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About Fokker-Planck equation with measurable coefficients
application to the fast diffusion equation
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Abstract. The object of this paper is the uniqueness fekdimensional Fokker-Planck type
equation with non-homogeneous (possibly degenerated$uredale not necessarily bounded
coefficients. We provide an application to the probabdisgpresentation of the so called
Barenblatt solution of the fast diffusion equation whichthie partial differential equation
Oyu = 02,u™ with m € (0,1). Together with the mentioned Fokker-Planck equation, we
make use of small time density estimates uniformly with eespo the initial condition.
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1. Introduction

The first part of the paper focuses on some uniqueness restlbkker-Planck type
equation with measurable non-negative (possibly degemranultidimensional un-
bounded coefficients. The second part of the paper developspplication to the
probabilistic representation of a fast diffusion equatiorthe whole papef’ > 0 will
stand for a fixed final time.

In one dimensions € R¢ with d = 1), Fokker-Planck equation is of the type

{6‘tu(t,x) = 02, (a(t,z)u(t,x)) — 0. (b(t, x)u(t, z)), t €]0,T],
u©,) = p(dz),

where,a,b : [0,7] x R — R are measurable locally bounded coefficients arisl a
finite measure. The study of Fokker-Planck equation for messis a quite widely
studied subject in the literature in finite and infinite dirmiem. Recent work in the
case of time-dependent coefficients was done by [9, 16, 3tjarcasel > 1 with
some minimal regularity. In infinite dimension some intéres work was produced
by [8].

In this paper we concentrate in the case of measurable fhsdiegenerate co-
efficients. Our interest is devoted to the irregularity of tiffusion coefficient, so
we will setb = 0. A first result in that direction was produced in [7] wherevas

(1.1)
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boundedpossibly degenerated and the difference of two soluticas supposed to be
in L?([k, T] x R), for everyx > 0 (ASSUMPTION (A)). This result was exploited for
studying the probabilistic representation of a porous m&ghe equation with irregu-
lar coefficients. We will come back later to this point. We egkithat it is not possible
to obtain uniqueness without ASSUMPTION (A). In particuRemark 3.11 of [7]
provides two measure-valued solutions whes time-homogeneous, continuous with
% integrable in a neighborhood of zero.

One natural question concerns what happens whsmot bounded and € R?. A
partial answer to this question is given in Theorem 3.1 anddtk 3.5. That Theorem
is probably the most important result of the paper; it is aggalization of Theorem
3.8 in [7] where the non-homogeneous functiowas bounded. Theorem 3.1 handles
the multidimensional case and it allowdo be unbounded.

An application of Theorem 3.1 concerns the following patalqmoblem forz € R:

{ du(t,z) = 02 (u™(t,x)), t€]0,T), w2
uw(0,) = o,
where,d, is the Dirac delta function at zera™ will denotewu|u|™ 1.

Itis well known that, form > 1, there exists an exact solution to (1.2), the so-called
Barenblatt density{3]. Its explicit formula is recalled for instance in Chap# of [35]
and more precisely in [4]. Equation (1.2) is ttlassicalporous medium equation.

In this paper, we focus on (1.2), for somee (0, 1), theFast Diffusion equation
In fact, an analogous Barenblatt type solution also existlat case, see Chapter 4 of
[35] and references therein; it is given by the following egsion

~ 1
U(t,z) = (D + k|z|?2) T, (1.3)
where,
2(1—m)
1 - 1-m I\ " /% 2m_
a= , k= , D= — , I = [cogx)]T-m dx.
m+1 2(m+1)m (ﬂ) =z

(1.4)
Equation (1.2) is a particular case of the so called gerse@dlporous media type
equation

{ owu(t,z) = 02,8 (u(t,x)), t€]0,T], (15)

u(0,2) = wp(dx), zeR,

whereg : R — R is a monotone non-decreasing function such téy = 0.

In the case of fast diffusion, we haggu) = v™, m € (0, 1) and the initial condi-
tion ug is a finite measure which equalg in the Barenblatt case. In this application
two difficulties arise: first the coefficieptis of singular type since itis not locally Lip-
schitz, second the initial condition is a measure. Anotlipe tof singular coefficient
is B(u) = H(u — u.)u, whereH is a Heaviside function, see e.g. [2].
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The problem (1.2) withm € (0, 1) was studied by several authors. For a bounded
integrable function as initial condition, equation in (1.5 well-stated in the sense
of distributions, as a byproduct of the classical papers §l®n (1.5) with general
monotonous coefficiertt.

More specifically, [19], proved existence for (1.2), whea thitial data is locally
integrable. This result was extended to the finite Radon aoreasn a bounded domain
by [11], and to locally finite measures in the whole space 8}.[3The Barenblatt
solution is arextended continuous solutias defined in [14, 13]; Theorem 5.2 of [13]
says that (1.2) admits such a solution and it is unique. Asgare know there is no
uniqueness argument in the literature as far as the iniiadlition is a finite measure
in the general sense of distributions.

In [15], the authors investigated large time behavior olusohs to (1.2); [25]
showed existence of solutions to the fast diffusion equatierturbed by a right-hand
side source term, being a general finite and positive Borelsue.

The present paper provides the probabilistic representafithe (Barenblatt) solu-
tion of (1.2) and exploits this fact in order to approach & &iMonte Carlo simulation;
the committedZ? error is around 10%. We make use of the probabilistic procedure
developed in Section 4 of [4] and we compare it to the exaoh fof the solutiori/ of
(1.2), which is given by the explicit formulae (1.3)-(1.4).

In the case whe(u) = H(u — u.)u, numerical simulations based on the same
procedure were obtained in [4]. In that paper we comparexivtith a deterministic
numerical analysis recent approach developed in [12], kvivias very performing in
that case. At this stage, the implementation of the samerdetistic method for
the fast diffusion equation does not give satisfying resthis constitutes a further
justification for the probabilistic representation.

The probabilistic representation@fconsists in finding a suitable stochastic process
Y such that the law of; hasl/((t, -) as densityY” will be a (weak) solution of the non-
linear SDE

t
v. - |
t E{ CD(U(S,}/S))dWS’ (16)
U(t,-) = Lawdensity ofY;, V¢ >0,

where,IV is a Brownian motion on some suitable filtered probabilitgs® Q, F, (F; )0, P).
Moreover, we define

®Ou) = V2T, ueR, me (0,1).

To the best of our knowledge, the first author who considengbabilistic repre-
sentation of (1.5) was McKean [27], particularly in relatiovith the so callegbrop-
agation of chaos In his case /s was smooth, but the equation also included a first
order coefficient. From then on the literature steadily geawd nowadays there is a
vast amount of contributions to the subject, especiallymthe non-linearity is in the
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first order part, as e.g. in Burgers equation. We refer théeetm the excellent survey
papers [34] and [18].

A probabilistic interpretation of (1.5) whef(u) = w.|u|™t, m > 1, was pro-
vided for instance in [5]. For the sanik though the method could be adapted to the
case wherg is Lipschitz, in [22] the author has studied the evolutionagtpn (1.5)
when the initial condition and the evolution takes valueshia class of probability
distribution functions oR. Therefore, instead of an evolution equatiorﬂ%(]R), he
considers a state space of functions vanishingaatand with value 1 at-co. He stud-
ies both the probabilistic representation and the propamat chaos. An alternative
study to chaos propagation whgfw) = «? ands(u) = ™, m > 1 was proposed in
[29] and [17]. The probabilistic representation in the cafggossibly discontinuous
was treated in [7] whefi is non-degenerate and in [2] whéris degenerate; the latter
case includes the cagéu) = H(u — u.)u.

As a preamble for the probabilistic representation we maginple even though
crucial observation. Léfl” be a standard Brownian maotion.

