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Abstract—Motivated by the analysis of social networks, we
study a model of network that has both a tunable degree
distribution and a tunable clustering coefficient. We compute
the asymptotic (as the size of the population tends to infinity) for
the number of acquaintances and the clustering for this model.
We analyze a contagion model with threshold effects and obtain
conditions for the existence of a large cascade. We also analyze a
diffusion process with a given probability of contagion. In both
cases, we characterize conditions under which a global cascade
is possible.

Index Terms—Contagion threshold, diffusion, Random graphs,
clustering

I. INTRODUCTION

Most of the epidemic models [11], [15] consider a transmis-

sion mechanism which is independent of the local condition

faced by the agents concerned. There is now a vast literature

on epidemics in complex networks (see [12] for a review)

and there is now a good understanding of the impact of the

topology on the spread of an epidemic. But if there is a factor

of persuasion or coordination involved, relative considerations

tend to be important in understanding whether some new

behavior or belief is adopted [17].

In social contexts, the diffusion of information and behavior

often exhibits features that do not match well those of the SIR

or SIS model [17]. In the classical (SI) diffusion model, an

individual is influenced by each of her neighbors indepen-

dently. For the spread of a new technology in the network,

a rather appropriate model is the case where each individual

adopts the technology as soon as enough of her neighbors have

already adopted it: this corresponds to the basic game-theoretic

contagion model proposed by Morris [10]. Consider a graph

G in which the nodes are the individuals in the population

and there is an edge (i, j) if i and j can interact with each

other. Each node has a choice between two possible behaviors

labeled A and B. On each edge (i, j), there is an incentive for

i and j to have their behaviors match, which is modeled as the

following coordination game parametrized by a real number

q ∈ (0, 1): if i and j choose A (resp. B), they each receive a

payoff of q (resp. (1− q)); if they choose opposite strategies,

then they receive a payoff of 0. Then the total payoff of a

player is the sum of the payoffs with each of her neighbors.

If the degree of node i is di and SB
i is the number of its

neighbors playing B, then the payoff to i from choosing A is

q(di − SB
i ) while the payoff from choosing B is (1− q)SB

i .

Hence, in best response update, i should adopt B if SB
i > qdi

and A if SB
i ≤ qdi. A number of qualitative insights can be

derived from a diffusion model even at this level of simplicity.

Specifically, consider a network where all nodes initially play

A. If a small number of nodes are forced to adopt strategy B
(the seed) and we apply best-response updates to other nodes

in the network, then these nodes will be repeatedly applying

the following rule: switch to B if enough of your neighbors

have already adopted B. There can be a cascading sequence

of nodes switching to B such that a network-wide equilibrium

is reached in the limit.

Large complex networks such as social contact structures,

the internet and various types of collaboration networks have

received a lot of attention during the last few years; [14] and

the references therein. As for social networks, one of their

most striking features is that they are highly clustered, meaning

that there is a large number of triangles and other short cycles

[12]. This is a consequence of the fact that friendship circles

are typically strongly overlapping so that many of our friends

are also friends of each other. A model (inspired from [16])

that captures this in a natural way will be described in Section

II. Roughly, the idea of the model is to ’add’ clustering to

a standard configuration model by replacing some vertices

by cliques. By choosing the fraction of vertices replaced,

this leads to a graph where the amount of clustering can

be tuned by adjusting the parameters of the model. As we

will show this model generalizes the standard configuration

model to incorporate clustering and it is still possible to derive

rigorously exact formulas for the analysis of contagions and

diffusions on these networks. The model has the advantage to

allow any arbitrary degree distribution: in particular, it can be

applied to scale-free networks that have a power law degree

distribution.

