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Network and Computer Performance in Malicious
Environments: The Good, the Bad and the Ugly

Udi Ben-Porat
Computer Engineering and
Networks Laboratory (TIK)
ETH, Zurich, Switzerland
Email: ehudb@tik.ee.ethz.ch

Abstract—Performance analysis and the design of computer
and networking systems have traditionally accounted for the
stochastic nature of the problem addressed and been based on
stochastic type analysis, mainly expected value (’the good”). In
some related disciplines, mainly computer science and algorith-
mic design, worst-case analysis (’the bad’’) has been popular.
In recent years we have experienced a wave of DDoS and
Cyber attacks threatening the welfare of the internet. These
are launched by malicious users whose only incentive is to
degrade the performance of other, innocent, users. This has
triggered a new direction of research aiming at evaluating system
performance while accounting for the malicious behavior of the
attackers (”’the ugly”). The performance metrics in this case
differs from both the average-case and the worst-case and can
affect system design considerably.

The purpose of this work is to expose and discuss this new
analysis approach as well as to distinguish it from the traditional
approaches. We use a wide array of cases and results derived in
the literature to demonstrate how such analysis can be carried
out. We further use them to show what kind of metrics can be
used to evaluate the effect of malicious behavior and the resilience
of the system against them.

I. INTRODUCTION

Performance analysis of computer and network systems, as
well as their design, has traditionally been based on stochastic
analysis. The underlying assumption behind this methodology
is that customers (alternatively requests, packets sent, etc.)
behave as a stochastic process which drives the overall system
performance. Such analysis commonly leads to stochastic-type
results such as expected values (average/mean), variances and
distribution tails. One can denote it, in short, as average-
case analysis (“the good”). In related fields, such as computer
science and algorithmic design, worst-case analysis (”the bad”)
has been popular. Both these methodologies have been usually
based on the underlying paradigm that all users are innocent,
aiming merely at improving their own performance.

In recent years the welfare of the Internet has been threat-
ened by malicious Distributed Denial of Service (DDoS)
attacks as well as Cyber attacks. DDoS attackers consume
the resources of the victim, a server or a network, causing a
performance degradation or even the total failure of the victim.
The ease with which such attacks are generated makes them
very popular (Labovitz et al. [1]). In performance evaluation
terms, this has broken the underlying paradigm by which all
users are “innocent”.
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This paradigm shift has lead to the introduction of a new
research direction aiming at evaluating system performance
in the presence of malicious users (’the ugly”). The effect
of malicious behavior on system performance and design can
be, in some cases, quite drastic. Our objective in this work is
to present this new malicious-based performance analysis, to
discuss it and to demonstrate it through reviewing a collection
of results derived in recent years.

In the rest of this section we describe malicious performance
and a vulnerability metrics. In Section II we classify the attack
types and in Section III we review several typical systems and
their malicious performance vulnerability.

A. Malicious-Based Performance

How does “malicious-based” performance differ from
worst-case performance and average-case performance? An
underlying assumption behind both worst-case and average-
case analysis is that in reality there are many cases and
realizations; the worst-case performance will evaluate the
worst of these realizations while the average-case will average
all of them. The malicious-based performance can be thought
as some type of intermediate paradigm. It assumes that the
majority of the population behaves “normally” (“innocently’)
and thus its own performance can be measured via the normal
average-case performance. However, this performance is af-
fected by having a fraction of the population (malicious users)
behaving as to drive the system into a worst case realization.

How malicious-based performance is defined? Isn’t a mali-
cious user like an adversary? To make it a practical measure,
one cannot attribute the malicious user(s) with ’super-powers”
and therefore cannot relate to it as an adversary (as commonly
done in worst-case analysis). Rather — one has to bind the
malicious user to practical limitations. Such limitations can be
of several categories: 1) Knowledge of System Operations — the
attacker may or may not know some of the system internals.
For example it may know that the system uses a hash table,
but possibly not know the exact hash function. 2) Knowledge
of system state and other users state — The internal temporal
system state (e.g. which buckets in the hash table are occupied
at this moment) is commonly hidden from the malicious user.
Similarly, knowledge about the temporal behavior of the other



users (e.g. which buckets will they address in future requests)
is hidden as well.

