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Abstract—We describe in this paper a tool named PTF (Passive
and Temporal Fingerprinting) for fingerprinting network devices.
The objective of device fingerprinting is to uniquely identify
device types by looking at captured traffic from devices imple-
menting that protocol. The main novelty of our approach consists
in leveraging both temporal and behavioral features for this
purpose. The key contribution is a fingerprinting scheme, where
individual fingerprints are represented by tree-based temporal
finite state machines. We have developed a fingerprinting scheme
that leverages supervised learning approaches based on support
vector machines for this purpose.

I. INTRODUCTION

Device fingerprinting aims to determine automatically the

types (name and version of software, brand name and series

of hardware) of remote devices for a given protocol. Hence,

keeping a up-to-date inventory database of devices in use on

a network is possible and helpful as for example to check

remotely if unauthorized applications have been installed.

Some types of devices for which vulnerabilities are known

can be easily detected in order to patch them or at least send

alerts to the owners. From a security point of view, attackers

use specific tools to perform their attack which may also be

detected rapidly thanks to fingerprinting. Obviously, classical

management solutions exists for building a network inventory

as for example SNMP [1] but it requires specific installed

software on the monitored computers which is not always

possible because some machines are not necessarily owned by

the operating company (personal or partner company devices)

or cannot support SNMP software. Network operators cannot

require that their customers install a specific software.

Most application level protocols do contain information

about the device identity (user agent) that generated the

message, but in most cases it is not protected against malicious

scrubbing. Most of the existing fingerprinting approaches are

based either on identifying specific deviations in the imple-

mentation of a given protocol. Such deviations often occur

because of simple omissions in the specifications/norms —

many current specifications either do not completely cover all

the exceptional cases or lack the necessary precision, and thus

leave to many degrees of freedom to the implementers.

The main contribution of our paper is a new fingerprint-

ing scheme that is accurate even on protocol stacks that

are completely identical, but which run on hardware having

different capabilities (CPU power, memory resources, etc).

We propose a fingerprinting scheme that can learn distinctive

patterns in the state machine of a particular implementation.

We see such a pattern as a restricted tree finite state machine

that provides additional time-related information about the

transitions performed.

Our paper is structured as follows: the architecture of PTF

(Passive Temporal Fingerprinting) is described in section II.

Section III presents the formal model of our method. Section

IV explains the fingerprint generation. Section V focuses on

the classification method. The evaluation metrics are given in

section VI and the datasets are detailed in section VII. Section

VIII focuses on fine tuning of the method based on a single

dataset. Section IX presents complete results from several

datasets. Related work is in section X before concluding.

II. PTF ARCHITECTURE

Figure 1 depicts the PTF architecture. Network traces are

collected from the local network or Internet through a proxy.

The different messages and sessions are identified by a syn-

tactic analyzer if the syntax is known. Otherwise a reverse

engineering module has to automatically discover the message

types such as we proposed in [2] and the splitter module

delimits the sessions by grouping messages among two entities

(identified by IP addresses and ports) and by considering a

session is finished after an inactivity period.

The TR-FSM builder has to create the corresponding finger-

prints as TR-FSMs (the next section details this step). Finally,

the classification stage is divided into two parts:

• during the learning phase (learning module), the finger-

prints database is generated by identifying the devices

using some knowledge (labeled samples)

• during the testing phase (testing module), the device

identification module tests new fingerprints against the

database in order to determine the device types.

Finally, fingerprinting can support various kind of appli-

cations like automatic inventory or automatic patching as

highlighted in figure 1.

III. FORMAL MODEL

We model a behavioral fingerprint using a Temporal Ran-

dom Parameterized Tree Extended Finite State Machine (TR-

FSM). The TR-FSM is an extension of the parameterized

extended finite state machine introduced in [3]. Our extension

concerns the introduction of temporal information and one

additional constraint on the transitions in the state machine.