An important goal of network modeling is to investigate

how the structure of the network affects the behavior of various

types of dynamic processes on the network. The aim of this

paper is to give a rigorous analysis of how clustering in a net-

work affects the spread of an epidemic (we study both game-

theoretical contagion and classical diffusion models). For the

Reed-Frost epidemic, [12] studies the effect of clustering for a

different model than ours and by heuristic means. Calculations

indicate that the epidemic threshold should decrease as the

clustering increases. This result has been recently rigorously

proven in [2]. The analysis of a contagion process with

threshold effect has not been done for their model. Another

model of random graphs with positive clustering (different

than the one we consider here) is introduced in [13], and

heuristic results on both diffusion and contagion models are

present in [6], for this model. Up to our knowledge, there is no

rigorous analysis for the contagion model on a random graph



2

with clustering.

Our main contributions are

• the study of a tractable random graph model with tunable

clustering (inspired from [16]). In Section II, we intro-

duce it and compute the asymptotic degree distribution

of the graph and the clustering coefficient,

• the analysis of a contagion process with threshold effect.

In Section III, we derive the contagion threshold for our

random graph model with clustering extending recent

results of [8], and

• the analysis of a diffusion process with given probability

of infection. In Section IV, we derive the minimal value

for the probability of contagion in our random graph

model with clustering such that a global diffusion is

possible. This proves a heuristic result of [4].

In the following, we consider asymptotics as n → ∞, and

we denote by →p the convergence in probability as n → ∞.

The abbreviation ’whp’ (“with high probability”) means with

probability tending to 1 as n → ∞, and we use the notation

op(n) in a standard way: X = op(n) means that, for every

ε > 0, P(X > εn) → 0 as n → ∞.

II. RANDOM GRAPH MODEL AND ITS BASIC PROPERTIES

We first present the model for the social graph, then

its asymptotic degree distribution, and finally its clustering

coefficient.

A. Model

Let n ∈ N and let d = (d
(n)
i )ni=1 = (di)

n
1 be a sequence of

non-negative integers such that
∑

i di is even. Let G (n,d) be
a graph chosen uniformly at random among all graphs with n
vertices and degree sequence d (assuming there exists such a

graph) [1].

We will let n → ∞ and assume that we are given d

satisfying the following regularity conditions, see [9]:

Condition 1. For each n, d = (di)
n
1 is a sequence of non-

negative integers such that
∑

i di is even. We assume that there
exists a probability distribution p = (pr)

∞
r=0 (independent of

n) such that:

(i) nr/n = |{i : di = r}| /n → pr as n → ∞, for all

r ≥ 0;
(ii) λ :=

∑

r rpr ∈ (0,∞);
(iii)

∑

i d
3
i = O(n).

If Dn is the degree of a vertex chosen uniformly at random

among the n vertices of G (n,d), and D a random variable

with distribution p, (i) is equivalent to the fact that Dn
d

−→ D
(convergence in distribution).

The model of random graphs G (n,d) has the advantage to

allow to handle arbitrary degree distributions. However, these

graphs are ’locally tree-like’, i.e. they contain no short loops

in their structure. We now show that it is possible to generalize

random graphs to incorporate clustering in simple fashion and

still to derive rigorously exact formulas for diffusions and

contagions. The model of random graphs is based on the model

G (n,d), but we ’add’ clustering. The idea is to replace some

vertices by a clique of size the degree in the original graph, i.e.

a vertex of degree r in the original graph G (n,d) is replaced
by r vertices with all the r(r− 1)/2 edges between them and

each of them is connected to exactly one of the neighbors of

the vertex in the original graph G (n,d) as illustrated on the

figure:

In order to be able to tune the clustering coefficient in the

graph, we will not replace each vertex by a clique but rather

do a probabilistic choice whether to replace a vertex or not.

The resulting random graph will be denoted by G̃ (n,d,γ),
where γ = (γr)

∞
r=0 is a sequence such that: for all r ≥ 0,

γr ∈ [0, 1] represents the probability that a vertex of degree r
in G (n,d) is replaced by a clique of size r in the new model

G̃ (n,d,γ). More precisely, for each vertex i ∈ {1, ..., n}, let
X(i) be a Bernoulli variable with parameter γdi

(all Bernoulli

variables being independent). We construct the random graph

G̃ (n,d,γ) the following way: start from G (n,d) and, for

each i ∈ {1, ..., n}, if X(i) = 1, replace i by a clique of size

di where each vertex of the clique has exactly one neighbor

outside the clique being a neighbor of i in the original graph.

