence, there is an arc between
the Euro-City and the starting event corresponding to
the Interregionale at Fortezza station, and another arc
connecting the Euro-City to the starting event of the
Espresso at Verona station. As described above, an arc
which represents a changing activity can only connect
one node to the head of a branch. The DAG obtained
by this procedure is a tree, as shown in Figure 3. In
general, the result of this procedure is a forest and we
link the roots of the trees in this forest to a unique root
event. The weights on the events are assigned according
to the relevance of the trains which they belong to,
and the weight of the root is 0. The rationale behind
such a choice is given by the priority that faster trains
have with respect to the slower ones, and to the fact
that they also serve more passengers. Another interest-
ing weighting function could be to associate different
weights to different events according to the number of
involved passengers. Unfortunately, this would require
more precise input data than that we could retrieve.

Table 1 shows the data used in the experiments re-
ferring to 4 corridors provided by Trenitalia. Starting
from the provided data and according to the described
requirements, we derived event activity networks having
tree topologies whose sizes are reported in Table 2. We

Corridor Line Stations Trains
BrBo Brennero–Bologna 48 68
MdMi Modane–Milano 54 291
BzVr Bolzano–Verona 27 65
PzBo Piacenza–Bologna 17 25

TABLE 1
Data used in the experiments.

then apply the SA-DP BUILD algorithm on different sce-
narios, comparing the obtained robust timetables with
the optimal non-robust ones.

Corridor N. of Max. time Avg activity Max. N.
nodes of traveling time of hops

BrBo 1103 516 9 66
MdMi 4358 318 8 27
BzVr 648 197 5 37
PzBo 163 187 10 14

TABLE 2
Sizes of the trees.

We now show and discuss interesting results about
the applicability and the low costs in terms of slack times
needed for making robust the considered timetables with
respect to different scenarios.

Our experiments are based on three main parameters.
Namely, we vary on the maximum number ∆ of events
that can be affected by an occurring delay, the maximum
time delay α, and the case of average or real times L
needed to perform the scheduled activities. In what fol-
lows, all the activities times and the delays are expressed
in minutes.

In order to obtain RTT instances, for each corridor
among BrBo , MdMi, BzVr and PzBo, we vary ∆ ∈
[1, 2, . . . , 1000] and α ∈ {1, 5, 9, 13, 17}. Moreover, we use
two different functions L: the first one is based on the
real values obtained by available data; the second one
is the constant average function which assigns to each
activity the same duration time obtained as the average
among all real values of each instance. This second
function is used to test the behavior of the algorithm
based only on the tree network topology, in order to
understand the dependability with respect to real values.
The average activity times for each instance are shown
in Table 2.

For each corridor we show three diagrams concerning
the objective function f , the price of robustness Prob of
SA-DP BUILD, and the computational time t needed by
SA-DP BUILD in the mentioned cases. In each diagram,
we show three curves which represent the results ob-
tained by setting L to real values and α ∈ {1, 5, 9}.
Results obtained by assigning α ∈ {13, 17} are not shown
as they are less significant being α too large compared
with the average activity time. Furthermore, for the
instance BrBo , we give the three diagrams obtained by
setting L to the corresponding average activity time. For
any other instance we do not give these diagrams as
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Fig. 4. A tree obtainable from the example provided by Figure 3.

α = 9
α = 5
α = 1

∆
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1

Fig. 5. Theoretical lower bounds to Prob.

the inferred properties do not change. The full set of
results can be found in [1]. All the experiments have been
carried out on a workstation equipped with a 2,66 GHz
Intel Core2 processor, 8Gb RAM, Linux (kernel 2.6.27)
and gcc 4.3.3 compiler.

In the obtained diagrams, the values of the objective
function f of the robust problem are compared to the
optimum, i.e. the value of f given by the non-robust
problem. As ∆ increases, the curves tend rapidly to the
optimum. For small values of α, the price of robustness
is very low.

In order to compare the experimentally computed
values of Prob with the theoretical lower bounds given
by Theorem 5.8, we provide Figure 5 which shows
the values of function 1 + α

∆+1 for α ∈ {1, 5, 9} and
∆ ∈ [1, . . . , 1000]. Note that, the computed values of Prob

are always smaller than the theoretical lower bounds as
the latter are given for the worst case instances.

Concerning the diagrams representing the computa-
tional times, we can see that our tests required a very
small amount of time. The linear growth of the curves
as ∆ increases is evident. For practical purposes, our
experiments show that algorithm SA-DP BUILD can be
safely applied without requiring ages of computation.

6.1.1 Corridor BrBo (see Figure 6)

This corridor is quite large in terms of served stations
and passing trains as shown in Table 1. We can see that
the price of robustness is very close to 1 when α = 1
while it is almost 1.5 when considering big delays of
α = 9 and ∆ = 1.

When ∆ = 1, the algorithm adds one slack time for
each pair of consecutive arcs. As shown in Figure 6, the
value of Prob, when ∆ = 1, is about 2Lavg+α

2Lavg
= 1+ α

2Lavg
,

where Lavg is the average activity time.
It is also interesting to note how the values of f and

Prob decrease quickly with ∆. In particular, the price of
robustness is 1 when ∆ = 136 and α = 9, that is that
with ∆ = 136 we do not have to pay for introducing
robustness. As a special case, we mention that the price
of robustness is between 1.00754 and 1.06785, when
∆ = 11. This implies that adding robustness reflects an
increasing in the costs of just 0.7−6.7% even for a small
value of ∆.

