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Abstract—Wireless networks are composed of many users
that usually have conflicting objectives and generate interference
to each other. The system design is typically formulated as
the optimization of the weighted sum of the users’ utility
functions. In an attempt to obtain distributed algorithms in the
case this sum is nonconvex, researchers have proposed pricing
mechanisms which however are based on heuristics and valid
only for a restricted class of problems. In this paper we propose
a general framework for the distributed optimization of the
nonconvex sum-utility function. Our main contributions are: i)
the derivation for the first time of a general dynamic pricing
mechanism, ii) a framework that can be easily particularized
to well-known applications, giving rise to very efficient practical
algorithms that outperform existing methods; and iii) the solution
to the currently open problem of social optimization for MIMO
multiuser systems.

I. INTRODUCTION

Wireless networks are composed of users that may have dif-
ferent objectives and generate interference, when no multiplex-
ing scheme is imposed a priori to regulate the transmissions;
examples are peer-to-peer networks, cognitive radio systems,
and ad-hoc networks. A usual and convenient way of designing
such multiuser systems is by optimizing the (weighted) sum of
the users’ objective functions (also termed as social function),
which is a measure of network performance. The main diffi-
culty of this formulation lies in performing the optimization in
a distributed manner with limited signaling among the users.
Indeed, for advanced wireless and wired networks, centralized
solutions are not implementable, as they require a central node
gathering the knowledge of all the users’ parameters (e.g.,
direct and cross-channels), performing the optimization, and
then broadcasting the result to each of the users. When the
social function is jointly convex, the problem reduces to the so-
called Network Utility Maximization (NUM) for which many
distributed algorithms have been derived, based on primal and
dual decomposition techniques (see, e.g., [1]).
The nonconvex case is more involved and challenging as

one cannot practically aim at finding global solutions anymore;
instead, one seeks stationary (possibly local optimal) solutions.
In this vein, some attempts follow classical optimization
approaches based on distributed descent schemes such as
gradient methods [2], [3]; the resulting algorithms, however,

suffer from slow convergence. To improve the convergence
speed, other works proposed best-response algorithms com-
bined with pricing [4], [5], [6], [7]; state-of-the-art results of
these techniques can be found in [8]. The common approach
followed in these works is to interpret the users as players
of a noncooperative game wherein the users’ utility functions
are perturbed by adding a proper (linear) pricing term, in
order to take into account, to some extent, the social function
[4], [5], [6], [7]. This point of view is somewhat odd, since
it tries to analyze an optimization problem by using game-
theoretic tools. The result is that, although the pricing best-
response mechanisms have shown to be valuable−they exhibit
rapid convergence in practice−so far only a restricted class of
problems could be studied using these ad-hoc approaches, and,
even for such problems, convergence of pricing algorithms is
established under relatively strong assumptions. The state-of-
the-art of pricing best-response algorithms applied to solve
resource allocation problems over Interference Channels (ICs)
is summarized as follows.
– SISO networks: convergence to a stationary solution of
the (Shannon) sum-rate maximization problem by sequential
best-response pricing algorithms is established [6]; studying
convergence for simultaneous updates or different utility func-
tions and constraints for which the underlying game is not
supermodular remains an open problem [4], [5].
– MISO networks: Pricing algorithms are observed to per-
form well numerically; although convergence is typically
observed in practice, a proof is available only for the two-
user case [8].
– MIMO networks: Devising pricing best-response algo-
rithms with provable convergence remains a challenging and
open problem [8]; it is not even clear how to choose a suit-
able pricing mechanism; the two-user sum-rate maximization
problem forcing beamforming has been studied in [7] but no
proof of convergence is provided; the general case of more
than two users remains unsolved.
By taking a more direct optimization point of view, in this

paper, we propose a new general best-response distributed
algorithm for solving the sum-utility problem along with its
convergence framework. As a fundamental departure from
existing works, our approach does not impose the use of



any pricing scheme a priori; instead, the resulting pricing
mechanism has a very natural and simple interpretation. Our
main results can be summarized as follows: i) we provide
a formal derivation for the first time of a general dynamic
pricing mechanism; ii) the proposed general framework can
be readily particularized to well-known applications, such as
[4], [5], [6], [7], giving rise in a unified fashion to algorithms
that outperform existing methods both theoretically and nu-
merically; and iii) as a direct application of our framework,
we propose for the first time a dynamic pricing best-response
algorithm for the sum-rate maximization problem over MIMO
ICs with provable convergence.
The rest of the paper is organized as follows. Section II

introduces the sum-utility optimization problem along with
two motivating examples, namely: the sum-rate maximization
problems over SISO and MIMO ICs. Section III presents
the new framework suitable for solving nonconvex sum-
utility optimization problems based on dynamic pricing best-
response algorithms. In Section IV we apply the developed
methods to the sum-rate maximization problems over SISO
and MIMO ICs previously introduced, and in Section V we
report numerical results and compare the performance of our
new algorithm with the state-of-the-art algorithms. Finally,
Section VI draws some conclusions. The proofs of the main
results can be found in [9] and are omitted here because of
the space limitation.