Note in particular that if we choose γr = 0 for all r ≥ 0, then
G̃ (n,d,γ) = G (n,d), whereas for γr = 1 for all r ≥ 0, all
vertices in G (n,d) have been replaced by cliques.

B. Degree distribution in G̃ (n,d,γ)

As we will see in the next subsection, the procedure

described above introduces clustering at soon as γr > 0
for some r. It also modifies the degree distribution in the

graph and we derive the new degree distribution here. Let

i ∈ {1, ..., n}. If X(i) = 1, vertex i in G (n,d) is replaced

in G̃ (n,d,γ) by a clique of di vertices, all having degree di
(indeed, each vertex of the clique has di−1 edges linked with

the other vertices of the clique, and one ’external’ edge). So

each vertex of degree r can either be replaced (with probability
γr) by r vertices of degree r, or stays as a single vertex of

degree r (with probability 1− γr). The following proposition

gives the asymptotic degree distribution in G̃ (n,d,γ).

Proposition 2. We consider the model G̃ (n,d,γ) for a

sequence d satisfying Condition 1 with probability distribution

p = (pr)
∞
r=0, and clustering parameter γ = (γr)

∞
r=0. For

all r ≥ 0, let ñr be the number of vertices with degree r in

G̃ (n,d,γ), and let ñ =
∑

r ñr be the total number of vertices

in G̃ (n,d,γ). Then we have, as n → ∞:

ñ

n

p
−→ γ̃ :=

∑

d≥0

[dγd + (1− γd)] pd

and, for all r ≥ 0, the proportion of vertices with degree r in

G̃ (n,d,γ) has the following limit, as n → ∞:

ñr

ñ

p
−→ p̃r :=

[rγr + (1− γr)] pr
γ̃

.
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Proof: Let d ≥ 0, and let Bd be the number of vertices

with degree d that are replaced by a clique. Then Bd follows

a Binomial distribution with parameters (nd, γd), where nd is

the number of vertices with degree d in G (n,d). By Condition
1-(i), we have: nd/n → pd, so that the Law of Large Numbers

implies: Bd/n →p γdpd (which is still true if pd = 0).
Note that the number of vertices with degree d that are not

replaced by a clique is nd−Bd, so we can express the number

ñ of vertices in G̃ (n,d,γ) the following way:

ñ

n
=

1

n

∑

d

dBd + (nd −Bd)
p

−→
∑

d

[dγd + (1− γd)] pd = γ̃

which follows from the previous limits, and the uniform

integrability of the random variables Dn (see Condition 1-

(iii)).

In particular, this shows that the total number of vertices

with degree r (r ≥ 0) in G̃ (n,d,γ) is rBr + (nr − Br), so
the proportion of vertices with degree r in G̃ (n,d,γ) is:

rBr + (nr −Br)

ñ

p
−→

[rγr + (1− γr)] pr
γ̃

= p̃r,

which concludes the proof.

In other words, if D̃n is the degree of a vertex chosen

uniformly at random in G̃ (n,d,γ), then Proposition 2 im-

plies that D̃n
d

−→ D̃, where D̃ is a random variable with

distribution (p̃r)r≥0.

In our definition of G̃ (n,d,γ), each vertex of degree 0 in

G (n,d) is removed from the graph with probability γ0, and
kept with probability 1 − γ0. We could have considered the

case where each vertex of degree 0 is kept with probability 1.
In that case, we have that p̃0 = p0 and the following value for

γ̃: γ̃ =
∑

d≥1 [dγd + (1− γd)] pd+ p0. To simplify notations,

we keep the definition of the Proposition, but arguments are

the same.