Proposition 1.1.Let 3 : R — R, such that3(u) = ®?(u).u, ® : R — R andug be
a probability real measure.
LetY be a solution to the problem

=
|

Yo+ [ V20(u(s, Y)W,
0

u(t,-) = Lawdensityob;, V>0, 1.7)

u(0,) = wuo(dx).
Then,u : [0,7] x R — R is solution to(1.5).
The proof of the result above is based on the following lemma.

Lemma 1.2.Leta : [0,7] x R — R, be measurable. LgftY;) be a process which
solves the SDE

t
E:Yo—i-/\/Za(s,Yg)dWs, t € [0,7).
0

Consider the functiont — p(t,-) from [0, 7] to the space of finite real measures
M(R), defined a(t, -) being the law of;.
Then,p is a solution, in the sense of distributions ($8€l)), of

{ ou = agx(au),

(1.8)
u(0,-) = Law ofYp.

Proof of Lemma 1.2This is a classical result see for instance [33], Chapterlde T
proof is based on an application of 1td’s formulai6y;), ¢ € S(R). O
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Proof of Proposition 1.1We seta(s, y) = ®?(u(s,y)). We apply Lemma 1.2, setting
p<ta y) = U(t, y)dy, t>0 andp(O, ) = UuQ. O

Whenuy is the Dirac measure at zero afith)) = u™, with m €] %, 1], Theorem 5.7
states the converse of Proposition 1.1, providing a proEessing the unique (weak)
solution of (1.6).

The first step consists in reducing the proof of that Theomithe proof of Propo-
sition 5.3, where the Dirac delta measure, as initial camdiof (1.2), is replaced by
the function/(k,-), 0 < x < T'. This corresponds to the shifted Barenblatt solution
through a timex, which will be denoted by/. In this case, Proposition 5.3 allows
even to obtain a unique strong solution of the correspondamglinear SDE. That re-
duction is possible through a weak convergence argumeriteofalutions given by
Proposition 5.3, wher — 0.

The idea of the proof of Proposition 5.3 is the following. L&t be a standard
Brownian motion and a r.\xy distributed as#f(k,-); sinced)(ﬁ) is Lipschitz, the SDE

t
Y, =Yo+ / O (s, V7)) W,
0

admits a unique strong solution. The marginal law$¥3 andi/ can be shown to
be both solutions to (1.8) fai(s,y) = (U(s,y))™ % thata will be in the sequel
denoted bya. The leading argument of the proof is carried by Theorem Siichv
states uniqueness for measure valued solutions of the Fek#ack type PDE (1.8)
under someHypothesis(B) More precisely, to conclude that the marginal laws of
(Y;) and{ coincide via Theorem 3.1, we show that they both verify theaited
Hypothesis(B2) In order to prove that fot/, we will make use of Lemma 4.2. The
verification ofHypothesis(B2)for the marginal laws o¥” is more involved. It makes
use of small time (uniformly with respect to the initial cdtoh) upper bound for a
non-homogeneous diffusion flow with linear growth (unboeaidcoefficients, even
though the diffusion term is non-degenerate. This is theaibpf Proposition 5.1,
whose proof is based on an application of Malliavin calculus our opinion, that
result has an interest by itself; we were not able to find ihiliterature.

When the paper was practically finished we have discover@damsting recent result
of M. Pierre, presented in Chapter 6 of [20] obtained indepetly. That result holds
with non-degenerate locally bounded coefficients in dirien$, with initial condition
having a first moment. In that case, they do not need an Hypistltd type (B).
In particular, it allows to establish Proposition 5.3 but itieorem 5.7, where the
coefficients are not locally bounded ) 7] x R.

The paper is organized as follows. Section 2, is devoteddit In@tations. Section 3
is concentrated on Theorem 3.1 which concerns uniquenetigefdeterministic, time
inhomogeneous Fokker-Planck type equation. Section 4gptse some properties of
the Barenblatt solutioty to (1.2). The probabilistic representationlof is treated in



6 Nadia Belaribi and Francesco Russo

Section 5. Proposition 5.1 is one basic tool performing stmak density estimates
for time-inhomogeneous diffusions, whose proof is locatetthe Appendix. Finally,
Section 6 is devoted to numerical experiments.

2. Preliminaries

We start with some basic analytical framework. ldet> 1. If f : R — R? s
a bounded function we will denotef||.. = sup|f(z)|. By S(RY) we denote the
zcRd

space of rapidly decreasing infinitely differentiable ftians ¢ : RY — R, by §'(R%)

its dual (the space of tempered distributions). We denotd HR¢) the set of finite
Borel measures oR. If x € R, || will denote the usual Euclidean norm.

Fore > 0, let K. be the Green function af — A, that is the kernel of the operator

(e —0)~1: L2(RY) — H2(RY) C L2(RY). In particular, for alkp € L2(R%), we have

B i= (e — D) Hp(x) = /RKE (x —y) p(y)dy. (2.1)

For more information about the corresponding analysisréagler can consult [32].
If o € C2(RY) N S'(RY), then(e — A)yp coincides with the classical associated PDE
operator.

Definition 2.1. We will say that a function) : [0,7] x R — R is non-degeneraté
there is a constant > 0, such that) > c,.

Definition 2.2. We will say that a function) : [0, 7] x R — R has linear growth (with
respect to the second variable), if there is a constasuch thaty (-, z)| < C(1+|x|).

3. Uniqueness for the Fokker-Planck equation

Now, we state the main result of the paper which concernsuemigss for Fokker-
Planck type equation with measurable, time-dependenss{ply degenerated and un-
bounded) coefficients. It generalizes Theorem 3.8 of [7]netibe coefficients were
bounded and one-dimensional.

The theorem below holds with two classes of hypothe¢B4&), operating in the
multidimensional case an{@2) more specifically in the one-dimensional case.

Theorem 3.1.Letd > 1 anda be a Borel nonnegative function & 7] x R,

Letz : [0,7] — M(R?),i = 1,2, be continuous with respect to the weak topology
on finite measures am (R?).

Let 2% be an element aM (RY). Suppose that botk and z; solve the problem
drz = M(az) in the sense of distributions with initial conditiar0, -) = 2, i.e.

= .TJZO X tS r)als,xr)z(s,axr .
[ ola)sttde) = [ o@)0dn)+ [ ds [ Md(oa(sa)zs.da) @)
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for everyt € [0, 7] and anyp € C§°(R?).
Thenz := (21 — 22)(t, -) is identically zero for every, under the following require-
ment.

Hypothesis(B).

Thereisz"e L} ([0, 7] x R?), such that(t, -) admitszT¢, -) as density for almost
all t € [0,77]. Z will still be denoted again by. Moreover, eithe(B1) or (B2) below
is fulfilled.

(B1)

0 [ |zt2)|2dtde < +oo,

[0,7] xRd
() [ |az|?(t @)dtdr < +oo.
[0,T] xR
(B2) We supposeé = 1. For eveny, > 0, we have

(i) [ |2(t,2)Pdtdr < +oo,
[to, T]xR

(i) [ |az|(t,z)dtdr < o0,
0.T]xR

iy [ |az|?(t,2)dtdr < +oo.
[to, T]xR

Remark 3.2.
The weak continuity of(¢, -) and Remark 3.10 of [7], imply that

sup [|z(t,)|lvar < +oo.
t€[0,7)

In particular, sup [ga |2(t, z)|dz < +oc.
o<t<T
Remark 3.3.

1) If a is bounded, then the first item of Hypothesis(B1) impliesgbeond one.

2) If a is non-degenerated, assumption (ii) of Hypothesis(B1l)igsmssumption (i).

Remark 3.4.Letd = 1.
1) If a is non-degenerate, the third assumption of Hypothesis(B@)es the first one.

2) If z(t,z) € L>™([to, T| x R), then the first item of Hypothesis(B2) is always veri-
fied.