B. A Performance Vulnerability Metric

How the vulnerability of a system to attacks (malicious
behavior) can be evaluated? It is desired that such evaluation
will account for the performance effect (damage) caused by the
attack as well as for the efforts required in launching the attack.
A measure of vulnerability factor has been proposed and
defined [2] as the maximal performance degradation (damage)
that malicious users can inflict on the system using a specific
amount of resources (cost) normalized by the performance
degradation attributed to regular users using the same amount
of resources. In a sense, this evaluates how many innocent
users are prevented accommodation in the system due to the
activity of one malicious user. In other words, this is the
number of innocent users the malicious user “worth”.

Formally, the Vulnerability Factor can be defined as follows:
Let the usersType parameter be equal to either regular users
(R) or malicious attackers (M) with strategy st. Note that we
use the plural terms since some of the attack types occur only
in specific scenarios of multiple coordinated access of users to
the system [3]. Let budget be the amount of resources that the
users of usersType spend on producing the additional traffic to
the system, i.e., the cost of producing the attack is limited by
the budget parameter. The budget can be measured differently
in the various models, e.g. as the required bandwidth, or the
number of required computers, or as the required amount of
CPU and so on. Let A Perf (usersType, budget) be the perfor-
mance degradation caused by the additional traffic generated
by the additional users (of type wusersType with a budget
resource limit). The performance can be measured by different
means such as the CPU consumption, the delay experienced
by a regular user, the number of users the system can handle
and so on.

We define the Effectiveness of a malicious strategy st on
the system as

APerf(Msg,b)

Eg(budget =b) = —————, 1
(budgel =b) = =5 R b) M
and the Vulnerability Factor V of the system as:

V (budget = b) = maxs{Fs(b)}. (2)

In evaluating attack effectiveness one may distinguish between
two types of effects: 1) In-attack performance, and 2) Post-
attack performance. In the former one measures the attack’s
performance effects while the attack is carried on. In the latter
one evaluates the effects on system performance once the
attack has completed.

C. Malicious Performance: Sophisticated Attacks

From performance point of view, our mere interest is in the
so-called sophisticated attacks. Under such attacks the attacker
sends traffic aiming to hurt a weak point in the system design
in order to significantly degrade its performance (such as
Reduction of Quality attacks like [3], [4]). The sophistication

lies in the fact that the attack is tailored to the system’s design,
aiming to increase the attack effectiveness.

The attacker’s incentive is to increase the attack’s perfor-
mance effect while minimizing the amount of traffic it sends.
The use of sophisticated attacks reduces the cost of attacks,
i.e., reduces the number of zombie computers the attacker t
has to operate and and the complexity of attack coordination.
Moreover, the use of sophisticated attacks increases the like-
lihood that the attack will succeed in going unnoticed (going
under the radar) by DDoS mitigation mechanisms, which are
usually based on detecting higher-than-normal traffic volume.
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Fig. 1. Attack Effectiveness and Corresponding Vulnerability.

Figure 1 qualitatively demonstrates attack effectiveness in
relation to attack sophistication. Brute force attacks (no so-
phistication) are depicted on the right where a huge amount
of traffic is needed to overload the system since the load placed
by an attacker operation is identical to that of an innocent user
operation (vulnerability is 1). On the left we depict attacks that
completely shut down a system and thus the corresponding
vulnerability is infinity. The range in between the extreme
points belongs to sophisticated attacks (vulnerability is K)
where an attacker operation is performance-wise K times more
effective than that of an innocent user.

II. ATTACK SURVEY AND CLASSIFICATION

Roughly speaking, we can classify the methods of launching
sophisticated DDoS attacks into four classes: Algorithmic
Worst-Case Exploit, Traffic Pattern Exploit, System Architec-
ture Worst-Case Exploit and Protocol Deviation Exploit. We
explain and demonstrate below each of the categories.

1) Algorithmic Worst-Case Exploit or Complexity At-
tack - Attacker exploits the worst-case performance of the
system’s algorithm which differs from the average case that
the algorithm was designed for. Crosby and Wallach[5] were
the first to demonstrate the complexity attack on the com-
monly used Open Hash data structure, where an attacker
can design an attack that achieves worst case complexity of
O(n) elementary operations per insert operation instead of
the average case complexity of O(1). Examples of algorithms
that are vulnerable to complexity attacks are Closed Hash [2],
Quicksort [6], regular expression matcher [7] and Intrusion
Detection Systems [8], [9].