A TR-FSM is formally defined by a tuple M =<
S, sinit, I, O, ~X, T, ~Y > where:

• S is a finite set of states with |S| = n;
• sinit is the initial state;
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Fig. 1: Fingerprinting architecture

• I = {i0(~v0), i1(~v1), . . . , ip−1( ~ip−1)} is the input alpha-

bet set of size p. Each symbol is associated with a vector

of parameters;

• O = {o0( ~w0), o1( ~w1), . . . , oq−1( ~wq−1)} is the output

alphabet set of size q. Each symbol is associated with

a vector of parameters;

• ~X is a vector of variables;

• T is a finite set of transitions and t ∈ T is defined as

t =< s1, s2, i(~v), o(~w), P ( ~X, i(~v)), Q( ~X, i(~v), o(~w)) >.

s1 and s2 are the start and end state, i is the input symbol

triggering the transition and o is the triggered output

symbol. P ( ~X, i(~v)) represents the condition to achieve

the transition and Q( ~X, i(~v), o(~w)) is the action triggered
by the transition, based on an operation on the different

parameters;

• ~Y is a n− 1 dimensional random vector described later.

The transitions are restricted to form a tree:

∀s ∈ S | s 6= sinit, ∃ ! r states si1, si2, . . . , sir

such that:

si1 = sinit and sir = s

where the notation ij represents a single index. The structure

is a tree if there is only one possible sequence of transitions

from the initial state to the destination state. Thus, we denote

the corresponding transitions:

∀j, 1 ≤ j < r, tij ∈ T

tij =< sij , si(j+1), iij( ~vij), o(~w), Pij( ~X, i(~v))

Qij( ~X, iij(~v), oij(~w)) >

Hence, the cardinality of T is defined by |T | = n− 1 and

T = {t1, . . . , tn−1}.
Finally ~Y is a n − 1 dimensional random vector with

Ytj representing the (measured) average time to perform the

transition tj .
In the rest of the paper, states and transitions are synonyms

for nodes and edges because the TR-FSMs are both trees and

state machines. Thus, a TR-FSM can be characterized by its

height and its cardinality corresponding to |S|.
The location at which the time measure is taken is im-

portant, especially when done from a remote site and over

a network. The inherent additional noise due to the round-trip

time can be filtered out. Its estimation is a topic investigated

by many works such as [4]. This is done by taking the network

round-trip time into account. Alternatively, if the fingerprinting

is integrated within an intrusion detection system, the mea-

surements can be used directly without any other additional

filtering, because in this case the system is learning local and

deployment-specific parameterized device signatures.

The problem of fingerprinting can be now stated as fol-

lows. Given a candidate group of implementations C =
{M1,M2, . . . ,Mk} and a set of behavioral fingerprints

{Tj1, Tj2, . . . , Tjp} for each implementation Mj , the goal is

to find a classifier that correctly maps behavioral fingerprints

to the corresponding classes.

IV. TR-FSM MODULE

A. SIP background

We have considered SIP [5] as a target application domain

since it is widely deployed. It is designed for managing

multimedia session such as VoIP from initiating to termination.

Many device types exists and the operators of huge VoIP

networks are not the owner of the final hosts (customers) and

so cannot monitor directly. SIP messages are divided into two

categories: requests and responses. Each request begins with

a specific keyword like REGISTER, INVITE, OPTIONS,

UPDATE, NOTIFY... The SIP responses begin with a three-

digit numerical code divided into six classes identified by the

first digit. Figure 2(a) gives some examples of SIP sessions.

A session is composed of a sequence of messages and its

delimitation depends on the protocol. Considering the SIP

protocol, a session is identified by a specific identifier (SIP

call ID).

B. Fingerprint generation

The fingerprint is a tree with a generic ROOT node. The

fingerprint represents a specific device and is generated from

a subset of sessions in which this device participates. Each

state of the TR-FSM is represented by a SIP message type

prefixed by ! (outgoing message at the device fingerprinted)

or ? (ongoing message at the device fingerprinted). Figure

2(b) illustrates a TR-FSM corresponding to an Asterisk server.

Therefore, nodes prefixed by ? are emitted by any third party.

This tree represents a signature for the Asterisk SIP proxy.

A transition is indicated by an arrow between two states. In

addition, the vector ~Y corresponds to the average delays put

on the edges like in figure 2(b).