3) If a is bounded, then assumption (ii) of Hypothesis(B2) is abvegrified by Re-
mark 3.2; the first item of Hypothesis(B2) implies the thimkeo So, Theorem
3.1, is a strict generalization of Theorem 3.8 in [7].
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4) Let(z(t,-),t € [0,T]) be the law of a stochastic process solving

t
¥i= Yo+ / V/2a(s, Y2)dWW,,
0

with Y; distributed ag?, such thatf |z[2:%(dz) < +oc.
R

If \/a has linear growth, it is well known that

SUPE(]Y;]?) < +00; SO

t<T
T
/ la(s, z)z(s, x)|dsdx = /a(s,YS)ds < 400.
[0,T|xR 0

Therefore, assumption (ii) in Hypothesis(B2) is alwaydifled.

Proof of Theorem 3.1.
Let 21, 22 be two solutions of (3.1), we set:= 21 — z;. We evaluate for every
t € [0, 77, the quantity
ge(t) = [|2(t, )1 1c,

where,|| || -1c = [[(e = &) f]] 2.
Similarly to the first part of the proof of Theorem 3.8 in [7§saiming we can show
that,
lim g.(t) =0, Vtel0,T], (3.2)
e—0

we are able to prove thatt) = 0, for allt €]0, 7. We explain this fact.
Lett €]0,7]. We recall the notatioB. f = (¢ — A)7Lf, if f € L?(R9Y). Since
2(t,-) € L2(RY), thenB.z(t,-) € H?(RY) and soVB.z(t,-) € HY(RY)? c L2(R%)%.
This gives,

g=(1) /Rd B.z(t, x)z(t,x)dx,

6/ (Bsz(t,x))zd:v—/ B.z(t,2)AB:z(t, z)dz,
Rd Rd

s/ (Bgz(t,x))zdx+/ \VB.z(t,z)|?dz.
Rd Rd

Since the two terms of previous sum are non-negative, i) (kis then,
VEB-z(t,-) — 0, (resp.|V B.z(t,-)| — 0) in L2(R%) (resp. inL?(R%)4).
So, for allt €]0,T7,

z(t,) = eBez(t,") — AB:z(t,-) — O,
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in the sense of distributions, agoes to zero. Therefore,= 0.
We proceed now with the proof of (3.2). We have the followidgritities, in the
sense of distributions:

z(t,-) = /o Alaz)(s, )ds = /o (A—¢e)(az)(s, )ds + 5/0 (az)(s,)ds, (3.3)

which implies

B.z(t,:) = —/O(az)(s,-)ds+£/0 B:(az)(s,)ds. (3.4)

Leto > 0 and(¢s) a sequence of mollifiers converging to the Dirac delta funmcti
at zero. We set

ss(t.) = [ =t )ésta )iy

Note thatz; € (L*() L>)(]0,T] x R%). Moreover, (3.3), gives

z5(t, ") = /0 Alaz)s(s,-)ds.

We suppose now Hypothesis(B1) (resp. (B2)). et O (resp.t, > 0). By assump-
tion (B1)(ii) (resp. (B2)(iii)), we have\(az)s € L?([t,, T] x R?). Thus,zs can be
seen as a function belonging @([t,, T; L?(R%)).

Besides, identities (3.3) and (3.4) lead to

t

z5(t,) = zs(to,-) +/ (A — 8)(&2)5(S,~)d8+€/ (az)s5(s,-)ds, (3.5)

to to
t t
B.zs(t,-) = DBezs(to,) — / (az)s(s,-)ds + 5/ B.(az)s(s,-)ds.  (3.6)
to to
Now, proceeding through integration by parts with valueg4R?), we get
t
st Bae = lastto)I2se = =2 [ ds < 25,0, (02ls.) 1z
0
t
+ 26/ ds < (az)s(s,-), Bezs(s,:) >z - (3.7)
to

Then, lettingd go to zero, using assumptions (B1)(i)-(ii) (resp. (B2)(idaB2)(iii))
and Cauchy-Schwarz inequality, we obtain

()20 — wam|]f=—2/zw/‘ (5, 2)|2%(s, 2)dz

4 26/ds<( 2)(5,), Boz(s,) > 12 - (3.8)

to
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At this stage of the proof, we assume thtypothess(Bl)ls in force. Sincé, = 0, we
havez(t,,-) = 0. Using the inequality,c, < 1 , ¢1, ¢, € R, and Cauchy-Schwarz,

(3.8) implies
—2/ ds/ (s,2)|2|(s, x)
R4

+ /0 dsllaz(s,)|2 + ¢ / ds||Box(s, )22,

2(t, )12 1.c

IN

t
< e [ dslosts, )l + /0 dslle(s,)2yes (39)
because foff = z(s, ), we have

. L[ WP
S I T

FEAE e _ 112
T = 1,

We observe that the first integral of the right-hand side &)(& finite by assumption
(B1)(ii). Gronwall lemma applied to (3.9), gives

IN

T
ot )21 < ce” /0 dsllaz(s, )22

Lettinge — O, it follows that||z(¢, ~)||2_17€ = 0, Vt € [0,T]. This concludes the first
part of the proof.

We suppose now thadypothesis(B2)is in force, in particularl = 1. By Lemma
2.2 of [7], we have

sup2e|B.z(s,z)| < Vel|z(s, ) |var.
x

Consequently, (3.8) gives

12t M2 1 = llz(to, )21 < ﬁsgjpl\Z(t, lvar / |az|(s, x)dsdz. (3.10)
t
- [to,T]XR
Besides, arguing like in the proof of Theorem 3.8 of [7], wéadd that
. 2 o
Jim 2 (to, ) [24.c = 0.
We first lett, — 0 in (3.10), which implies

|‘Z(ta')|‘%l,5§\/gts<qu)HZ(ta')Hvar / |az|(s, x)ds; (3.11)

[0,T]xR
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we remark that the right-hand side of (3.11) is finite by agstion (B2)(ii). Lettinge
go to zero, the proof of (3.2) is finally established.
O

Remark 3.5.The validity of Theorem 3.1 holds with slight different asgations. For
instance, assumption (B1)(ii) can be replaced by
Assumption (B1)(ii)": For everyt €]0, 7],

t
(y1,02) — / 2(s,9)(az)(s,y2)ds i continuous orD = {(yz. y2)|ya = v2)-
0

In the proof of Theorem 3.1, we exploit items (i) and (i) of pbthesis(B1). Under
assumption (B1)(ii)’, we proceed as follows.
2

We chooseds(y) = —— exp(—Z) as a sequence of mollifiers. For evesy> 0,
V62 20
we can prove that

t

/ds < z5(s,-), (a2)5(s, ) >,2— /tds/(azz)(s,x)dm, (3.12)
t Rd

to

whend goes to zero. In fact, sindez)s € L2([0, 7] x R?), so the left-hand side of
(3.12), gives

/tds /Z5(s,m)(az)5(s,x)dm,

R4

= /tds/dm/z(s,yl)¢5(x—yl)dyl/(aZ)(s,yz)eﬁa(fE—yz)dyz,
R

to R4 R4

t
- / ds / dyrdyzz (s, y1)(az) (s, y2) / b5z — ya)gs(x — y2)de,
to R2d R4

t

- / ds / dyrdyz (s, y1)(a2) (5, y2) bas (1 — v2).

to R2d

Sincedyidy2¢5(y1 — y2) weakly converges tdy1d,,(y1 — dy2), previous expression
converges to the right-hand side of (3.12),0as> 0. Similar considerations can be
formulated in order to replace item (iii) of Hypothesis(B@&hent, > O.
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4. Basic facts on the fast diffusion equation

We go on providing some properties of the Barenblatt saltico (1.2) whenm €
(0,1) and given by (1.3)-(1.4).
Proposition 4.1.