In the particular case where γr = γ for all r, we have

γ̃ = γλ+ 1− γ and the mean degree of D̃ is then

λ̃ = E[D̃] =
γE[D2] + (1− γ)λ

γλ+ 1− γ
,

which is a non-decreasing function of γ.

C. Clustering coefficient

The local clustering coefficient C
(n)
v of a vertex v in a

graph quantifies how close the vertex and its neighbors are

to being a clique (complete graph) [18]. C
(n)
v is defined to be

the fraction of pairs of neighbors of v that are neighbors also

of each other. More formally, let Nv be the set of neighbors

of v (its cardinality |Nv| = dv is the degree of v), and let

Pv be the number of pairs {w,w′} ⊂ Nv , w 6= w′, such

that w and w′ share an edge together. The total number of

possible pairs is dv(dv−1)/2, so we define the local clustering

coefficient of v as C
(n)
v = Pv · 2/[dv(dv − 1)]. The biased

clustering coefficient for the whole network C(n) is defined as

the average of the local clustering coefficient for each vertex:

C(n) =
∑

v C
(n)
v /ñ, where ñ is the number of vertices in

the graph, including those of degree one or zero. The local

clustering coefficient of vertices with degree one or zero is null

by definition, hence the clustering coefficient in the graph can

be very low if the graph contains a lot of such vertices, even

if other vertices are highly clustered. To overcome this, we

can consider another definition of clustering coefficient (see

the next paragraph).

a) Computation of the biased clustering coefficient:

Proposition 3. We consider the model G̃ (n,d,γ) for a

sequence d satisfying Condition 1 with probability distribu-

tion p = (pr)
∞
r=0. Then we have for the biased clustering

coefficient of G̃ (n,d,γ):

C(n) p
−→ C :=

∑

r≥3

pr
γr
γ̃

(r − 2) ,

where γ̃ is defined in Proposition 2.

The proof is given at the end of the subsection (together

with the proof of Proposition 4).

In the particular case where γr = γ ≥ 0 for all r ≥ 0, we
get for the asymptotic biased clustering coefficient:

C =
λ− 2 + p1 + 2p0

λ− 1 + 1
γ

.

If γ = 0, there is no clustering and as γ increases, the biased

clustering coefficient also increases to 1− 2−(p1+2p0)
λ .

b) Another definition of clustering coefficient: We keep

the notations of the previous paragraph: dv is the degree of

vertex v, and Pv is the number of pairs of neighbors of v
that share an edge together. Then we define the clustering

coefficient C
(n)
2 of the graph by:

C
(n)
2 =

2 ·
∑

v Pv
∑

v dv(dv − 1)
.

It is the mean probability that three given vertices constitute a

triangle conditional on that two of the three possible edges

between them exist, and it corresponds to the notion of

clustering studied in [2].

Proposition 4. We consider the model G̃ (n,d,γ) for a

sequence d satisfying Condition 1 with probability distribution

p = (pr)
∞
r=0. Then we have for the clustering coefficient of

G̃ (n,d,γ):

C
(n)
2

p
−→ C2 :=

∑

r≥2 r(r − 1)(r − 2)γrpr
∑

r≥2((r − 1)γr + 1)r(r − 1)pr
.

Proofs of Propositions 3 and 4: We have the following

result, that follows from the fact that G (n,d) converges

locally to a tree, when n → ∞:

Lemma 5. Let C
(n)

be the biased clustering coefficient in

G (n,d). Then we have: C
(n) p

−→ 0.