The signature in figure 2(b) is generated from the sessions

shown in figure 2(a). In fact, each session is equivalent to a

sequence of states and the shared prefixes are merged. For

instance, the sessions S3 and S4 of the figure 2(a) have the



(a) Sessions (left value =
time)

(b) A signature for Asterisk server generated
from four sessions

Fig. 2: Example of the fingerprint generation

two first messages in common and so they share the first two

nodes which are gray colored in figure 2(b).

The algorithm 1 details the construction of a signature. For

the sake of simplicity, the delay of a transition is directly

stored on the node representing the end state without loss of

information, since the tree structure involves only one ongoing

edge for each node. Briefly, the algorithm maintains a current

node initialized to the ROOT node. For each message m of

the sessions, lines 16-18 aim to find a node n corresponding to

the type of m among the children of the current node in order

to update it. If this is not possible, a new node is created.

The delay associated with an edge is the average delay in

transmitting the corresponding message.

Considering a total of n messages, s sessions and the

number of messages per session ni = |Si|, algorithm 1

iterates over all messages of all sessions, meaning that the

number of iterations of lines 11 and 13 equals n. For each

message, in the worst case the search (line 16) iterates over all

possible children, which are at most as many as the previously

examined sessions. Therefore the total number of iterations is

it =
∑s

i=1 i × ni. Considering that all sessions except the

last have only one message, we obtain the maximal value

it = s(n−(s−1))+
∑s−1

i=1 i = ns+1.5s−0.5s2 < ns+1.5s.
Because, unlike n, the number of sessions to use is a fixed

constant parameter, the overall complexity is O(n).

V. CLASSIFICATION MODULE

A dataset is composed of N TR-FSM: t1, t2, . . . tN . Each

dataset is divided into a learning set (also named training set)

used to train the system and a testing set for evaluating the

performance of the system when applied to new data. Each

sub-dataset also has an associated size: N train and N test
with N = N train+N test.
The number of sessions extracted for building each tree is

named session size: training session size for the training set

and test session-size for the testing set. These are important

parameters for our method. There are N types distinct device
types: D = d1, d2, . . . dN types.

Algorithm 1 Tree construction

1: S a table containing the sessions

2: S
j
i
is the node representation of the jth message of the ith session

3: tab.length returns the number of elements in tab
4: m.type returns the type of the message m prefixed by ? or ! (direction)
5: m.time returns the delay of the message m
6: n.children returns the child nodes of the node n
7: create node(t) creates a new node from the message type t
8: n.update(d) updates the average delay of the ongoing edge of the node

n using the delay d
9: n.add child(n2, d) links the node n2 to n with the delay d
10: nROOT is the root node
11: for i← 1 to length(S) do
12: current node← nROOT

13: for j ← 1 to length(Si) do

14: child = current node.children
15: k ← 1
16: while k < child.length ∧ childk.type 6= S

j
i .type do

17: k ← ind+ 1
18: end while
19: if k > child.length then

20: new ← create node(Sj
i .type)

21: current node.add child(new,S
j
i .time)

22: current node← new
23: else

24: childk.update(S
j
i .time)

25: current node← childk
26: end if

27: end for

28: end for

Two functions can be applied to each tree ti:

• real(ti) returns the real identifier (device type) for a TR-
FSM ti

• assigned(ti) returns the class name (device type) for a

TR-FSM ti that is assigned by the fingerprinting scheme.

A. Support vector machines classification

We briefly review the basics of support vector machines

(SVM) in this section to make the paper self-contained.

Additional reference material can be found in [6]. We adapted

multi-class classification [7] to our fingerprinting task based

on the one-to-one technique due to its good trade-off between

classification accuracy and computational time [8].

The SVM classes correspond to the N types device types,

and the input space data points are the N train trees from

the training set. Firstly, each point ti of the training set is

mapped to a high-dimensional feature space thanks a non-

linear map function φ(ti). The motivation of this step is to

improve the separability of data points by adding dimensions.