(i) U is a solution in the sense of distribution (@.2). In particular, for every
v € S(R), we have

t
/Lp(x)l/{(t,x)dm = ¢(0) +/ds/um(s,x)go”(x)dm. 4.1)
R 0 R
(ii)
/U(t,x)dz =1 Vt>0. 4.2)
R
In particular, for anyt > 0, U(t, -) is a probability density.
(i) The Dirac measure),, is the initial trace of/, in the sense that

/'y(x)l/{(t, z)dz — v(0), as t — O, (4.3)
R
for everyy : R — R, continuous and bounded.
Proof of Proposition 4.1.See Appendix 7.2. |

Note that (4.2) allows to determine the explicit expressibthe constanD.

Lemma 4.2.

(i) Suppose that,% < m < 1. Then there i > 2 and a constant, such that,
forO<s</(<T

/ dtdz (U, )T < Cy(0— 5). (4.4)
s, f] xR
(ii) In particular, if p = 2, we have
/ dtdz (U(t,z))™ < +o0, (4.5)

10,7 xR

again whenm belongs td 3, 1[.
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iy 1t £ <m<1,

/ dtdz (U(t, 2))*™ < 4o0.

(4.6)
10,71 xR
(iv) If m belongs tq%, 1], then
Vk >0, /|m|42/{(/-@,x)dm < +o0. 4.7)
R

Proof of Lemma 4.2.
(i) Using (1.3), we have

| @™

ity = / = (D o+ Rl 2) E T dtda.
s, f] xR s, f] xR
Then, settingy = ¢t~ %z / % we get
i =
/ Ut )" " dtde = 7 /t%a<1—m>dt/(1+y2)’51—ldy
|s,¢] xR k s *
pH-it
<

Previous integral is finite ifp + 1)(1 — m) < 2. This implies (4.4)
(ii) is a particular case of (i) and (iii) follows by similarguments as for the proof
of (i).

(iv) Now, we assume that e]:—g, 1]. Forx > 0, we have

35
/.%'41/{%.%'
2

/|y| (14D Srdy, .8)

where, the previous equality was obtained setting = “x1/ D
Clearly, sincen €] 3

£ 1], the integral in the right-hand side of (4.8) is finite . There
fore, (4.7), is fulfilled.

|Nz

O
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Letx €]0,T]. Givenu : [0,7] x R — R, we associate

u(t,r) =u(t+rK,z), (t,x)€[0,T] x R. (4.9)
In particular, we have
Ut,x) =Ut + K, T). (4.10)
Moreover, we denote, for evenye R,
Uo. () = U(K, ). (4.11)
Remark 4.3.
The functionl/ solves the problem,
ou = 02, (u™), (4.12)
’LL(O, ) = U0,k

5. The probabilistic representation of the fast diffusion guation

We are now interested in a non-linear stochastic diffea¢@tjuation rendering the
probabilistic representation related to (1.2) and giverilb§). Suppose for a moment
thatY, is a random variable distributed accordingjtpso,Y; = 0 a.s.

We recall that if there exists a procegsbeing a solution in law of (1.6), then
Proposition 1.1 implies that solves (1.2) in the sense of distributions.

In this subsection, we shall prove existence and uniquesfesdutions in law, for
(1.6). In this respect, we first state a tool, given by Prapmsi5.1 below, concerning
the existence of an upper bound for the density law of somegssy’, being the
solution of a non-homogeneous SDE with unbounded coeftiidris result has an
independent interest.

Proposition 5.1.

Let, o, b:[0,7] x R — R, continuous (not necessarily bounded) such that -),
b(t,-) are smooth with bounded derivatives of orders greater oraét one. o is
supposed to be non-degenerate.

Letz, € R. LetY; = (Y;*°)sc(o.77, be the solution of

t t
Vimaot [ otrYodW,+ [ oY (5.1)
0 0

Then, for every > 0, the law ofY; admits a density denoted (z, ).
Moreover, we have

K
sup  pslao, ) < —= (14 |zol?), (5.2)
() OT]xE \/5( o)

where,K is a constant which depends §6/||.., [|']|. andT but does not depend on
mo.
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Remark 5.2.
(i) The proof of Proposition 5.1 above is given in Appendi%.7.

(ii) If o andb were bounded, the classical Aronson estimates imply tha} (®lds
even without thex,|* multiplicative term. Ifo andb are unbounded, [1] provide
an adaptation of Aronson’s estimates; unfortunately fivaytconsidered time-
homogeneous coefficients, and second their result doempdt {5.2).

Let Y, be a random variable distributed accordingiQ. Now, we are interested in
the following result.

Proposition 5.3.
Assume thatn e]%, 1[. Let B be a classical Brownian motion independenfff
Then, there exists a unique (strong) solutior= Y (o 7}, Of

[— t p— JR—
Y, = Y.+ [0U(s.Y;)dB,,
0

U(t,) = Lawdensityol;, Vt >0, (5.3)

U(O, ) = Uok,
In particular, pathwise unigueness holds.

Corollary 5.4.
Let W be a classical Brownian motion independentYgf Therefore, there is a

unique (strong) solutio™ =Yz ., of

t
Y = Y+ [OU(s, YE))dWs,
U(t,-) = Lawdensity ob}, Vt> &, (5.4)
M(K/’ ) = uO,m)

Proof of Corollary 5.4.

We start with the proof of uniqueness. Let> 0. We consider two solutiong -1
andY*?2 of (5.4). Then , we set; = V> vt > 0,i = 1,2 andB; = W1 — Wi,
vt > 0. L L

Clearly, we get that}! andY,? solve (5.3). Therefore, using Proposition 5.3, we
deduce uniqueness for problem (5.4). Existence followsrya arguments. O

Proof of Proposition 5.3.

Let W be a classical Brownian motion on some filtered probabifiigce. Given the
functioni/, defined in (4.10), we construct below a unique prodéseing the strong
solution of

t
V=it [0 T (5.5)
0
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From (4.10), for everys, y) € [0,T] x R, we have

OU(s,y)) = V/2a(s,y),

where, .
als,y) = (s + k)™ (D + kly|?(s + k) ~2). (5.6)

In fact, ®(l{) is continuous with all its space derivatives of order greateequal to
one being bounded; in particuld(Z/) is Lipschitz and it has linear growth. Therefore,
(5.5) admits a strong solution.

By Lemma 1.2, the function — p(t,-) from [0, 7] to M_.(R), wherep(t, -) is the
law of Y, is a solution to

{ o = Ri(@) -
p<05) = Uok-

To conclude it remains to prove thd(t, y)dy is the law ofY;, vVt € [0, T; in particular
the law of the r.v¥; admits a density. For this we will apply Theorem 3.1, for whic
we need to check the validity of Hypothesis(B2) wher- a and forz := 21 — 25,
wherez; := p andz, := U{. By additivity, this will be of course fulfilled if we prove it
separately for := p andz := I/, which are both solutions to (5.7).

Sincea is non-degenerate, by Remark 3.4(1), we only need to chesisitii) and
(iii) of the mentioned Hypothesis(B2).

On one hand, since(s,y) = U™ (s, y), = := U verifies Hypothesis(B2) because
of items (ii) and (iii) of Lemma 4.2.

On the other hand, sincga has linear growth, by Remark 3.4.(4) fulfills item
(ii) of Hypothesis(B2). Moreover, by Lemma 5.5 belowyerifies also item (iii) of

Hypothesis(B2). Finally, Theorem 3.1 implies that= p.
O

Lemma5.5.

Lety : [0,T] x R — R, continuous (not necessarily bounded) such tht -), is
smooth with bounded derivatives of orders greater or eqoi@rte. ) is supposed to
be non-degenerate.

We consider a stochastic process = (X;),c(0,7], being a strong solution of the
SDE

i
X=Xt [ 05, X)W, (5.8)
0

where, X, is a random variable distributed according tg ., defined in(4.11)with
m €], 1],

For ¢t €]0, T, the law of X; has a density/(¢,-) such that,(y?v)(t, z) belongs to
L2([t,, T] x R), for everyt, > 0.
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Proof of Lemma 5.5.