The same result holds for the clustering coefficient C
(n)

2 of

the graph G (n,d).
We say that a vertex in G̃ (n,d,γ) has parent i ∈ {1, ..., n}

if it belongs to a clique that replaces the vertex i of G (n,d)
(when X(i) = 1) or if it is i (when X(i) = 0).
We first consider a vertex v in G̃ (n,d,γ) whose parent i

is such that X(i) = 1 (vertex i of G (n,d) is replaced by a

clique K in G̃ (n,d,γ)). In this case we can directly compute
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the local clustering coefficient C
(n)
v . Indeed, vertex v has di−1

neighbors inside K, that are all linked together (which gives
(di−1)(di−2)

2 edges in total), and one neighbor v′ outside K,

which is not linked to the other neighbors of v (if it were the

case, there would be several edges between i and the parent

j of v′, which is not the case in the simple graph G (n,d)).
Hence

Pv =
(di − 1)(di − 2)

2
and C(n)

v =
2Pv

di(di − 1)
=

di − 2

di
,

provided that di ≥ 2. If di ∈ {0, 1}, then C
(n)
v = 0.

We first prove Proposition 3. Since there are di such vertices

inside a clique, the contribution of clique K in the total clus-

tering C(n) =
∑

v C
(n)
v /ñ is equal to diC

(n)
v /ñ = (di−2)/ñ.

This leads to the following:

ñ

n
C(n) =

1

n

∑

d≥2

(d− 2)Bd +
1

n

∑

i:X(i)=0

C
(n)
i

where Bd is the number of vertices with degree d that are

replaced by a clique, as in the proof of Proposition 2. Using

that Bd/n →p γdpd, and that
∑

i:X(i)=0 C
(n)
i /n →p 0

(as a consequence of Lemma 5), we obtain: ñ
n C(n) p

−→
∑

d≥3 (d− 2) γdpd. Proposition 3 follows, applying Proposi-

tion 2.

The end of the proof for Proposition 4 is similar, and follows

from the fact that:

2
∑

v

Pv/n →p

∑

d

d(d− 1)(d− 2)γdpd,

∑

v

dv(dv − 1)/n →p

∑

d

d(d− 1)[dγd + (1− γd)]pd.

In the next paragraph, we use the second definition of

clustering coefficient, but results are true for both.

D. Link between clustering coefficient and mean degree in the

graph G̃ (n,d,γ)

Both asymptotic clustering coefficient C2 (Proposition 4)

and asymptotic degree distribution (p̃r)r≥0 (Proposition 2)

depend on the following parameters:

• the asymptotic degree distribution p of the original graph

G (n,d),
• the clustering parameter γ.

We will see how the clustering coefficient C2 and the mean

degree λ̃ =
∑

r rp̃r vary when p and γ vary. We focus on the

case when γr = γ for all r ≥ 0, i.e. each vertex in G (n,d) is
replaced by a clique with probability γ. In addition, we impose

some conditions on the probability distribution p.

Indeed, in figures 1 and 2, we assume that the initial graph

G (n,d) has power law degree distribution with exponential

cutoff: there exists a power τ > 0 and a cutoff κ > 0 such

that, for all r ≥ 1, pr = c(τ, κ) · r−τe−r/κ, where c(τ, κ) =
1/(

∑

s s
−τe−s/κ) is a normalizing constant. This cutoff κ

allows Condition 1 to be satisfied for any power τ > 0: in
figures, we take κ = 50. If we compute (using Proposition 2)

the asymptotic degree distribution in G̃ (n,d,γ) when each

Fig. 1. Correlation between the clustering coefficient C2 and the mean
degree λ̃ in G̃ (n,d,γ) (when the initial graphG (n,d) has power law degree

distribution pr ∝ r−τ e−r/50, and varying parameters are τ and γ)

Fig. 2. Evolution of the clustering coefficient C2 with respect to the mean
degree λ̃ in G̃ (n,d,γ) (when the initial graphG (n,d) has power law degree

distribution pr ∝ r−τ e−r/50)

vertex is replaced by a clique (γ = 1), we obtain a power law

distribution with parameter τ − 1: p̃r ∝ r−(τ−1)e−r/κ. More

generally, for any given value of γ, the degree distribution in

G̃ (n,d,γ) is a linear combination between a power law of

parameter τ , and a power law of parameter τ − 1.