II. PROBLEM FORMULATION

We consider the design of a multiuser system composed
of Q coupled users, where each user q has a cost function
fq(xq , x−q) that depends on his own strategy vector xq , which
belongs to the feasible set Kq ⊆ R

nq , and the variables of the
other users denoted by x−q � (xr)

Q
q �=r=1 ∈ K−q �

∏
r �=q Kr;

the joint strategy set of the users is denoted by K � K1 ×
· · · × KQ. We are interested in the following social problem
over the network:

minimize
x

U(x) �
Q∑

q=1

wq fq(xq, x−q)

subject to xq ∈ Kq, ∀q = 1, . . . , Q.

(1)

where w1, . . . , wQ is a given set of positive weights. We focus
on (1) under the following assumptions.
Assumption 1: The functions fq and the sets Kq are such
that: i) The sets Kq are closed and convex; ii) The functions
fq(xq ,x−q) are twice continuously differentiable on K with
bounded second derivatives on K, and convex on Kq for
any given x−q ∈ K−q; and iii) The social function U(x)

is coercive [i.e., Ũ(x) → +∞ as ‖x‖ → +∞, where
Ũ(x) = U(x) if x ∈ K, and Ũ(x) = +∞ otherwise]. �
The assumptions above are quite standard and are satisfied

in many practical problems of interest. In particular, assump-
tion ii) implies that the social function U(x) is Lipschitz
continuous on K; we denote by LU the Lipschitz constant
of U . Condition iii) guarantees that the social problem has
a solution, even when the feasible K is not bounded; if K
is bounded then condition iii) is trivially satisfied. Note that,

differently from classical NUM problems, here we do not
assume that the user objective functions are jointly convex,
which leads to a nonconvex optimization problem (1).
Instances of the social problem above we are interested in

are the sum-rate maximization over frequency-selective ICs

maximize
{pq≥0}Qq=1

Q∑
q=1

wq

{
N∑

k=1

log
(
1 +

|Hqq(k)|2pq(k)

σ2
q(k)+

∑
r �=q|Hqr(k)|2pr(k)

)}
subject to 1Tpq ≤ Pq, ∀q = 1, . . . , Q

(2)
where Q is the number of users, N is the number of carriers,
Pq is the power budget for the q-th user, σ2

q(k) is the
variance of the thermal noise over carrier k at the receiver
q, and |Hqr (k)|2 is the gain of the channel between the r-th
transmitter and the q-th receiver. Another instance is the more
general MIMO formulation

maximize
{Qq�0}Q

q=1

Q∑
q=1

wq log det
(
I+HH

qqRq(Q−q)
−1HqqQq

)
subject to tr (Qq) ≤ Pq, ∀q = 1, . . . , Q

(3)
where Qq is the covariance matrix of transmitter q, Hqr is
the channel matrix between the r-th transmitter and the q-th
receiver, Rq(Q−q) � Rnq +

∑
r �=q HqrQrH

H
qr is the covari-

ance matrix of the multiuser interference plus the thermal noise
Rnq (assumed to be full-rank), and tr (•) is the trace operator.
Problems (2) and (3) have been shown to be NP hard [10];
there is then no hope to compute a globally optimal solution
in polynomial time, even by using centralized methods. We
are thus interested in devising distributed solution methods
for computing stationary solutions (possibly local minima)
of problem (1). Departing from standard algorithms suitable
for (1), such as distributed gradient or Newton-based meth-
ods (see, e.g., [11]), we aim at devising simultaneous best-
response-like schemes placing no step-size restriction in the
updates of the users, so that we can obtain faster low-complex
algorithms that converge even when current algorithms fail [8].
This is the subject of the next section.

III. DISTRIBUTED DYNAMIC PRICING ALGORITHM

We begin by introducing an informal description of our new
algorithm that sheds light on the connection with classical
descent gradient-based schemes, making clear why our scheme
is expected to outperform current gradient descent methods.