If Xo = xo, Wherex, is a real number; then Proposition 5.1, implies that for gver
t €]0,T], the law of X; admits a density,(z,,-). Consequently, the unique strong
solution of (5.8) has a density for eath- 0, v(¢, -), given by

v(t,x) = /uoyn(mo)pt(mo,m)d%.

R
By (5.2) in Proposition 5.1, it follows
K
sup  pi(wo,w) < Ko(1+ |wo[*), where,Ko= —. (5.9)
(t,x)Eto, T] xR Vo

In this proof we will use constant&y, . . . , K5 which only depend on, 1" and.
Using (5.9), we get

sup  |v(t,z)| < Ko/(l+ 2o U (K, o) dae < K1; (5.10)
(t,x)e[to,T]XR R

the latter inequality is valid because of (4.7) in Lemma 4.2.

Furthermore,
T
/W(t,xt)dt] |
0

Sincey has linear growth, previous expression is bounded by

((V2v)(t, x))? dtdx < sup  |v(t,2)|E
(t,2)€lto, T]XR

[to,T] xR

T
K> sup  |v(t,z)| (T+]E /Xt“dt )
(t,2)€lto, T]xR
0
T
< K1K.T 1+/E sup | X¢|*| dt | . (5.11)
5 t€[0, 7

(5.11), follows because of (5.10).
Besides, by Burkholder-Davis-Gundy’s and Jensen’s ins it follows that

E

T
sup Xt|“] < K3 (E (1| *] +/E[¢4(3,Xs)] ds) :

te[0,T) ;
Using again the linear growth of, we get
ds + T) .

E sup | X,[*

s€[0,7)

T
sup Xt“] < K4 (E [1%]*] +/]E
0

te[0,T
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Then, by Gronwall's lemma, there is a further const&t such that

E | sup Xﬂ] < Ks l+/xo|4l/l(f<c,xo)dxo . (5.12)
1€[0,T]
R
Finally, (5.11), (5.12) and (5.10), allow to conclude thegdt O

We are now ready to provide the probabilistic representatitated to the solution
U. For this we only have a solution in law of (1.6).

Definition 5.6. We say that (1.6) admits a weak (in law) solution if there ig@bp-
bility space(Q, F,IP), a Brownian motion1¥;);>0 and a procestY;);>o such that,
the system (1.6) holds. (1.6), admits uniqueness in law#mgi{w?!, Y1), (W2 Y?2)

solving (1.6) on some related probability space, it follalat Y and Y2 have the
same law.

Theorem 5.7.
Assume thatn e}:—é, 1]. Then, there is a unique weak solution (in lawly, of the
problem(1.6).

Remark 5.8.Indeed the assumption an 6]%, 1] is only required for the application
of Theorem 3.1. The arguments under the present proof oelyhus %

Proof of Theorem 5.7.

First we start with the existence of a weak solution for (1L&tZ/ be again the solu-
tion of (1.2). We consider the solutid}”),c . 7| provided by Corollary 5.4 extended
to [0, k], settingY}” = Yy, t € [0, x].

We prove that the laws of the processés are tight. For this, we implement the
classical Kolmogorov’s criterion, see Problem 4.11, Secf.4 of [24], for instance.
We will show the existence gf > 2 such that

B[ =Y/ <Cplt —s|%, Vs,t€[0,T], (5.13)

whereC, will stand for a constant (not always the same), dependinglort not ons.
Lets,t €]0,T]. Letp > 2. By Burkholder-Davis-Gundy’s inequality, we obtain

¢ 5
E[Y{ — Y] < C,E / O2(U(r, Y))dr

S

Then, using Jensen’s inequality and the factih@t -) is the law density o¥ ", r > &,
we get

t
E[[Yy — Y] < Cylt — s[5 / dr / S U YU )y, (5.14)
S R
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We have,

/tdr/CDP(U(r,y))U(r,y)dy:/tdr/dy (u(r7y))p("mz—1)+17
R

s R s

and by Lemma 4.2 (i), the result follows.

Consequently, there is a subsequeYite= Y ", converging in law (a€’([0, 7)) —valued
random elements) to some procé&sslet P the corresponding laws on the canonical
spaceQ = C([0,T]) equipped with the Boret-field. Y will denote the canonical
process;(w) = w(t). Let P the weak limit of(P"™).

1) We first observe, that the marginal lawsiéfunderP™ converge to the marginal
law of Y underP. Lett €]0,T]. If the sequencéx,) is lower thant, the law ofY;
under P™ equals the constant lat(¢, z)dx. Consequently, for every €]0, T, the
law of Y; underP isU(t, x)dx.

2) We need now to prove that is a (weak) solution of (1.6), undd?. By similar
arguments as for the classical stochastic differentiabggns, see [33], Chapter 6,
it is enough to prove that” (under P) fulfills the martingale problem i.e., for every
f € C3(R), the process

NI

(MP)  f(¥;) — £(0) — / S (Y2 )PHU(s, Y))ds,
0

is an(F,)-martingale, wheréF;) is the canonical filtration associated with

Let IE (resp.lE™) the expectation operator with respectiRqresp. P"). Lets,t €
[0,T], with s < tandR = R(Y,,r < s) anFs;—measurable, bounded and continuous
random variable. In order to show the martingale propéu) of Y, we have to
prove that

E [(f(m — f(Ya) - % / F (Y )@ U(r, m))dr) R| =0, feCj(R). (5.15)

We first consider the case when> 0. There isn > no, such thats,, < s. Let
f € C2(R), since(Y;)s>x, underP™ are still martingales, we have

E" [(f(Yt) = f(Ys) = %/f”(iﬁn)q’z(u(th))dr) R] =0. (5.16)

We are able to prove that (5.15) follows from (5.16). ket 0 andN > 0 such that

t

/dr / U (r,y)dy < e, (5.17)

S {y>g-1
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where,C is the linear growth constant df? o I/ in the sense of Definition 2.2.
In order to conclude passing to the limit in (5.16), we willphave to show that

lim E"[F(Y)] - E[F(Y)] =0, (5.18)

n—-+oo

where,
t

F(() = /dquz(Ll(r,E(r))R(f(r),r < s).

F:C([0,T]) — Ris continuous but not bounded.
The left-hand side of (5.18) equals

E"[F(Y)-FYY)]+E"[FYY)] -E[FYW)] +E[FY(Y) - F(Y)],
(5.19)
= El(n, N) + 52(71, N) + 53(?1, N),

where,
t

FN(0) = /dr (P*U(r,£(r)) AN) R(L(r),7 < 5).

Sincex,, < s, for N large enough, we get

t
E2(n, N)| < | Rl / dr / (2 (U(r,y) — N) U(r,y)dy
s {®2(U(ry))>N}

t
< |R]lne / dr / U™ (r,y)dy
s {lyl>% -1}

< e[ Rllco, (5.20)

taking into account (5.17) and the second item of Lemma 4.2.
For fixed N chosen in (5.17), we have

lim &(n,N) =0,
n—-+00
sinceF'N is bounded and continuous.
Again, since the law density &f;, t > s underP isU(t, -), similarly as for (5.20),

we obtain
E3(n, N)| < €| Rl oc-
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Finally, coming back to (5.19),

lim sup[E"™ [F/(Y)] — E [F(Y)]] < 2] R|oo;

n—-+oo

sinces > 0 is arbitrary, (5.18) is established. So (5.15) is verifiedsf> 0.
3) Now, we consider the case wher= 0. We first prove that

T
E [/ P*U(r,Y,))dr | < +o0. (5.21)

0

By item 1) of this proof, the law o¥}., » > 0 admitsl{/(r, -) as density.
Consequently, the left-hand side of (5.21) gives,

[ ar [ ey - /T ar [un iy
0 R

10,7 R

which is finite, by the second item of Lemma 4.2.
Coming back to (5.15), we can now lego to zero. SinceY is continuous angf
is bounded we clearly have

lim I [f(Ys) k] = E[f(Yo) R].

s—0

Moreover,

lim & [( / F (Y ) @2 U(r, m))dr) R ( / f”(m>¢2<u(r,m)dr> R
s 0

using Lebesgue’s dominated convergence theorem and (5.21)
Consequently, we obtain

=

)

E

NI

(f(Yt) - f(Yo) — /f”(ﬁ)q’z(u(th))dr) R] =0. (5.22)
0

It remains to show thaty = 0 a.s. This follows becausdé — Y a.s., and also in law
to dp by the third item of Proposition 4.1.