Once we impose this form for the probability distribution p,

we are left with two degrees of freedom: the power τ and the

probability γ. In figure 1, we make these two parameters vary,

and plot the correlation between the clustering coefficient C2,

the mean degree λ̃ and the probability γ.

Figure 2 represents several slices of figure 1, for different

values of the clique probability γ. Increasing the mean degree

in the graph G̃ (n,d,γ) also increases the clustering. With our

graph model, we are not able to reach a clustering coefficient

of 1, especially for low values of the mean degree λ̃. Yet the
maximal clustering coefficient we can obtain (for γ = 1) is

greater than 0.9 as soon as the mean degree λ̃ is greater than

2.5.

Now we are interested in the evolution of the clustering

coefficient C2 with respect to γ, when the mean degree λ̃ is

fixed (which corresponds to other slices of figure 1). In order
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Fig. 3. Evolution of the clustering coefficient C2 with respect to the clique
probability γ, when the mean degree λ̃ in G̃ (n,d,γ) is fixed (for initial
graph G (n,d) distributed as Erdős-Renyi)

to keep λ̃ fixed when γ varies, we need to adjust the value of

the power τ : this changes both the probability distribution p

and the asymptotic degree distribution p̃ (whose mean is kept

fixed).

For technical reasons, it will be more convenient to work

with a Poisson distribution with mean λ > 0 for the probability
distribution p: for all r ≥ 0, pr = e−λλr/r!, that is to say

G (n,d) is distributed as an Erdős-Renyi graph. If γ = 1,
the asymptotic degree distribution in G̃ (n,d,γ) is a Poisson

variable (with parameter λ) shifted by 1, so the mean degree

is λ̃ = λ + 1. In that case, the degrees of freedom are

parameters λ and γ. In order to keep λ̃ fixed when γ varies,

we have to adjust the value of λ. If the mean degree λ̃ in

G̃ (n,d,γ) is fixed and high enough, the clustering coefficient

C2 increases with γ (figure 3), but, for low values of λ̃, the
clustering coefficient C2 is not a non-decreasing function of

γ (distributions p and p̃ vary).

The advantage of this model is that it allows to consider

any degree distribution, contrary to random intersection graphs

[2] that are restricted to the Poisson distribution. Yet we are

limited by the correlation between the clustering coefficient

and the mean degree in the graph G̃ (n,d,γ): in [2], the

clustering coefficient can vary between 0 and 1, even for low

values of the mean degree in the graph.

III. CONTAGION THRESHOLD FOR RANDOM GRAPHS WITH

CLUSTERING

A. Contagion model

Motivated by the game-theoretic contagion model proposed

by Morris [10] and described in the introduction, we now

describe formally our model of contagion on any finite graph

G. The progressive dynamic of the diffusion on the finite graph

G operates as follows: some set of nodes S starts out being

active; all other nodes are inactive. Time operates in discrete

steps t = 1, 2, 3, . . . . At a given time t, any inactive node i
becomes active if its number of active neighbors is at least

⌊qdi⌋ + 1. This in turn may cause other nodes to become

active. It is easy to see that the final set of active nodes (after

n time steps if the network is of size n) only depends on the

initial set S (and not on the order of the activations) and can

be obtained as follows: set Yi = 1(i ∈ S) for all i. Then as

long as there exists i such that
∑

j∼i Yj > qdi, set Yi = 1,
where j ∼ i means that i and j share an edge in G. When

this algorithm finishes, the final state of node i is represented
by Yi: Yi = 1 if node i is active and Yi = 0 otherwise.

We see that the lower q is, the easier the diffusion spreads.

In [10], the contagion threshold of a connected infinite network

is defined as the maximum threshold qc at which a finite set of

initial adopters can cause a complete cascade, i.e. the resulting

cascade of adoptions of B eventually causes every node to

switch from A to B. In this section, we restrict ourselves

to the model where the initial adopters are forced to play B
forever. In this case, the contagion is monotone and the number

of nodes playing B is non-decreasing. We say that this case

corresponds to the permanent adoption model: a player playing

B will never play A again.