Then, for each class pairwise < cl, ck >, an hyperplane with

the maximum separation from both classes is found. First, we

define the points involved for these classes:

Tl = {ti|real(ti) = cl}

Tk = {ti|real(ti) = ck} (1)

The hyperplane is defined by a vector wlk and a scalar blk.
The associated optimization problem is converted to its dual

form using the Lagrangian. Hence, assuming that ρlkti is equal



to 1 when ti ∈ TL and −1 when ti ∈ TK , the problem is:

max
∑

ti∈{Tl∪Tk}

αlk
ti
−
1

2

∑

ti∈{Tl∪Tk}
tj∈{Tl∪Tk}

αlk
ti
αlk
tj
ρlkti ρ

lk
tj
K(ti, tj) (2)

subject to:
∑

ti∈{Tl∪Tk}

αlk
ti
ρlkti = 0

0 ≤ αlk
ti

≤ C, ti ∈ {Tl ∪ Tk}

(3)

whereK is a kernel function such as the following dot product:

K(ti, tj) = 〈 φ(ti).φ(tj) 〉 (4)

This kernel trick allows the problem to be solved without

computing or knowing the φ function. The only requirement

is a kernel function which has to be applied to each pair of

data points. It is a function constrained by Mercer’s theorem

[9]. In fact, the support vectors are the trees ti with non-zero

αlk
ti

and form the set SV lk from which blk is obtained:

blk =
1

|SV lk|

∑

ti∈SV lk

(ρlkti −
∑

tj∈{Tl∪Tk}

αlk
ti
ρlktjK(tj, ti)) (5)

Finally, a decision function, applied to each tx of the testing

set, is defined as:

flk(tx) =
∑

ti∈SV lk

αlk
ti
ρtiK(ti, tx) + blk (6)

During the testing stage, each decision function flk is

applied to ti, where ti is a TR-FSM to classify. Depending

on the return value, ti is assigned to the class cl or ck. Using
a voting scheme, the class chosen most often is considered to

be correct.

There are two main advantages of SVM:

• the projection of points into a higher dimensional for

increasing the ability to separate data points,

• the decision functions are based on support vectors which

represent a small subset of initial data points. Thus, the

computation time of decision functions is reduced.

Figure 3(b) shows a behavioral fingerprint for a SIP hard-

phone, while figure 3(a) presents a fingerprint for a soft-

phone which makes one transition almost ten times faster

then the hardphone. Therefore, if properly captured and used,

time-related information can be be very useful and reflects

differences in the architectural and computational features.

For instance, the same SIP stack running on a CPU-limited

capabilities hardphone will show higher transition times than

the same stack on a high-performanceworkstation (softphone).

B. Kernel function

The kernel function is one important parameter in SVM. Al-

though the Gaussian kernel is a well-known possible function

for simple data points given by a tuple of values, the current

problem data points are trees with labeled edges. Therefore, we

extend our previous method [10], based on the tree comparison

method proposed in [11]. The goal is to obtain a similarity

(a) Twinkle 1.10 (softphone) (b) Cisco 7940 firmware 8.93 (hard-
phone)

Fig. 3: TR-FSM examples. Average delay of the transition are put on
edges. Two shared paths are grey colored

equal 0 for totally different trees. Firstly, the set of paths from

the root to each node of the tree ti is designated by pathsi

and composed of m paths: pathi
1, . . . path

i
m where pathi

j

represents a single path. The function nodes(pathi
j) returns

only the nodes and transitions without delay properties. The

function nodes(pathsi) returns the set of the different paths

pathsi of the tree ti without delays i.e., the tree structure.

The intersection of the trees ti and tj is defined as:

Iij = nodes(pathsi) ∩ nodes(pathsj) (7)

In figure 3, the two fingerprint intersections are shaded in

gray. For all shared paths, weight are derived from the delay

differences and summed to obtain the similarity measure:

inter sim =
∑

p∈Iij

nodes(pathi
k)=p

nodes(pathj

l
)=p

weight(pathsik, paths
j
l ) (8)

Without considering the delays, pathj
l and path

i
k are exactly

the same for a given p. A comparison function is then

calculated for each node np ∈ p based on the Laplace kernel:

weight(p1, p2) =
∑

np∈p1

e−α|fdelay(n,p1)−fdelay(n,p2)| (9)

where fdelay(n, p) is a time-based function which returns

the average delay for the ongoing edge from node n in the

path p. Because a fingerprint concerns one device only, the

delay caused by to other equipment has to be discarded, and

so fdelay(n, p) = 0 for n a message received by the device

(node name prefixed by ?).

