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A ROBUST PARAMETRIC ACTIVE CONTOUR BASED ON FOURIER DESCRIPTORS

Tao Li, Alexandre Krupa and Christophe Collewet

INRIA Rennes-Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes cedex, France

ABSTRACT

This paper presents an optimal parametric active contour
method based on Fourier descriptors to detect and track a
contour from a sequence of images in real-time. The advan-
tage of this approach is that not only convex but also concave
contours can be considered. We also propose a method to ini-
tialize the active contour using only three user’s clicks in the
first image of the sequence and to automatically re-initialize
it when possible topological changes are detected during the
tracking. Moreover, the algorithm is implemented on GPU to
ensure the real-time tracking performance.

Index Terms— Active contour, Fourier descriptors, con-
tour tracking, ultrasound image

1. INTRODUCTION

An active contour, usually called snake, is an energy mini-
mizing curve defined in image domain that evolves according
to internal forces of the curve itself and external forces gen-
erated by the image. The snake was firstly introduced in [1]
and has been widely applied in computer vision. In general,
the snakes can be classified in two main categories: paramet-
ric snakes [2, 3] and geometric snakes [4, 5]. In our work we
are interested in tracking the contour of an object of interest
from a sequence of images in real-time. For that reason, we
focus in this paper on parametric snakes instead of geomet-
ric ones which are not suitable for real-time application due
to the high time-consuming process. In our previous work
[6], such a parametric snake has been proposed. Indeed, by
using a polar description we have shown that the snake evo-
lution equations could be simplified to a diagonal system of
ordinary differential equations. Unfortunately, in polar frame,
only one point can be described by polar description for each
angle. Thus the polar-snake can not describe concave con-
tours, as for example the ones depicted in Fig.1. This can
be done by B-spline parametric snakes as proposed in [3] for
example, but its evolution equations system is no more a di-
agonal system. In this paper, we propose to model the active
contour by using Fourier descriptors (FD) [7], which lead to a
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diagonal system, and have the advantage to describe concave
contours in a cartesian frame.

The main contribution of this paper is the determination
of the evolution equations of the FD-based snake in order
to detect and track an object of interest from an images se-
quence. Generally, a parametric active contour has to be ini-
tialized as nearest as possible to the real contour of the object
of interest in order to converge to the correct position. There-
fore, we propose as a second contribution of this paper, an
approach to automatically initialize the snake. The method
consists in initializing the snake to fit a set of contour points
that are coarsely extracted using a fast Freeman chain coding
algorithm (FCC) [8] applied on a binary image. After this au-
tomatic initialization, the FD-snake can finely evolve to reach
the exact contour from the grey-level image by minimizing its
energy criteria. Moreover, the coarsely extracted contour is
also used to detect possible brutal topological changes of the
object contour shape that require a FD-snake re-initialization.

To take into account the constraint of real-time contour
detection, we also propose in this paper a parallel implemen-
tation of the FD-snake on GPU using the CUDA parallel com-
puting architecture [9] to reduce the processing time.

This paper is structured as follows. First, the description
of the parametric snake from FD and its evolution equations
are developed in Section 2. Then the method we propose to
automatically initialize the snake and to detect the topological
changes of the object shape is presented in Section 3. Section
4 provides the principle of the snake implementation on GPU.
Finally, experimental results of the contour extraction are pre-
sented and discussed in Section 5.

2. EVOLUTION EQUATIONS OF THE FD-SNAKE

2.1. Generic equation of snake

Let us define a generic curve model Cq of the parametric
snake in the image plane by:

Cq(u) : x(u) = xc +
n∑

l=0

qlΦl(u) (1)

Cq is a linear form depending on a n-dimensional parameters
vector q and xc is a point inside the area delimited by the
contour; u ∈ [0, 2π] and Φl (l = 0, . . . , n) are 2D vector



functions that can be substituted by different descriptor terms,
such as polar description, B-spline and Fourier descriptors.

As we did in [6], the evolution of the curve is modeled
according to the Lagrangian mechanics formalism by consid-
ering q as the generalized coordinates of the system. The
Euler-Lagrange equation of each component qi is defined by:

d

dt
(
∂T

∂q̇i
)− ∂U

∂qi
= Qi (2)

where T is the kinetic energy and U is the potential energy of
the active contour. Qi describes the generalized forces asso-
ciated to qi:

Qi =

∫
Cq

f⊤(u)
∂Cq(u)

∂qi
du (3)

with f the total of the dissipative forces defined by f = fvis+
fim. The forces fvis and fim are respectively due to a viscous
friction and the image itself. Here, we consider fim=−∇Eim

where Eim is the potential energy term in the image I: Eim=
−∥∇I∥, with ∥∇I∥ the norm of the image gradient ∇I.