B. Phase transition for the contagion

We now compute the contagion threshold for a sequence of

random networks. Since a random network is finite and not

necessarily connected, we first need to adapt the definition of

contagion threshold to our context as was done in [8]. For a

graph G = (V,E) and a parameter q, we consider the largest

connected component of the induced subgraph in which we

keep only vertices of degree strictly less than q−1. We call the

vertices in this component pivotal players: if only one pivotal

player switches from A to B then the whole set of pivotal

players will eventually switch to B in the permanent adoption

model. For a player v ∈ V , we denote by C(v, q) the final

number of players B in the permanent adoption model with

parameter q, when the initial state consists of only v playing

B, all other players playing A. Informally, we say that C(v, q)
is the size of the cascade induced by player v.

Theorem 6. Consider the random graph G̃ (n,d,γ) for a

sequence d satisfying Condition 1 with probability distribution

p = (pr)
∞
r=0, and define

qc = sup







q :
∑

r<q−1

r(r − 1)pr >
∑

r

rpr







.

Let P̃(n) be the set of pivotal players of G̃ (n,d,γ).

(i) If q < qc, then there is a unique ξ ∈ (0, 1) such that

∑

d<q−1

dpd(1− ξd−1) = λ(1− ξ)

and we have:

|P̃(n)|/ñ
p

−→
∑

d<q−1

[dγd + (1− γd)] pd
γ̃

(1− ξd) > 0,

where γ̃ is defined in Proposition 2. Moreover, for any

u ∈ P̃ , we have whp

lim inf
C(u, q)

ñ
≥ lim

|P̃(n)|

ñ
> 0
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(ii) If q > qc, for an uniformly chosen player u, we have

C(u, q) = op(ñ). The same result holds if o(n) players

are chosen uniformly at random.

When γr = 0 for all r ≥ 0, we recover the result of [8].

If γr = 1 for all r ≥ 1 (which means that we systematically

replace each vertex i of degree di by a clique of size di) we
can even be more precise in the case q < qc: we have in this

case, C(u, q) = |P̃(n)| for any u ∈ P̃(n) since in this case,

the contagion starting from a pivotal player will propagate to

the pivotal players only.

From these results, we see that the impact of clustering is

different for low values of the mean degree and for high values

of the mean degree. In the low values regime, as the clustering

increases, the contagion threshold decreases whereas in the

high values regime, the opposite happens. We see that in the

low values regime for the mean degree, the clustering makes

the contagion more difficult whereas it ’helps’ the contagion

in the high values regime.

IV. DIFFUSION THRESHOLD FOR RANDOM GRAPHS WITH

CLUSTERING

A. Diffusion model

In this section, we study a simple diffusion model depending

on a parameter π ∈ [0, 1] which can be described in term of

a bond percolation process in a general graph G. Randomly

delete each edge with probability 1 − π independently of all

other edges. denote by Gπ the resulting graph. Then any

active node will activate all nodes in its component in Gπ .

As in previous section, we will derive conditions under which

a single starting active node can activate a large fraction of

the population in G = G̃ (n,d,γ). This problem corresponds

to the existence of a ’giant component’ in the random graph

obtained after bond percolation. Note that this model of

diffusion corresponds to a simple epidemics with probability

of contagion given by the parameter π ∈ [0, 1].

B. Phase transition for the diffusion

In order to state our result, we first need to recall some basic

results about random graphs with small order. For d ∈ N, let

Kd be the complete graph on d vertices denoted {1, . . . , d},
with d(d − 1)/2 edges. For π ∈ [0, 1], we denote by Kd(π)
the random graph obtained from Kd after bond percolation

with parameter π, i.e. each edge of Kd is kept independently

of the others with probability π, otherwise it is removed.