Finally, we have shown that the limiting procéssserifies(MP), which proves ex-
istence of solutions to (1.6).

4) We prove now uniqueness. Siri¢és fixed, our problem reduces to show unique-
ness for the first line equation of (1.6).
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Let (Y;fi)te[O,T]v i = 1,2, be two solutions. In order to show that the lawsYdf
andY? are identical, according to Lemma 2.5 in [21], we will verifyat their finite
marginal distributions are the same.

For this, we consider & ¢, < t, < ... <ty =T. Let0< k < t,. Obviously, we
havethJ =0, a.s., in the corresponding probability spactiec {1, 2}.

Let s > 0. Both restrictiong’?|;, 7y andY2|,, 1 verify (5.4). Since that equation
admits pathwise uniqueness, it also admits uniquenessvifbyaYamada-Watanabe
theorem. Consequentl}f,l\[,ﬁﬂ ande\[,ﬁT] have the same law and in conclusion the

law of (Y;},..., v} ) coincides with the law of Y2, ..., Y2 ). O

6. Numerical experiments

In order to avoid singularity problems due to the initial ddion being a Dirac delta
function, we will consider a time translation &f, denotedy and defined by

o(t,) =U(t+1,-), Vt>0.

Obviously,wv still solves equation (1.2), fan € (0, 1), but now with a smooth initial
data given by
vo(z) =U(L,z), Vx eR. (6.1)

Indeed, we have the following formula

~ __1
v(t,z) = (t+1)7(D + klz[2(t + 1)72*) T, (6.2)
where o, k andD are still given by (1.4).

We wish now to compare the exact solution of problem (1.2 namerical proba-
bilistic solution. In fact, in order to perform such appnméated solutions, we use the

algorithm described in Sections 4 of [4]. We recall thats thiethod was implemented

in Matlab. We focus on the case = % In that case, the exact solutiorof the PDE

(1.2), with initial conditionu, is given by the following explicit formula: ,

xZ

3(t+1)

[AIEN

2
v(t,z) = (t+ 1)*% (D + ) , (t,z) €[0,T] x R, (6.3)
whereD = %:—3 é.

The first step of the simulation concerns the initial comditi In order to perform
numerical experiments, we need to simulate random vasataeording to the density
functionv, defined below,

vo(x) = (D + “"—2>2 (6.4)
3 : .
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where, D is given in (6.3). For this, we apply a rejection sampling imeett based on
the fact that

Vo € R, vy(z) < kq(z), wherek =mv3D7%/2, (6.5)

andgq is the density probability function of a Cauchy law with paegter\/3D, de-
notedC(+v/3D), for which it is well-known that we can generate observatiosing
the inverse transform sampling technique. In fact we have,

X = V3Dtanx(U — 1/2)) ~ C(v/3D), (6.6)

where,U is a Uniform random variable o), 1]. For more information about those
simulation techniques, one can consult [23], for instance.

Simulation experiments: we compute the numerical solution over the time-space
grid [0, 1.5] x [~15,15]. We usen = 50000 particles and a time sté&p = 2 x 104,
Figures 1.(a)-(b)-(c)-(d), display the exact and the nucaésolutions at times = 0,

t =0.5,t =1andt =T = 1.5, respectively. The exact solution for the fast diffusion
equation (1.2), givenin (6.3), is depicted by solid linesskles, Figure 1.(e) describes
the time evolution of the discrete? error on the time intervaD, 1.5].

r 1 0.2f
0251 (a) ()
0.2r 10.15}
0.15f
0.1}
o1f
005l |o.05t
o o : . ;
-15 -10 10 15 -15 -10 -5 0 5 10 15
- - - - - 0.15 - - - - -
0.15f (© i (d)
0.1}
0.1 1
005l Jo.o5t
0 . o . . .
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
T T
e
b M @
A » W )
0.0L [ paeit a8 N4 . o~ ]
ol w U ey h fap ] v M
/{ Yy LW ﬁ\«'mn a L 4”.." a ""‘N“\' Aoty v,
o . ‘V'/‘-"”MJ“\ A M A, b
! 'y 'y,
0.005 [~ AT ! o]
0 1 1
0 05 1 15

Figure 1. Numerical (dashed line) and exact solutions (solid lindli@a at t=0 (a), t=0.5
(b), t=1 (c) and t=1.5 (d). The evolution of ttié error over the time intervdD, 1.5] (e).
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7. Appendix
7.1. Proof of Proposition 5.1

We start with some notations for Malliavin calculus. ThelBét, represents the clas-
sical Sobolev-Malliavin space of smooth test random véemtD’? is defined in the
lines after Lemma 1.2.2 of [28] arfd-? is introduced in Definition 1.3.2 of [28]. See
also [26] for a complete monograph on Malliavin calculus.

Now we state a preliminary result.

Proposition 7.1.
Let N be a non-negative random variable. Suppose the existertte abnstants
C(p) ande(p), for everyp > 1, such that

P(N <€) < C(p).e’™, Ve €]0,&(p)). (7.1)
Then, for every > 1,
E(NT) <e&(p).Clp+1) + &(p) P P(N > &(p)). (7.2)

Proof of Proposition 7.1.
Letp > 1 ande(p) > 0. Setting,F'(x) = P(N < x) for everyz € R, we have

E(NTP) =11 + Iz, (7.3)

where,

co(p) +oo
L= / x PdF(x), andl; = / x PdF(x).
0 co(p)

(7.1) implies that’; andI, are well-defined. Indeed on one hand, applying integration
by parts onl1, we get

co(p)
L= [x*pF(x)}BO(m +p / PR () d;
0

moreover, there is a constafitp) such that

I < (p+ 1)eo(p)C(p)- (7.4)
On the other hand, again (7.1) says that
I < eo(p) P(1 = Fleo(p))). (7.5)

Consequently, using (7.4) and (7.5) and coming back to(773) is established. O
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Proof of Proposition 5.1.

In this proofo’ (resp.?’) stands ford, o (resp.d.b). LetY = (Y;*),co.1], be the
solution of (5.1). According to Theorem 2.2.2 of [28], we Ba% € D>, Vs € [0, T7.
Let s > 0. Sinceo is non-degenerate, by Theorem 2.3.1 of [28], the law oAdmits
a density that we denote ky(xo, -).

The second step consists in a re-scaling, transformingrtteestinto a noise multi-
plicative parametek; we set\ = /s. Indeed,(Y;) is distributed aséYiz), where

A

t i
Y2 =0t A [ o(e2 YW, 4 [b(ra2 v 2)ar.
0 0

In particular,Y; ~ Y;*. By previous argument;* € D>, for everyt > 0; it admits
a density denotegh(x, -).
Our aim consists in showing the existence of a conskgrguch that

K
sup  pr(a0,y) < T @+ lwol), (7.6)
YER,AE|0,V/T]

where,K is a constant which does not dependigrand \.
In fact, we will prove that, for every €0, v/T

K
sup (0, y) < (14 |ol). (7.7)
yeR,t€]0,1]
We set N
Y _
Zh =1t : Yo telo1,

so that, the density, of Z}* fuffills
Q@ (2) = A\pM o, Az + 1), (t,2) €[0,1] x R.
In fact, we will have attained (7.7), if we show

sup g (z) < K(1+ |zo|?), t €]0,1]. (7.8)
z€R,\€]0,\/T]

We express the equation fulfilled 1% it yields
t t
/UA (r, Z)dW, +/ (r, ZNdr, (7.9)
0 0

where, for everyr, z) € [0,1] x R, we set
oMr, z) = o(rA2 Az 4 x0), andb?(r, z) = Ab(rA%, Az + ).