A. A Quick look at conditional gradient algorithms: Why do
they work poorly?

A classical approach to solve a nonconvex problem like
(1) would be using some of the well-known gradient-based
descent schemes. A simple way to generate a feasible, descent
direction is given for example by the conditional gradient
method (also called Frank-Walfe method) [11]: given the
current iterate x(n) = (x

(n)
i )Qi=1, the next feasible vector

x(n+1) is generated according to

x(n+1) = x(n) + γ(n) d(n) (4)



where d(n) � x(n) − x(n), x(n) = (x(n)
q )Qq=1 is the solution

of the following set of convex problems (one for each user):

x(n)
q = argmin

xq∈Kq

{
∇xqU

(
x(n)

)T (
xq − x(n)

q

)}
, (5)

for all q = 1, . . . , Q, and γ(n) ∈ (0, 1] is the step-size of
the algorithm that needs to be properly chosen to guarantee
convergence (see, e.g., [11]). Writing (5) we tacitly assumed
that each linearized problem (5) has a solution.
Looking at (5) one infers that gradient methods are based on

solving a sequence of convex problems obtained by linearizing
the whole utility function U , a fact that does not exploit
any “nice” structure that the original problem may have.
For instance, under Assumption 1, the objective functions
fq(xq , x−q) are convex in xq for any given x−q; it turns out
that it may be better to keep in each of the optimization prob-
lems (5) the “nice” part of the objective function unaltered−the
convex part fq(•, x(n)

−q )−while linearizing (convexifying) only
the “bad” terms−the nonconvex part ∑r �=q fr (x). This mo-
tivates the introduction of the following mapping K 
 y �→
x̂τ (y) � (x̂τ,q(y))

Q
q=1, where x̂τ,q(y) is defined as

x̂τ,q(y) = argmin
xq∈Kq

⎧⎨⎩
wq fq(xq , y−q) + πq(y)

Txq

+
τ

2
‖xq − yq‖2

⎫⎬⎭ (6)

where
πq(y) �

∑
r �=q

wr∇xqfr(y) (7)

and τ is a given positive constant. Note that, under Assumption
1 and given y, each problem in (6) is strongly convex and thus
has a unique solution, implying that x̂τ,q(y) is well-defined
for any given y ∈ K. The best-response mapping x̂τ (y), with
y = x(n), is clearly related to the solution of (5); the difference
between the optimization problems in (5) and (6) is given by
the fact that in the latter we linearized only the nonconvex
part

∑
r �=q wr∇xqfr(x) [resulting in the term πq(x

(n))Txq]
rather than the whole function U , and we added the proximal
regularization term τ

2 ‖xq − yq‖2, whose beneficial effects are
well understood, see e.g. [11].
Therefore, the proposed candidate search direction d(n)

at point x(n) in (4) becomes the vector x̂τ (x
(n)) − x(n).

The resulting algorithm is expected to perform better than
classical gradient-based schemes (at least in terms of con-
vergence speed) because the objective function structure is
better preserved. Furthermore, thanks to the presence of the
regularization term, we will show to get additional flexibility
with respect to other gradient-based descent methods, that can
be exploited to enhance the convergence speed.

B. Distributed Dynamic Pricing Algorithm (DDPA)

We provide now a formal description of the proposed
algorithm. Preliminarily, we describe in Proposition 1 the main
properties of the mapping x̂τ (y). We denote by ∇2

xi
fi (x)

and λmin (A) the Hessian matrix of fi and the minimum
eigenvalue of the symmetric matrix A, respectively.

Proposition 1 ([9]): Given the mapping K 
 y �→ x̂τ (y),
suppose that Assumption 1 holds. Then: (a) The function x̂τ (y)
is continuous on K; (b) The set of the fixed-points of x̂τ (y)
coincides with the set of stationary solutions of the social
problem (1); therefore x̂τ (y) has a fixed-point; and (c) For
every given y ∈ K, the vector x̂τ (y)−y is a descent direction
of the social function U(x) at y such that

(x̂τ (y) − y)
T ∇xU(y) ≤ −c ‖x̂τ (y) − y‖2 (8)

for some positive constant c with c ≥ cτ � τ +
mini=1,...,Q minz∈K λmin

(∇2
xi
fi (z)

)
. �

Proposition 1 paves the way to the design of dis-
tributed best-response like algorithms for the social prob-
lem (1), making formal the idea introduced in Sec-
tion III-A. Indeed, the inequality (8) states that either(
x̂τ (x

(n))− x(n)
)T ∇xU(x(n)) < 0 or x̂τ (x

(n)) = x(n). In
the former case, the vector d(n) � x̂τ (x

(n))−x(n) is a descent
direction of U(x) at x(n); in the latter case, x(n) is a fixed-
point of the mapping x̂τ (•) and thus a stationary solution of
the social problem (1) [Proposition 1 (b)]. Large values of τ
make cτ large and thus permit to take γ(n) = 1, resulting in
a Jacobi best-response scheme (see [9] for more details). This
suggests the descent-like algorithm described in Algorithm 1
below, whose convergence properties are given in Theorem 2,
where cτ is defined in Proposition 1; a more general version
of the algorithm and Theorem 2 are given in [9].