Regarding the computational time, we can see that it
increases with ∆ but it is less than 5 milliseconds in the
worst case (i.e. when α = 9 and ∆ = 136). In detail, in the
worst case, for ∆ = 136 we need about 5.01 milliseconds
to achieve a price of robustness of 1.
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Fig. 6. Corridor BrBo with real values of minimum activity
times

6.1.2 Corridor BrBo (average activity times) (see Fig-
ure 7)
In this case, the objective function assumes almost iden-
tical values with respect to the previous case. As we
expect, the value of the objective function does not
depend on the value of L, but only on the structure of
the tree and on the size of the delay.

Regarding Prob, its value strictly depends on α/Lavg

which can be considered a parameter for evaluating the
magnitude of a delay. It is worth noting that for ∆ = 1 an
optimal robust timetable has to assign exactly one slack
time of size α for each pair of consecutive activities. It
follows that, when α = 9 and the average activity time
is equal to 9, the price of robustness is 1.5, as it can be
verified in Figure 7. The same happens for α = 5, where
the expected value is about 1.27.

6.1.3 Corridor MdMi (see Figure 8)
This corridor is the biggest in terms of served stations
and passing trains. As shown in Table 1, the number
of considered trains is more than four times the one
in BrBo , while the number of stations is slightly more.
Still, we can see comparable performances with respect
to the price of robustness (it is 1 for each ∆ ≥ 966) even
though the incidence of the required computational time
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Fig. 7. Corridor BrBo with average activity times

becomes more evident. However, as the timetables are
calculated at the planning phase and not at runtime, the
required time is still of an acceptable order being about
192.88 milliseconds in the worst case.

6.1.4 Corridors BzVr and PzBo (see Figures 9 and 10)

As expected, for the small corridors BzVr and PzBo, the
price of robustness tends to the optimum much faster
than for the other cases. Moreover the time required
for the computations is negligible (in the worst cases,
it is 1.41 milliseconds for BzVr and 0.27 milliseconds for
PzBo).

For corridor BzVr , the price of robustness for small
values of ∆ is high, whereas, it is small for corridor
PzBo. This is due to the fact that in the former case the
average activity time is much smaller than the value of
α, while in the latter case the average activity time is
always greater than α.

6.2 Randomly generated data

By analyzing the results in the previous section, it is
worth noting that the price of robustness tends to 1
faster than one would expect by the theoretical bounds
(see Theorem 5.8 and Figure 5). This suggests that those
instances have some hidden properties. One cause might
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Fig. 8. Corridor MdMi

be the almost linearity of the tree structure, that is, the
trees are made of long paths and the nodes have low
outdegree.

In order to investigate on this matter, we test the
behavior of the algorithm on three sets of five ran-
domly generated trees: Random1000, Random3000 and
Random5000, containing five trees of 1000, 3000 and
5000 nodes, respectively. Each tree is generated starting
from a single node and then by linking a new generated
node to an existing one extracted uniformly at random.
The node weights randomly rank between 1 and 10, and
the minimum duration time for each activity randomly
ranks between 1 and 18. In this way, the average activity
duration time is comparable with that of the presented
real-world instances. Finally, ∆ ∈ [1, 2, . . . , 10000] and
α ∈ {1, 5, 9}. For each pair (∆, α), we performed one
test for each randomly generated tree.

In Figures 11, 12, and 13, we summarize the obtained
results. In particular, we show the average values of the
price of robustness and the computational time, and the
standard deviation of the price of robustness. The ob-
tained results confirm our intuition that the almost linear
structure of the real-world data heavily influences the
curve of the price of robustness, while the computational
time is not affected.

This is evident if we compare the results of graphs
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Fig. 9. Corridor BzVr

in Random1000 (Figure 11) with those of corridor BrBo
(Figures 6) which have comparable size. In fact, we can
see that the computational time is almost identical (when
∆ = 136, it is 3.53 milliseconds for Random1000 and
5.01 milliseconds for BrBo ) but the price of robustness
of Random1000 is 1 only if ∆ ≥ 876, while for BrBo the
price of robustness is 1 for each ∆ ≥ 136.

The same observation can be done by comparing
Random5000 with corridor MdMi. In this case, the price
of robustness of MdMi is 1 for each ∆ ≥ 966 while the
price of robustness of Random5000 is 1 only if ∆ ≥
3746. The computational times are still very close being
192.88 milliseconds for MdMi and 162.04 milliseconds for
Random5000, when ∆ = 966.

7 CONCLUSION

We have presented the problem of planning robust
timetables when the input event activity network topol-
ogy is a tree. The delivered timetables can cope with one
possible delay that might occur at runtime among the
scheduled activities. In particular, our algorithms ensure
that if a delay occurs, no more than ∆ activities are
affected by the propagation of such a delay. We have
proved that the problem is NP -hard but not in the strong
sense as it is pseudo-polynomially solvable.
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Fig. 10. Corridor PzBo

Although the combinatorial optimization problem
arisen by our study is of its own interest, the paper
continues the recent study on robust optimization theory.
This is an important rising field led by the necessity of
managing unpredictable limited disruptions with limited
resources.

Several directions for future works deserve investiga-
tion such as the analysis of different recovery strategies,
the application of other modification functions to the ex-
pected input and the enforcement of the recoverable ro-
bustness to other fundamental optimization problems.
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for the delay management problem in public transportation.
European Journal of Operational Research, 189(3):762–774, 2007.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability,
A Guide to the Theory of NP-Completeness. W.H. Freeman and
Company, New York, 1979.

[11] M. Gatto, R. Jacob, L. Peeters, and P. Widmayer. Online Delay
Management on a Single Train Line. In Frank Geraets, Leo Kroon,
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