2) Traffic Pattern Exploit - Attacker exploits the (stochas-
tic) worst case traffic pattern that can be applied to the system.
This case is similar to the first one with the distinction that
the worst case scenario involves a specific traffic pattern of re-
quests from multiple users. This type of attack is demonstrated
in the Reduction of Quality (RoQ) attacks papers [3], [4], [9].
RoQ attacks target the adaptation mechanisms by hindering
the adaptive component from converging to steady-state. This
is done by sending - from time to time - a very short burst
of surge demand imitating many users and thus pushing the
system into an overload condition. Using a similar technique,
Kuzmanovic and Knightly [10] presented the Shrew Attack
which is tailored and designed to exploit TCP’s deterministic
retransmission timeout mechanism. Another example of an
attack exploiting the stochastic worst case is given in [11],
[12]. There it is shown that Weighted Fair Queueing (WFQ),
a commonly deployed mechanism to protect traffic from DDoS
attacks, is ineffective in an environment consisting of bursting
applications such as the Web client application.

3) System Architecture Worst-Case Exploit - While the
previous categories exploit a weak point in the algorithm, this
category exploits a weak point in the specific architecture of
the system the algorithm runs on, mainly the interaction of the
hardware with the software implementation of the algorithm.
For example: Moscibroda and Multu [13] discuss a sophisti-
cated DDoS attack which degrades the performance of a Multi-
Core System. The attack is conducted by one process (running
on one core) targeting the weakest point in such a system -
the DRAM shared memory - and degrading the performance
of other processes in the system. [14] shows vulnerability in
the pattern matching of NIDS by using traffic that causes high
cache miss rate and thus decreases the performance to 14%
of the original rate.

4) Protocol Deviation Exploit - Attacker deviates from
the protocol rules, exploiting the fact that the protocol design
is based on the assumption that all the users obey the rules
of the protocol. Most traditional DDoS attacks [15] of SYN
attack and DNS attack types, belong to this category. These
attacks exploit the fact that performing only part of the flow
protocol but not finishing it correctly harms the performance
of the protocol significantly. For example, in the SYN attack
the attacker sends amounts of SYNs but does not send the
FIN.

Another type of a protocol deviation attack, is to obey the
protocol flows but to “cheat” in the messages of the protocols.
Recent works in the context of wireless scheduling [16], [17],
[18], [19], show that “cheating” by misreporting the channel
capacity can harm the system performance significantly.

III. PRACTICAL SYSTEMS AND ATTACKS: PERFORMANCE
DEGRADATION AND VULNERABILITY

Having described the vulnerability measures in section I and
the attacks classification in section II, we will now demonstrate
the performance effect and vulnerabilities of a selected sets of
attacks on wireless schedulers and hash tables.

Channel-aware scheduling strategies - such as the CDF
Scheduler (CS) [20] and the popular Proportional Fairness
Scheduler (PFS) [21] - provide an effective mechanism for
utilizing the channel data rate for improving throughput per-
formance in wireless data networks by exploiting channel
fluctuations. In the down-link wireless scheduling model, the
users are waiting for their data to be sent from a base
station. Assume that time is slotted and that only one user
can be served in each time slot. Before each time slot, each
user reports to the base station his channel condition, which
determines the data transfer speed from the base station to the
user. Based on this information and different statistics from the
past, the wireless scheduler decides on the user to be scheduled
for transmission in the next time slot.

A. Coordinated Attack on CDF Scheduler

The CS algorithm [20] schedules (for transmission) the
user whose transfer speed is the most exceptional among all
users (compared to his past reports). The scheduler uses the
CDF value of the current reported speed to determine how
exceptional it is. Formally, let 7;(¢) be the data transfer speed
of user ¢ at time ¢t and let R; be a random variable of the
transfer speeds of user . Before time slot ¢, the scheduler
calculates for each user F;(t) = Prob(r;(t) > R;). The user
with the highest CDF value F;(t) is scheduled.

In [18] the authors show that while CS is immune to an
attack by a single user, it is vulnerable to attacks by a coordi-
nated group of malicious (or selfish) users. The vulnerability
abused by the attack is based on the following observation:
A malicious user who can predict the scheduling decisions,
can report a fake low channel condition in time slots where
he knows that he is not going to be scheduled anyway. These
fake reports make his future reports, where he report his real
channel condition, look more exceptional (his R; is lower and
therefore his F; is higher) and thus increase his probability to
be the one scheduled for transmission. While it is not assumed
that a malicious user can predict the future, by cooperating
with other users that share their future CDF value (in the
next time slot) the user can predict some of the time slots
where he is not going to be scheduled anyway. This way,
such user breaks the fairness CS tries to enforce and gains a
larger time share on the expense of other users (who are not
in the group). One of the results presented in [18] is that when
there are malicious users and regular users in equal numbers,
the ratio of allocated time slots between a coordinated user
and a regular one converges to e — 1 ~ 1.7 (instead of 1,
since they are in equal numbers and CS maintains time share
fairness). This attack belongs to the category of Traffic Pattern
Exploit and causes in-attack damage. The fact that the time
share of a malicious user can be 70% larger than this of a
regular one, demonstrate the importance of the vulnerability
analysis since it exposed the fact that CS allows large deviation
from time share fairness while traditional performance analysis
(which does not consider malicious environment) claims it is
completely fair.