Finally, the kernel function is:

K(ti, tj) =
∑

p∈Iij

nodes(pathi
k)=p

nodes(pathj

l
)=p

∑

np∈p

e−α|fdelay(n,p1)−fdelay(n,p2)|

(10)

It satisfies Mercer’s theorem due to usual kernel construction

properties [9].

VI. PERFORMANCE EVALUATION

Standard metrics for multi-class classification are defined in

[12]. xd is the number of trees corresponding to a particular

device type d. The number of trees classified as type d is yd.



Testbed T1 T2 T3 T4

#device types 26 40 42 40 40
#messages 18066 96033 95908 96073 96031
#INVITE 3183 1861 1666 1464 1528
#sessions 2686 30006 29775 30328 30063
Avg #msgs/session 6.73 3.20 3.22 3.16 3.20
Avg delay (sec) 1.53 7.32 6.76 6.11 8.52

TABLE I: Experimental datasets statistics

The number of trees classified as device type d1 and which

correspond in reality to the device type d2 is zd2d1
.

The sensitivity of a device type d represents the percentage

of the corresponding trees which are correctly identified:

sens(d) = zdd/xd (11)

The specificity of a device type d represents the percentage

of trees labeled as d and which are really of this type.

spec(d) = zdd/yd (12)

The overall metric, designated fingerprinting accuracy in

this paper, corresponds to the percentage of trees correctly

identified. The corresponding formula is:

acc =
∑

d∈D

zdd/N test (13)

The mutual information coefficient (IC) is a combination of

entropies using the following distribution: X = xi/N test,
Y = yi/N test, Z = zij/N test. It is defined as:

IC =
H(X) +H(Y)−H(Z)

H(X)
(14)

where H is the entropy function. This IC is a ratio between

0 and 1 (perfect classification). It helps to compare classifi-

cations with the same overall accuracy (the ratio is degraded

if some classes are not well identified). For example, if 80%

of data points are of the same type, assigning all of them to

a single class implies an accuracy of 80% but an information

coefficient equal to 0.

VII. EXPERIMENTAL DATASETS

We made extensive use of network traces from which we

could extract the SIP user agent (device type) in order to

perform both the training and the testing our system. We

assumed that our traces did not contain malicious messages,

where for instance an attacker spoofed the user agent field.

PTF is based on the LIBSVM library [13] and is available at

http://wiki.uni.lu/secan-lab/docs/ptf.tar.gz.

We used two kinds of datasets. The first was generated

from our testbed composed of various end-user equipment

including softphones like Twinkle or Ekiga and hard-

phones from the following brands: Cisco, Linksys, Snom or

Thomson. The testbed also used servers such as Asterisk

and OpenSer/Cisco Call Manager. This dataset will be de-

scribed as testbed dataset in the remainder of the

paper. The other datasets designated operator datasets

(T1 to T4) were provided by four real VoIP operators (about

45MB of traces were extracted) with more than 700 distinct
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Fig. 4: Experimental dataset statistics by device type (Logarithmic
scale; horizontal black bar is the median value; each point
represents a device type)

devices. Most equipment is hardphones or SIP servers. We

used these different target environments intentionally in order

to validate the robustness of our approach in noisy conditions:

the first characterizes a local network, while the operator

datasets capture traffic from devices that connect from

the Internet. This implies greater noise and longer delays,

as shown in the table I. Obviously, the time delays are not

relevant when comparing different datasets, but within one

dataset, the fingerprinting process should be able to properly

identify each device type. Table I shows main characteristics of

the datasets. Although the operator datasets are more

complete in terms of messages and device types, the number of

INVITEs is quite low, indicating that most of the SIP sessions

are not phone calls, but registration requests. This reflects

realistic SIP traffic, as all SIP user agents have to periodically

send out a registration request in order to maintain the binding

between a SIP identifier and the current IP address.

Figure 4 highlights some of the differences between the

devices for the testbed dataset and the first operator

T1. Each point in the figure represents one device type.

We considered only messages emitted by the corresponding

devices and we used a logarithmic scale. For the two datasets,

the distribution of messages per device type is obviously not

uniform, reflecting reality because some devices are used more

than others. Thus, this implies that the differences between

device types for the number of sessions are similar. Addition-

ally, the distribution ranges of the number of messages and

the number of sessions is greater for the operator T1 (figure

4(b)). Hence, the differences between devices are highlighted.