Finally, (2) can be written under a vectorial form (see [6]
for more details):

Mq̈+Cq̇+Kq=Qim(q)=−
∫

Cq

∇E⊤
im(u)

∂Cq(u)

∂q
du (4)

where M = [Mmn], C = [Cmn] and K = [Kmn] with:

Mmn = µ
∫

Cq
Φ⊤

mΦndu

Cmn = γ
∫

Cq
Φ⊤

mΦndu

Kmn = k1
∫

Cq
Φ′⊤

mΦ′
ndu+ k2

∫
Cq

Φ′′⊤
m Φ′′

ndu

(5)

with the mass density µ, the viscosity of the medium γ. The
scalar k1 tends to limit the extension of Cq while k2 tends
to limit its curvature. Replacing Φl(u) of (1) by orthogonal
functions whose first and second derivatives are also orthog-
onal can simplify (5) to diagonal matrices.

As proposed in [2], we set the mass density µ to zero to
cancel the inertial behavior of the active contour in order to
improve its dynamic stability. The differential system (4) can
then be solved as a discrete optimization problem using ex-
plicit Euler’s method leading to the following recursive ex-
pression of q:

qk+1 = qk +∆tC−1(Qim(qk)−Kqk) (6)

where qk+1 is the new estimate of the generalized coordi-
nates, qk is the previous estimate and ∆t is the sampling rate.

2.2. Parametrization using the Fourier descriptors

Replacing the term Φl of (1) by Fourier descriptors [7], the
curve model Cq becomes:

Cq(u) : x(u)=

(
a0
c0

)
+

h∑
k=1

(
ak bk
ck dk

)(
cos ku
sin ku

)
(7)

where h is the number of harmonics. By developing (7), we
have q = (a0, a1 · · · ah, b1 · · · bh, c0, c1 · · · ch, d1 · · · dh) and
consequently:

0≤ l<h : Φl(u)=

(
cos lu
0

)

h+1≤ l<2h : Φl(u)=

(
sin(l − h)u

0

)

2h+1≤ l<3h+1 : Φl(u)=

(
0

cos(l − 2h− 1)u

)

3h+2≤ l<4h+2 : Φl(u)=

(
0

sin(l − 3h− 1)u

)
(8)

Furthermore, by substituting (8) in (5), the matrices C and
K = K1+K2 involved in (4) become diagonal and constant:

C = γ diag(2π, π . . . π, π . . . π,
2π, π . . . π, π . . . π)

K1 = k1 diag(0, π . . . πh2, π . . . πh2,
0, π . . . πh2, π . . . πh2)

K2 = k2 diag(0, π . . . πh4, π . . . πh4,
0, π . . . πh4, π . . . πh4)

(9)

For that reason, the evolution equations system (4) be-
comes optimal and the computation time of (6) highly de-
creases. In addition, to ensure a convergence of the snake
toward the true contour, even in the case of an initialization
far away from it, we propose to add a surface-based energy
term as in [6]. It can be simply done since the surface Sq can
be analytically computed. Indeed we have:

Sq = π(
h∑

k=1

k(akdk − bkck)) (10)

3. AUTOMATIC INITIALIZATION AND
TOPOLOGICAL CHANGE DETECTION

As mentioned in the introduction, the initialization of active
contour and possible topological changes of the curve during
contour tracking are two important issues. To deal with them,
we propose to automatically initialize the snake from a set of
contour points that are roughly extracted.

This extraction is done by binarizing the current image
using an optimal adaptive threshold that we compute thanks
to the Otsu’s method [10]. Only the grey-level pixels included
in an image bounding box (Fig.1(a)) are taken into account for
the threshold adaptation.

The coarse contour Lp(t) and the surface A(t) of the ob-
ject of interest in the binary image are then obtained by ap-
plying the fast Freeman chain coding algorithm [8]. At time



t = 0, the snake is then initialized from Lp(t = 0) in the
first image. Furthermore, the snake will be automatically
re-initialized if the object of interest separates in two parts
(Fig.2) or a large difference between A(t) and A(t − ∆t) is
detected from the following images of the sequence (Fig.3).

4. IMPLANTATION ON GPU

In order to perform real time contour tracking from a se-
quence of ultrasound images, for example in the context of an
image-guided robotic medical application [11], we propose in
this section a GPU implementation solution of the snake.

In (4), the diagonal matrices C and K are constant. qk

is the optimized result obtained from previous iteration. So
we are interested to perform parallel computation of the term
Qim(q)=−

∫
Cq
∇E⊤

im(u)
∂Cq(u)

∂q du. In this paper we consider
that ∇Eim,=−(∥∇I∥x, ∥∇I∥y) leading to:

Qim(q)=−
N∑

n=1

∂x(n)

∂qi
∥∇I∥x(n)−

N∑
n=1

∂y(n)

∂qi
∥∇I∥y(n) (11)

with N the points number of the snake. The partial derivation
terms ∂x(n)

∂qi
and ∂y(n)

∂qi
are constant according to FD.