Algorithm 1: Distributed Dynamic Pricing Algorithm

Data : Let τ > 0; choose any x(0) ∈ K; set n = 0.
(S.1) : If x(n) satisfies a suitable termination criterion:
STOP.
(S.2) : For each q = 1, . . . , Q, compute the best-response
x̂τ,q

(
x(n)

)
in (6); set x(n+1) � x̂τ

(
x(n)

)
.

(S.3) : n← n+ 1, and go to (S.1).

Theorem 2 ([9]): Given the social problem (1), suppose
that Assumption 1 holds. If τ is chosen so that cτ ≥ LU/2,
then either Algorithm 1 converges in a finite number of
interations to a stationary solution of (1) or every limit point
of the sequence {x(n)}∞n=1 is a stationary solution of (1). �

The proposed algorithm is a distributed Jacobi best-response
scheme: at each iteration n, all the users simultaneously update
their strategies according to the best-response x̂τ,q

(
x(n)

)
;

quite surprisingly, Theorem 2 states convergence under very
mild assumptions (always satisfied in practice). This result is
not trivial at all and represents along with Algorithm 1 a novel
contribution even in the optimization literature; indeed classic
best-response nonlinear Jacobi schemes applied to the sum-
utility problem (1) (see, e.g., [11, Ch. 3.3.5]) do not converge
under Assumption 1.
Note that Algorithm 1 implements naturally a pricing mech-

anism, given by the auxiliary (linear) term πq(x
(n))Txq in

the (modified) objective function of each player. Indeed, each
πq(x

(n)) represents a dynamic pricing that measures somehow



the marginal increase of the sum-utility of the other users due
to a variation of the strategy of user q; roughly speaking, it
works like a punishment imposed to each user for being too
aggressive in choosing his own strategy and thus “hurting”
the other users. But differently from all previous works [4],
[5], [6], [7], [8], here pricing is not heuristically imposed a
priori; it is instead the natural consequence of an optimization
process. The result is that our framework can be applied to a
very large class of problems, even when [4], [5], [6], [7], [8]
fail as, e.g., the sum-rate maximization over MIMO ICs, as
shown in the next section.

IV. DDPA FOR SISO AND MIMO PROBLEMS

With the developments of the previous section in mind, we
can now go back to the SISO and MIMO rate maximization
problems (2) and (3), and readily apply the DDPA described
in Algorithm 1. More specifically, in the SISO case, the best-
response x̂τ,q(y) in (6) reduces to p̂q(y) defined as [9]

p̂q(y) =

[
1

2

(
yq −α−2

q

)
+

− 1

2 τ

(
μ̃−

√[
μ̃− τ

(
yq −α−2

q

)]2
+ 4τ

)]+
where

α2
q (k) =

wq |Hqq (k)|2
σ2
q(k) +

∑
r �=q |Hqr (k)|2 yr (k)

is the effective channel gain, α−2
q � (α−2

q (k))Nk=1, μ̃ �
πq(y)+μq1 with the waterlevel μq chosen to satisfy the non-
linear complementarity condition 0 ≤ μq ⊥ Pq − 1T p̂q(y) ≥
0, and the price vector πq(y) � (πq,k(y))

N
k=1 is defined as

πq,k(y) � −
∑
r∈Nq

wr
|Hrq (k)|2
|Hrr (k)|2

α2
r (k)
1

α2
r (k) yr (k)

+ 1
(9)

where Nq denotes the set of neighbors of user q, i.e., the
set of users r’s which user q interferers with. According to
Theorem 2, convergence of the DDPA is guaranteed provided
that the proximal gain τ is sufficiently large, as quantified
in the theorem (see [9] for more details). At the best of our
knowledge, these are the weakest conditions available in the
literature [8], [6]. Note that the proposed algorithm is fairly
distributed. Indeed, given the interference generated by the
other users over the carriers [and thus the effective channel
coefficients α2

q (k)’s] and the current interference price πq(y),
each user can efficiently and locally compute the optimal
power allocation p̂q(y) via a waterfilling-like expression. The
estimation of the prices πq,k(y) requires instead some (lim-
ited) signaling among nearby receivers. Quite interestingly, the
pricing expression in (9) and thus the resulting overhead of the
DDPA coincide with those of the state-of-the-art algorithms in
[8], [6]. The DDPA however converges even when [8], [6] fail
and appears to be faster than [8], [6] (see Figure 1 in Sec. V).
Referring to the MIMO formulation (3), the best response