For instance, one kind of device has only generated one SIP

session while another more than 10,000 as shown on the

second graph of figure 4(b).

Based on average time delay differences, it seems possible

to fingerprint devices. However, when these differences are

however insignificant, additional information is needed. Our

approach combines the temporal aspect with the behavioral

aspect. For example, in figure 4(b), four or five groups of

devices can be easily identified just by comparing the aver-

age delays. Considering the dataset T1, the transition delays

are generally higher than for testbed dataset and the

median value is doubled.



Training
session size

Testing session size
1 5 10 20 40

1
0.682 0.819 0.830 0.805 0.745
(0.009) (0.013) (0.013) (0.031) (0.034)

5
0.469 0.858 0.905 0.883 0.800
(0.028) (0.013) (0.011) (0.025) (0.035)

10
0.376 0.809 0.894 0.873 0.819
(0.044) (0.011) (0.013) (0.021) (0.035)

20
0.272 0.656 0.821 0.864 0.837
(0.028) (0.028) (0.015) (0.015) (0.012)

40
0.221 0.469 0.627 0.764 0.762
(0.027) (0.026) (0.030) (0.037) (0.038)

< 50% 50-70% 70-80% 80-85% 85-90% ≥ 90%

TABLE II: testbed dataset: Average fingerprinting accuracy
(standard deviation is put in brackets)

Training
session size

Testing session size
1 5 10 20 40

1
0.504 0.542 0.553 0.535 0.529
(0.011) (0.034) (0.032) (0.044) (0.043)

5
0.294 0.605 0.647 0.648 0.580
(0.026) (0.035) (0.035) (0.047) (0.045)

10
0.224 0.550 0.625 0.636 0.599
(0.028) (0.017) (0.023) (0.024) (0.047)

20
0.145 0.452 0.572 0.615 0.622
(0.021) (0.050) (0.030) (0.045) (0.027)

40
0.109 0.316 0.399 0.505 0.522
(0.028) (0.030) (0.032) (0.050) (0.038)

< 30% 30-40% 40-50% 50-55% 55-60% ≥ 60%

TABLE III: testbed dataset: Average sensitivity (standard de-
viation is put in brackets)

VIII. TESTBED DATASET RESULTS

We used testbed dataset to assess the accuracy of

the behavioral and temporal fingerprinting. One objective was

to determine the impact of the different parameters on these

performance metrics and tune them. These tuned parameters

would then be used on the larger operator datasets.

We randomly selected 40% of the sessions of each device

type to form the training set. The remainder (60%) represents

the testing set. Each experiment was run ten times, shuffling

the sessions before selection in order to improve the validity

of the experiments. The average values over the different

instances of the classification metric are considered. Further-

more, we use quartiles to gain an idea of the distribution of

the results. Figure 5 represents quartiles, where the extrema

are the minimal and maximal observed values. The lower limit

of the box indicates that 25% of the observations are below

this value. The upper limit of the box is interpreted in the

same way with a percentage of 75%. Finally the horizontal

line inside the box is the median value.

With the exception of Section VIII-C, α is set to 1000.

A. Session-size tree

We first investigate the optimal session sizes (number of

sessions required for building a TR-FSM). The test session-

size is more important because it shows how reactive the

system is. In the best case, a session size of one implies the

recognition of one device with only one session. Secondly, we

look at the relationship between testing and training session

size.

Table II provides a short summary of this data. The shad-

ing key simply highlights the main observations concerning

fingerprinting accuracy. Our technique cannot be applied to

detect a device with only one session (first column is very

pale). The darkest row corresponds to a train session-size of

five. The training process does not need both huge trees and

many sessions because the greater the session size is, the more

necessary the sessions. Using a training session size of five

and a testing session size of ten, the maximal accuracy (∼
90%) is obtained. Subsequent experiments assume this optimal

configuration. It can be seen that, even if our technique is not

designed for single session device identification, its results are

very good. Using only ten sessions or even five sessions, the

corresponding accuracy is about 86%.