To gain time-consuming performance, the following algo-
rithm was implemented on GPU:

Step 1: Copy the constant terms C, K, ∂x(n)
∂qi

and
∂y(n)
∂qi

from host memory (CPU) to device memory (GPU).
Step 2: If k = 0, copy qk=0 from CPU to GPU.
Step 3: Copy the current image from CPU to GPU.
Step 4: Compute ∥∇I∥ in parallel, the image gradient

norm of each pixel is computed by a different GPU thread,
therefore all the pixels can be processed on GPU in parallel.

Step 5: Compute the spatial gradient ∇Eim in parallel.
Step 6: Compute Qim in parallel.
Step 7: Compute qk+1 in parallel.
Step 8: If |qk+1−qk|>ϵ, then k=k+1 and go to Step 5.
Step 9: If |qk+1−qk|≤ϵ, copy qk+1 from GPU to CPU.
Step 10: Go to step 3 for the next image of the sequence.

5. EXPERIMENTAL RESULTS

All the following experiments were performed with a com-
puter equipped with a dual core CPU Intel Xeon 5160, 4Gb
memory and a graphic card NVIDIA GeForce GTX 285 pro-
viding a 240 cores GPU.

Fig.1(a) shows that only 3 points are required to be de-
fined by the user in the first image of the sequence to initial-
ize the snake. The point P1 indicates the object of interest, the
points P2 and P3 define the position of the bounding box (the
white rectangle in Fig.1.(a)) where the adaptive threshold will
be computed. The red line around the joystick cover shows
the snake result after convergence in the image. Fig.1(b) and
Fig.1(c) are results of the polar-snake and the FD-snake with

an echographic concave object section. In Fig.1(b) we can
see that the polar-snake diverges while the FD-snake perfectly
adapts to the true contour of the concave object both for the
example of Fig.1(a) and Fig.1(c).

(a)

(b) (c)

Fig. 1. (a): Initialization of the FD-snake from three clicks
(with h = 19). (b) Polar-snake divergence on a concave US
section (with h = 6). (c) FD-snake convergence on the same
concave US section (with h = 6).

Fig.2 shows the results obtained from a sequence of US
images where a fission of the object of interest was observed.
Two coarsely extracted contours LG1 and LG2 are extracted
from two different germs G1 and G2 used by the FCC. If
the obtained contours LG1 and LG2 are different, we consider
that the tracked object separates in two parts (Fig.2.(c)) and in
this case we automatically initialize a second snake (the red
one in Fig.2.(c)).

Fig.3 shows the results obtained from a sequence of US
images where a topological change of the gallbladder was ob-
served. In Fig.3(a), the gallbladder is seen as an ellipse at
the beginning of the US images sequence. During the object
tracking, we apply a rotation motion to the US probe in or-
der to see the gallbladder as a tube (Fig.3(d)). Thanks to the
method proposed in Section 3, the FD-snake can track this
topological change by automatically re-initialize itself when
a large difference of the coarse contour surface A(t) extracted
by the FCC is observed between 2 successive images.

Moreover we compare the time-consuming of the CPU



(a) (b) (c)

Fig. 2. Topological change (fission) detection of the object
of interest and an automatically initialization of the second
snake along a sequence of US images (with h = 6).

(a) (c) (d)

Fig. 3. Topological change detection of the object of inter-
est and automatic re-initialization of the active contour during
contour tracking along a sequence of US images (with h = 6).

and GPU algorithm of the FD-snake during the tracking of
the gallbladder (Fig.3). Table1 reports the processing time of
the CPU and GPU algorithm with different harmonics num-
ber h and points number N of the active contour. As shown in
Table1, the GPU implementation consumes less time than the
CPU for all experiments. Moreover, when h and N increase,
the consuming time of the GPU implementation slightly in-
creases but still ensures the real-time constraint. Note that
this saving time can be used to increase h and / or N .

Consuming Time
h N CPU algorithm GPU algorithm

3 100 75ms 29ms
400 82ms 35ms

6 100 80ms 31ms
400 95ms 40ms

Table 1. The consuming time of CPU and GPU algorithm in
function of harmonic number h and points number N .

6. CONCLUSION

We have presented in this paper an optimal FD-based para-
metric active contour which has the advantage to track both
convex and concave contours. A method is also proposed to
semi-automatically initialize the snake in the first image and
automatically re-initialize it when topological changes are de-
tected in the current image. Finally, we provided a GPU im-
plementation solution to perform the contour tracking in real-

time. In a future work we plan to develop a visual servo-
ing method based on the FD-snake to control a medical robot
equipped with an US probe (see [11]).
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