At this stage, we state the following lemma.
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Lemma 7.2.
For A €]0,1], we setZ; = (Z})te[o’ﬂ, as the solution 0f(7.9). Then, for every
~ > 1, we have

sup E
A€]0,VT

sup | Z]"
t€[0,1]

<O [xo]), (7.10)

where,C is a constant depending dfo’ ||, ||| andT’, but which does not depend
on .

Remark 7.3.
(i) For simplicity in the whole proof of Proposition 5.1, welkset T = 1.

(i) Since there is no more ambiguity, we will use again theeles in the considered
integrals.

Proof of Lemma 7.2.

Let A €]0,1] andy > 1. In the proofC} is a constant depending @ry andC’, C3
depend o, ||o’|| @nd||t/||. Using Burkholder-Davis-Gundy and Jensen inequal-
ities, we get

t

E | sup |Z,|"
p€0,]

t
<O </ E[|o(sAN,A\Zs + x0)|"] ds —|—/ E[|Ab(sA, A Zs + x0)|"] ds) )
0 0

Sincecs’ andd’ are boundedy andb have linear growth. Therefore, previous expres-
sion is bounded by
ds) .

sup |Z,|”

t
Co(1+ \7) 1+|x0|7+)€f/ E
0 p€E(0,s]

Since\ €]0, 1], we obtain

t
E | sup |Z,]"| < C3 1+xo|7+/ E | sup |Z,|"|ds |,
p€E(0,1] 0 pE[0,s]
Consequently, using Gronwall’'s lemma, the result follows. O

Now, in order to perform (7.8), we make use of Malliavin célsuderiving in the
sense of Malliavin the expression (7.9). Omittikgn the notationZ;), we get

¢ ¢
D, Z; = a(r)\z,)\Zr+x0)]1[,,’l](t)+)\/a’(s)\z,)\ZS+xO)DTZSdWS+)\2/b'(s)\z, ANZs+1x0) Dy Zsds.
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Consequently,
t t
D, Zy = o(rN, NZp+x0)E )\/0'(3)\2, N5 + xo)dWs + )\z/b'(s/\z, N+ xo)ds |, r < t,
T T
where,£(.S) denotes the Doléans exponential of the continuous semtingale,
t t
Sy = )\/o'(s)\z, A + 30)dW + )\z/b’(s)\z, Mg + mp)ds, t € ]0,1].
We recall that,£(S;) = exp(S; — 3[S]¢). Consequently, for fixed €]0, 1], we have
t
<DZ,DZ, >= / 2 (PN, NZy + 30)EX(N; 7, t)dr, (7.11)
0

where,
t t

E(N\;r,t) =exp /\/0/(3/\2, A+ x0)dWs + /\2/(b’ —

T T

(o)?
2

V(8N NZs + x)ds

(7.12)
We set, for every < t,
DsZt

<DZ,DZ; >
In view of the application of Proposition 2.1.1 in [28], whignplies the useful expres-
sion (7.26) for the density aof;, we will need to show that belongs to the domain
of the divergence operatoér denoted byDom 4. It will be the case ifG € ILLZ(H),
with H = L2([0,T]). In fact, by the lines after Definition 1.3.2 in [28], we knohat
LY2 c Dom 6.

SinceZ; € D>, we can deduce thaém belongs tdD>, provided that
we prove, that

G\ s) =

1
< DZ;,DZ, >
see Lemma 2.1.6 of [28]. Sinde™ is an algebraz(\, s) € D> for s €]0,7] and so
G(A, s) € D2 (7.13), will be the object of Proposition 7.5. AccordingDefinition
1.3.2 of [28], to affirm that7()\, -) belongs tdL'2 it remains to show the existence of
a measurable version &1, G(), s), (s1,s) € ([0,t])?, such that

e IP(Q), Vp > 1, (7.13)

E /(DslG()\,s))zdslds < 4o0. (7.14)
0,t]2

We first state the following Lemma.



28 Nadia Belaribi and Francesco Russo

Lemma 7.4.
For everyg > 1, there exists a constant,(¢), such that

sup  E[(E(Ar,1))7] < Colg). (7.15)

0<r<t<1,1€]0,1]

Proof of Lemma 7.4.
Let A €]0,1] andq > 1. For fixed, 0< r <t < 1, (7.12), gives

t t
EYNrt) = M(\;r,t,q). exp X —0) _q / )2(pA%, A2, +wo)dp+qkz/b’(p/\2, AZ, + xo)dp |,

where,

t t
M(X\;r,t,q) = exp /)\qa/(p)\z, A, + x)dW, — %/(q/\ol)z(p)\z, AZ, + xo)dp
T T
(7.16)
In fact, sincer’ is bounded, the stochastic exponenli&\; r, ¢, q) verifies Novikov's
condition; therefore it is a martingale. SB(M (\;r,t,q)) = 1.
In addition, sincé’ is also bounded andl €]0, 1], we get

E[(E(A 7 1)) < Co(g),

where, Cy(q) = exp(2(¢* — q)||o’||% + 2¢||V/||.). Consequently, (7.15) is estab-
lished. O

Proposition 7.5.
There is a constari (not depending om,), such that

sup E[(<DZ,DZ >)?P|<C, Vp>1
(t:A)€(0.1))?

Proof of Proposition 7.5.

Let¢ €]0,1] fixed, ¢, = Cot , wherec, is a non-degeneracy constanta;, in the
sense of Definition 2.1. ConS|dere]0 e[, we setN = N* =< DZ} DZ} >
where we recallthat DZ,, DZ, > appearsin (7.11) and (7.12). According to Propo-
sition 7.1, we have to evalual® NV < ¢).



Fokker-Planck and Fast Diffusion 29

Sinceos is non-degenerate, we have

P (/t drE2(\;r,t) <

€
0 Co

1 ; €
P / drE?(\rt) | </ —
t—Ae Co
€0
1 1
t 2 t 2 s
P ((/ dr) — (/ Ez(A;r,t)dr> > —).
t— e t— 2 Co
€0 0

. . . . 46
By the inverse triangle inequality of the?([t — < t])-norm, we get

P(N <e¢)

IN

) , (7.17)

IN

(7.18)

Nl
N— —

IN

Co

P(N <e) <P (/t4€(1—5()\;r,t))2dr> £>.

€0

Letp > 1. By Chebyshev's inequality, this is lower than

(%)E l(/;(l— g, t))zdr> 1 .

Then, using Jensen’s inequality, we get

Co

/t E[(1— &\ r, )] dr. (7.19)
t

_ e
c

-1
P(N <¢) < 4P<i)
Furthermore, (7.12) implies th&(\; r, t) solves
t t
E\mit) = 1+)\/ EN;r,8)o’(sN?, /\Zs—i—:vo)dWs—i—)\z/ EN;r, s)V (8N, A Zs+x0)ds.
T T

Thus,

t 2(p+1)
E [(E(A;r,t) — 1)*"] < 220VE )\/5()\; 7, 8)0 (SN, NZg + x0)dW ]

T

t 2(p+1)
/\2/5(/\;r,s)b’(s/\2,/\Zs + x)ds ]

T

+ 22(p+1)]E

(7.20)
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On one hand, using Jensen’s inequality and|0, 1], we obtain

t 2(p+1) t
E AZ/E()\;r,s)b'(s)\z,)\Zs + x0)ds < ||b'|ootr|2””/]E [(E(N; 7, 8))" 7] ds.
' ' (7.21)
On the other hand, by Burkholder-Davis-Gundy'’s inequalitg get
t 2(p+1) t p+1