Finally, the low standard deviation shown in brackets indi-

cates that the accuracy is stable among the different experi-

ments especially in the best configurations (dark gray).

Regarding the average sensitivity appearing in table III, the

optimal configuration is still the same and the corresponding

accuracy is 65%. This relatively low result is due mainly to

some incorrectly fingerprinted devices. In fact, some device

types are poorly represented in the dataset as shown in figure

4(a). For instance, a training session size of five and a training

set of 40% of sessions results in a minimal number of

⌈5/0.4⌉ = 13 sessions which is not the case for six device

types (figure 4(a)). Furthermore, this minimal value implies

only one training tree and all learning techniques need more

training data for efficiency. The impact of training set size is

studied in the next subsection.

Although comparing identically-sized trees seems more

logical, this experiment shows the reverse due primary to our

comparison function, which considers the various paths in the

trees separately (see equations (7)-(10) ).

B. Training set size

As it was previously mentioned, the fingerprinting accuracy

per type is much affected by underrepresented devices. We

assess the minimal training trees per type of device capable

of achieving good results. This number varies from 1 to 20 in

figure 5. Firstly, if there are at least two trees for each kind,

the accuracy is more than 80% in most cases. Thus, a training

session size of 5 implies at least 5 × 2 = 10 sessions for

the training process, which is reasonable. Going further, the

accuracy is close to 90% for a size equals eight.

C. Effect of the α parameter

The parameter α is introduced in formula (10), and has

a potential impact on fingerprinting accuracy. The higher α
is, the more important are small delay differences. Figure 6

highlights the impact of α on average accuracy by showing

the quartiles. Its shape is a parabola with smallest values at

the extremities. Broadly, when considering a reference time,

a difference between 1 and 4 seconds has to be interpreted
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differently from the difference between 56 and 59 seconds.

This can be achieved by increasing α. However, when α is

too high, the difference between 0.1 second and 0.2 second

could be too discriminatory. This means that the correct trade-

off is the maximal values on figure 6 like 100, 1000 or 10000

are possible. However, we prefer α = 1000 as the median

value is the best with results concentrated very close around

the median.

D. Time impact

This last experiment intends to demonstrate the interest of

taking in account the delays of the messages. The parameter

α in (10) is always set to zero to discard time impact while

keeping structural differences between TR-FSM. In the best

case, 83% of the devices are correctly identified. Thus, the

delays allows to improve this results of around 10%. The

standard deviation is the double without the delays showing

that the results are not so stable. Logically the sensitivity is

also degraded (0.567).

IX. GLOBAL RESULTS

We will consider a train session-size of five and a test-

session of ten because this configuration previously gave the

best results. Table II gives all statistics and results. Consider-

ing the testbed dataset, even when more sessions are

selected for the testing process, the number of testing trees

is lower due to a higher test session-size. Each experiment is

performed three times for the operator datasets and

ten times for the testbed dataset. For the operator

datasets, only 10% of sessions are used for the training

Metric Testbed T1 T2 T3 T4

#Training trees 440 1223 1217 1237 1224

#Testing trees 332 5409 5367 5471 5423

Max height
71.95 464.67 476.33 420.33 431.33
(32.03) (41.35) (38.58) (30.56) (0.94)

Min height
1.9 1.00 1.00 1.00 1.00
(0.30) (0.00) (0.00) (0.00) (0.00)

Avg height
9.53 8.80 8.85 8.70 9.05
(2.13) (1.53) (1.89) (1.73) (1.38)

Max card
89.00 492.67 491.17 540.84 464.84
(35.72) (44.68) (47.65) (157.00) (21.52)

Min card
3.95 2.67 2.00 2.00 3.00
(1.56) (0.47) (0.00) (0.00) (0.00)

Avg card
18.97 12.93 12.94 12.85 13.23
(4.69) (2.68) (3.09) (2.98) (2.56)

Accuracy
0.91 0.81 0.86 0.85 0.83
(0.011) (0.004) (0.001) (0.002) (0.004)

Sensitivity
0.64 0.53 0.58 0.54 0.43
(0.030) (0.019) (0.026) (0.012) (0.015)

Specificity
0.91 0.79 0.81 0.77 0.77
(0.035) (0.001) (0.025) (0.028) (0.028)

IC
0.87 0.64 0.65 0.65 0.63
(0.012) (0.001) (0.001) (0.003) (0.004)

TABLE IV: Experimental datasets results (α = 1000, test session-
size = 10, train session-size = 5). Average values given
and standard deviations in brackets

stage. Our experiments cover many configurations since the

standard deviation of maximal and average heights and cardi-

nality is high. At the same time, the classification results in

the lower part of the table are stable (low standard deviation)

demonstrating that our fingerprinting approach is suited to

many distinct configurations.