B. Retransmission Attack on PFS

The retransmission algorithm defines how the scheduler
handles a report of a lost frame (NACK). Should the scheduler
retransmit the frame immediately? should he first send to
others before he tries to retransmit the lost frame? The vast
majority of existing studies on wireless schedulers ignore the
retransmission mechanism by simplifying the model to one
where packet losses do not occur, while the rest adopt straight
forward implementations of the retransmission algorithm. In
[19], the authors present the common straight forward re-
transmissions algorithms for PFS, expose their vulnerability to
malicious attacks and present immune variations that maintain
the original fairness of PFS. The vulnerability common to
these algorithms lies in the assumption that a user will never
report a failed transmission if he received it successfully. After
all, even a selfish user cannot benefit from receiving the same
data frame twice. The problem is that malicious users can
abuse that and require more retransmission than others, hence
occupying more transmission time on the expense of others.
This attack belongs to the category of Algorithmic Worst Case
Exploit since the number of retransmissions required by the
attacker is the maximal number of retransmissions allowed
(which is the worst case). The attack hurts other users only
during the attack itself, hence it causes in-attack damage. The
analysis in [19] of the vulnerability to this malicious behavior
shows that in typical settings' with malicious and regular users
in equal numbers, the regular users lose 50% of their time
share.

C. Arttack on Hash Tables

Many network applications use the common Hash data
structure. A Hash table is based on an array of buckets of size
M meant to store keys from a space larger than M. A hash
function h(s) is used to identify the bucket in which the key
s should reside. In [2] the authors analyzed attacks on Open
Hash (a.k.a Closed Addressing) and Closed Hash (a.k.a Open
Addressing). In the Hash data structure, the Insert operation
of a new element is the most time consuming operation. We
summarize here the attack on Closed Hash tables with linear
probing as an example for an attack that causes both in-attack
and post-attack damage. During an insertion in Closed Hash
with linear probing, if a key is hashed into an occupied bucket,
then the neighboring bucket is probed, and this process repeats
until an empty bucket is found [22]. The average complexity of
performing an insert operation is O(1) memory accesses while
the worst case complexity is O(N) memory accesses, where
N is the number of existing elements in the Hash table. The
worst case is that an insertion of K keys are all hashed into
the same bucket. An attacker with the ability to compute the
hash function, can produce this behavior and cause in-attack
damage by requiring O(K) memory accesses per insertion
and increase the load on the system [2]. This is compared
to O(1) memory accesses per insertion by regular users, as

IWhere the maximal number of frame retransmissions is 5.

the traditional complexity analysis predicts. Therefore, the in-
attack vulnerability is O(K). In addition, after the attack has
ended, a cluster of at least K consecutive occupied buckets is
formed (by the buckets holding the key used in the attack).
The existence of such a long cluster increases the insertion
complexity of keys after the attack, therefore, this attack causes
also post-attack damage. The analysis in [2] shows that, the
vulnerability metric of the post-attack insertion-complexity
increases linearly with the budget of the attacker and can reach
values around V' = 90. That is, the insertions by a malicious
user can make the system 90 times slower than after the same
amount of insertions by a regular user. In addition, while
Closed Hash is extremely vulnerable to post-attack damage,
[2] shows that Open Hash table does not suffer from post-
attack damage, while according to traditional performance
analysis they are almost identical.

IV. SUMMARY

We presented the subject of system performance under
malicious behavior and argued that such performance may
differ drastically from that derived using the traditional ap-
proaches. We described a performance metrics that evaluates
the vulnerability of system performance to such attacks. We
classified the attack types and the various performance effects
they can have. We demonstrated the methodology on wireless
systems and hash tables. We showed that malicious behavior
can affect drastically system performance and that systems
that otherwise are considered to be well designed may be quite
vulnerable, that is, their performance under malicious behavior
can degrade severely.
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