We need to compute the probability that the component

in Kd(π) containing vertex 1 has k vertices denoted by

f(d, k, π). Note that f(d, d, π) is simply the probability that

Kd(π) is connected and has been computed in [3]. Indeed

simple computations show that we have the simple recurrence

relation

f(d, d, π) = 1−
d−1
∑

k=1

(

d− 1

k − 1

)

f(k, k, π)(1− π)k(d−k),

f(d, k, π) =

(

d− 1

k − 1

)

f(k, k, π)(1− π)k(d−k), (1)

for any k ≤ d.

We now define for d ∈ N and π ∈ [0, 1], the random variable

K(d, π, γ) defined by

P (K(d, π, γ) = k) = (1− γd)1(k = d) + γdf(d, k, π),

where f is defined in (1).

For a graph G = (V,E) and a parameter π ∈ [0, 1], we
denote for any v ∈ V by C(v, π) the size of the component

in the bond percolated graph Gπ containing v.

Theorem 7. Consider the random graph G = G̃ (n,d,γ)
for a sequence d satisfying Condition 1 with probability

distribution p = (pr)
∞
r=0. Let D

∗ be a random variable with

distribution p∗r given by p∗r−1 = rpr

λ for all r ≥ 1. We define

πc as the solution of the equation:

πE [K(D∗ + 1, π, γ)− 1] = 1.

• if π > πc, we have whp that lim inf C(u,π)
ñ > 0, i.e. there

exists a ’giant component’ in the percolated graph Gπ .

• if π < πc, for an uniformly chosen player u, we have

C(u, π) = op(ñ). The same result holds if o(n) players

are chosen uniformly at random, i.e. there is no ’giant

component’ in the percolated graph Gπ .

Note that in the particular case where γr = 0 for all r, we
have K(d, π, 0) = d so that we get πc =

E[D]
E[D(D−1)] where D

is the typical degree in the random graph and we recover a

standard result in the random graphs literature (see Theorem

3.9 in [7]).

We can guess the value of the diffusion threshold πc using

a branching process approximation. Indeed the random graph

G (n,d) can be approximated by a branching process in

which each node (except the root) has a number of offspring

distributed as D∗. The degree of a node v in the corresponding

random tree is thus distributed as D∗ + 1. Let us assume

D∗ + 1 = d. If we replace v by a clique K of size d with

probability γd, and delete independently each edge inside the

clique with probability 1−π, then the probability that the com-

ponent of v inside K contains k vertices is given by f(d, k, π).
Hence the probability that v is linked to k vertices is:

(1− γd)1(d = k) + γdf(d, k, π) = P (K(D∗ + 1, π,γ) = k).
The new distribution of offspring is thus K(D∗+1, π,γ)− 1.
Finally, we remove each edge with probability π, which

gives πE [K(D∗ + 1, π,γ)− 1] for the expected number of

offspring.

For regular graphs, we obtain that the diffusion threshold

increases as the clustering increases, as it was already observed

in [5].

V. FURTHER REMARKS AND CONCLUSIONS

If the characteristic parameter of the epidemic is above

some threshold for the diffusion model, or under a certain

threshold for the contagion model, then a global cascade

is possible, starting from a single infected individual. An

interesting question would be to study the effect of clustering

on the cascade size, especially for the contagion model. The

cascade size for the diffusion model is derived by heuristic

means in [4].

The diffusion threshold increases when the clustering in-

creases (for random regular graphs), which makes the diffusion
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more difficult to spread. The effect of clustering on the

contagion threshold depends on the value of the mean degree

in the graph: for low values of the mean degree, we observe

that clustering inhibits the contagion, and the contrary happens

in the high values regime. One can wonder what is the effect

of clustering on contagion threshold when degree distribution

and degree-degree correlations are fixed: note that the simple

consideration of random regular graphs does not provide

significant information here, since increasing clustering in a

random regular graph (adding cliques) does not change the

contagion threshold with our graph model.
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