For the operators, the overall accuracy reaches about 86%,

which is lower than the testbed dataset (91%), due

principally to additional noise on Internet. Moreover, the mu-

tual information coefficient (IC) for the testbed dataset

is very high, indicating that the high accuracy is not due an

over-represented kind of device. However, this coefficient is

lower for the operator datasets because some devices

are clearly present in greater numbers than others, as high-

lighted in 4(b). Once again, for several devices, the number

of sessions is too low to have complete training sets and so

the average sensitivity is concentrated between 45% and 58%.

However, the high specificity means that the misclassified trees

are well-scattered among the different types.

By design, PTF is only able to classify types included

in the learning phase which the complexity is dependent on

the learning set size. However, it can be done offline before

applying the testing phase which has to be very fast. In our

experiments, identifying a device in this phase takes always

less than 0.07ms.

X. RELATED WORK

Passive fingerprinting monitors network traffic without any

interaction as for instance p0f [14], which uses a set of TCP

signatures to identify the operating system. In contrast, active

fingerprinting probes a device by generating specific requests.

[15] implements this scheme in order to detect the operating

system and service versioning. Related work is [16] and [17]

which describe active probing and proposes a mechanism to



automatically explore and select the right requests to make.

Fingerprinting might have also other interpretations: for in-

stance [18] focus on the identification on the flow types.

The device fingerprinting is more fine grained. SIP finger-

printing is usually based on a manual analysis [19] or active

probing [20]. Our approach is totally passive and generic

since the only requirement to identify a device is to do the

learning process with a dataset containing this device. In our

previous works [10], [21], syntactic trees based fingerprinting

provides good accuracy but are highly computational and need

the knowledge of the entire syntax of the protocol. We also

adapted the method presented in this paper to datasets with

few labeled samples in [22].

We have addressed a somewhat related topic in [2], where

we looked at the identification of the different message types

used by an unknown protocol and were able to build up the

tracking state machines from network traces. That approach

can serve to build TR-FSMs for an unknown protocol without

any domain-specific knowledge. Besides, we have not until

now considered both behavioral and temporal aspects of the

fingerprinting task at the same time.

Construction of the state machine of a protocol from a set of

examples has been studied in the past. Although known to be

NP complete (see [23], [24] for good overviews on this topic),

the existing heuristics for this task it are based on building tree

representations. In our approach we do not prune the tree and,

although the final tree representation is dependent on the order

in which we constructed the tree, we argue that the resulting

subtrees have good discriminative features. Tree kernels for

SVM have recently been introduced in [25], [26] and allow

the use of substructures of the original sets as features. Our

approach extends this concept in order to be applicable to the

TR-FSMs we defined. In consequence, a new valid kernel is

proposed in this paper.

XI. CONCLUSION

In this paper, we have addressed the problem of fingerprint-

ing device types. Our approach is based on the analysis of

temporal and state-machine-induced features. We introduced

the TR-FSM, a tree-structured parameterized finite state ma-

chine having time-annotated edges. A TR-FSM represents a

fingerprint for a device/stack. Several such fingerprints are

associated with a device type. We propose a supervised learn-

ing method, where SVM use kernel functions defined over

the space of TR-FSMs. It allows an automatic classification

whereas most of current approaches relies on manually built

signatures. We validated our approach using SIP as a target

protocol. Regarding the required knowledge limited to the

message types, the accuracy between 81% and 91% is quite

good. Obviously, users have to carefully consider the error

rate depending on the final application supported by the

fingerprinting. Our future work includes the study of other

protocols as for instance wireless protocols. We will also

define other kernel functions specific to the TR-FSMs that

allow the modeling of the probability distribution of transition

times at each edge.
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