in (6), denoted by Q̂τ,q(Y), becomes

Q̂τ,q(Y) =

argmax
Qq � 0, tr(Qq) ≤ Pq

{
wq rq(Qq,Q−q)− 2Πq(Y) •Qq

−τ

2
‖Qq −Yq‖2F

}

where A •B � tr(AHB),

rq(Qq,Q−q) � log det
(
I+HH

qqRq(Q−q)
−1HqqQq

)
and

Πq(Y) �
∑
r∈Nq

wr H
H
rqR̃r(Y−r)Hrq (10)

with

R̃r(Y−r) �
[(
Rr(Y−r) +HrrYrH

H
rr

)−1 −Rr(Y−r)
−1

]
.

Note that, once the price matrix Πq(Y) is given, the best-
response Q̂τ,q(Y) can be computed locally by each user
solving a convex optimization problem. As for the SISO case,
at each iteration of the algorithm, the users need to exchange
the current value of the pricing matrix Πq(Y); convergence
is guaranteed for sufficiently large values of τ (see [9] for
details). At the best of our knowledge, this is the first best-
response Jacobi algorithm based on pricing with provable
convergence for MIMO systems.

V. NUMERICAL RESULTS

In this section, we compare the proposed DDPA with
the state-of-the-art algorithms proposed in the literature for
solving the SISO sum-rate maximization problem (2), namely:
the Modified Asynchronous Distributed Pricing (MADP) al-
gorithm [6] and the Jacobi Gradient Projection Algorithm
(GPA) [2], [11]. To quantify the tradeoff between signaling
and performance we also included the simultaneous Iterative
Waterfilling Algorithm (IWFA) proposed in [12] that solves
the associated noncooperative game, without requiring any
signaling among the users. To stress the comparison in terms of
convergence speed, we used for the GPA and the MADP the
largest step-size (less than one) under which the algorithms
are experimented to converge, even though such a step-size
violates the theoretical convergence conditions, as given in
[11] and [6], respectively.
We examined the behavior of the above algorithms un-

der the following setup. We considered an ad-hoc network
composed of 30 active users; the (cross-)channels among the
links are simulated as FIR filter of order L = 10, where
each tap is a zero mean complex Gaussian random variable
with variance equal to 1/L; the channel transfer functions
are the FFT of the corresponding impulse responses over
N = 256 points (carriers). we considered an high interference
scenario corresponding to SNRq � Pq/(dqq σ

2
q (k)) = 2dB

and INRq � Pr/(dqr σ
2
q(k)) = 5dB for all q and r, where

dqr denotes the distance between the transmitter r and the
receiver q (dqq is the intra-pair distance). All the algorithms
are initialized by the same starting point, chosen randomly
in the feasible set of the users, and are terminated when
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the Euclidean norm of the error in two consecutive iterations
becomes smaller than 10−6.
In Figure 1, we plot the users’ sum-rate

∑
q rq(p) versus

the iterations achieved by the aforementioned algorithms. The
picture clearly shows that our DDPA is much faster than
the GPA and MADP, while requiring the same signaling and
even less complexity (the best-response p̂q(y) is available in
closed form). We observed similar behaviors also in the MIMO
scenario (see [9] for details).
Figure 2 shows the average performance of the proposed

algorithm. We plotted the average sum-rate versus the SNRq �
Pq/(dqq σ

2
q (k)) = SNR for all q and k, achievable at the NE

reached by the simultaneous IWFA and the DDPA. The curves
are averages over 5000 random channel realization; the rest of
the parameters are the same as in Figure 1. Figure 2 confirms
the superior performance of the proposed algorithm with
respect to the IWFA, especially in high interference scenarios.
This gain however comes at the cost of some signaling among
the users.

VI. CONCLUSIONS

In this paper we proposed a novel distributed best-response
algorithm for solving the sum-utility problem along with its
convergence framework. The algorithm is a mixture of a best-
response algorithm and a descent-based method wherein a
dynamic pricing mechanism has a very natural and simple
interpretation. In [9], we show that (a slight variation of) the
proposed algorithm is also robust against stochastic errors
on the price estimates, due to an imperfect communication
scenario (random link failures, noisy estimate, quantization,
etc...). The proposed framework can be readily applied to solve
the sum-rate maximization problem over MIMO ICs giving
rise, in a unified fashion, to best-response based algorithms
with pricing that outperform existing methods both theoreti-
cally and numerically.
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