E <E

)\/E(A;r,s)ol(s)\z,)\Zs + 20)dW's

T

N2 / EXN; 7, 8)(0")2(sN2, A Zs + x0)ds

r

Applying again Jensen’s inequality gives

5|
l

Therefore, (7.21), (7.22) and (7.20), lead to

t
)\/E(A;r,s)o'(s)\z,)\Zs + 20)dW's

s

2(p+1)-| ¢
J < ||O',||Oo|t—Tp/E [(E(N; 7, 8))" 7] ds.
T

(7.22)

E[(E(\r,t) =17 < C(T, ||o"] ., Ib’lloo)t—?"”/E [(E(Nir, )] ds.

r

By Lemma 7.4 and (7.23), there is a const@pt2(p + 1)), such that 729
E[(E(Xr,t) = 1] < CUT, o[l [1¥]l) Co(2(p + 1)) (7.24)

Then, coming back to (7.19) and using (7.24), we obtain
Ve €]0,¢)] P(N <€) < C(p)e™, (7.25)

2(p+1) ’ /
where,C(p) = AT Co(2(p + 1;35’;1?’ o loe- [[¥]loc) Finally, using Proposition

7.1, the result follows. O

We go on with the proof of Proposition 5.1 taking into accotlm& considerations
before Lemma 7.4. In fact, Proposition 2.1.1 of [28], allowwsexpress, for fixed
t €]0, 1]

0:'(2) = E [17,50(G)]; (7.26)

using Cauchy-Schwarz inequality, it implies that

i) < \[E[I5@)7]. (7.27)
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According to (1.48) in [28], (7.27) implies

@) <|E [/ G?(\, s)ds

0

+E /(DSlG(A,s))zdslds . (7.28)
0,t)2

Now, we state a result that provides an estimation of the emm$ in the right-hand
side of (7.28). Indeed, we have

Proposition 7.6.For every\ €]0,1], G(),-) € L2, Moreover, the following state-
ments hold

(i) E u‘ GA(A, s)ds} < Cr (14 |z0f?),

(i) E L [ (Ds,G(, 8))2ds1ds | < Ca (14 |zol®),

0,t)2

where,C1 andC; depend orY', ||o’||. and ||V]|.., but do not depend ony.
Proof of Proposition 7.6.

(i) First, we setl, = E [jt’ G?(\, s)ds} )

Moreover, we recall thaot

(SN, NZs + 30)E(N; s, t)
Gden

By Cauchy-Schwarz inequality, we have

t
I < (E / s)\ L AZs + 1 ds]

0
Sinceo has linear growth, by Lemma 7.2 and using again Cauchy-Sahnequality,
there is a constartt; such that

G\ s) = , where, Gqen=< DZ;, DZ; >

¢ 3
EYN; s, t)
/ Gden ] ) ) (7.29)

0

1
4

L < Cy (14 |o?) (E [de—S]/E[ga(A;s,t)] ds) , (7.30)
0

Consequently, using Proposition 7.5 and Lemma 7.4, theitiénst of Proposition 7.6
is established.

(i) We setl, = E

f2 (Ds,G(A, s))zdslds] :
0.4]
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On one hand, using integration by parts, we obtain

E(N; s, t
Ds,G(\,5) = Ao/ (8N, AZs + 0)0(5:0%, N s, + 20)E(N; 84, s)i(Gds )1[075](31)
en
Dy, E(N; s,
4 0(8)37 A\, + mO)L’S’)
Gden

D

— (8N NZs + x0)E(N; s,t)#de”. (7.31)

den

The right-hand side being measurable with respe€t to [0, 72, G()\, -) will belong
to IL12 if (ii) is established.

Now, we need to evaluatB;, £(\; s,t). From now on, for the sake of simplicity,
we will only expose the calculations in the case when 0. In fact, we have

¢
2
Dy, E(N;s,t) = E(N;s,t) Dy, (A/U'(ﬁ/\z,/\Zg + 20)dWy — %/(U’)Z(KAZ,/\ZZ + xo)dﬁ)

S S

=E(N\;s,t) ()\U’(sl/\z, A, + xo)]l[&t](sl)
t
+ No(5:0%, A\ s, + x) / T, 4 ()" (EN* NZy + x0)E(N; 81, €)dW,

t
— N0 (802 M s, + o) / Loy (O)(0'0") (N2 A Zg + 20)E(N; 51y E)d() .
(7.32)

On the other hand, we get

¢
Dy, Gden= 2/\/00/(5/\2, e + »To)]l[sl,t] (£)a (810, N Zs, + x0)E(N; 81, €)EX(N; €, ) dE
0
¢

+2 / 07 (EN A Ze + 20)E(N €, () Dy E(N €, )dE. (7.33)
0

Therefore, coming back to (7.31) and using (7.32), we olitzn

I, < 4[J1 + Jo+ Jg] , (7.34)
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|

E(N;s,t)

0" (SN, NZs + x0) 0 ($10%, A Zs, + T0)E(N; 51, )
Gden

=

I

&
c;\W

S
ds / ds;
0

Jo=TFE / ds;dso?(sN, N\ Zs + 1)
[0.1]?

EX(\;s,t)

Gé (]l[st]( ) (81>‘ )‘Zsl'l'mo)
en

¢ 2
U(sl)‘za Ns, + xO) / ]1[51,t](€)0//(£>\2a Ay + 1’0)5()\; S1, e) |:dW£ —d ”(0\2 Ay + mo)dé}) ,

S

2 2
=t | [ dsds” (X2 4 20) 23 5, 1) (Doy G|
012 den
with, D, Ggen Calculated in (7.33).
In the sequel, we will enumerate constahisto K, all those will not depend on
Zo Or t, but eventually oiY", o andb. We start estimating.
Sincec’ is bounded, by Cauchy-Schwarz inequality we have

t s t s
4 .
J1 < K, (E [/ ds/dsla“(sl/\z, AZg, + xo) /ds/d31€4(/\; s,t)w])
den

0 0 0 0

(NI

E

Sinceo has linear growth, Lemma 7.2 and a further use of Cauchy-8chiwequality
imply that.J; is bounded by

K (14 |0of?) (B [G52]) %(E [/tds/sdslé’m)\st]E[/tds/sdslé’l A; 81, )])
0

0

eI

Therefore, by Proposition 7.5 and Lemma 7.4, we obtain that
J1 < K (14 |mof?) (7.35)
Now, we go on with the analysis ob. Sinceo’, ¢’ are bounded, we have

EX(N\; s,t)

Jo < K,E / dsds,0° (SN, \Zs + x,) >
Gden

0,t]2

<l + 0%(5:N2, A, + xo) M?(s, 81; t)) ,
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t
where, M(s,si;t) = [ 0" (UN, N2y + x0)E(N; s1,0)dWy, t>svs,, IS @ martingale
sVsq
with all moments, by Lemma 7.4.

Sinceo has linear growth, using Cauchy-Schwarz inequality and hani.2, we
get

1
t 8 4
/dsé'le()\;s,t)] E [Gaée ) / dsds, E[M®(s,sy;t)] | -

Jo < Ks(14|z)%) (E
0 0,2

Then, Burkholder-Davis-Gundy’s inequality, Lemma 7.4 &udposition 7.5 imply
J2 < Ko(1+ |aof*). (7.36)

Finally, we treat/z. Applying Cauchy-Schwarz inequality, we have

o (SN, A Zs + x0)

J<|E /dsd31 o E'Ns,t) | E /dsdsl(DslGden)4
den

0,2 0,2

Sinceos has linear growth, again by Cauchy-Schwarz inequality agehina 7.2, we
get

J3 < Ki(1+4 |x/?) (]E (G /ds]E [516()\;5,15)}) (]E [/ dsl(DslGden)4]> ,
0 0

then, by Lemma 7.4 and Proposition 7.5, it follows
%
) . (7.37)

t

/ dSl(DslGden)4

J3 < Ko(1+ |o/?) (]E
0

Sinceos’ is bounded, (7.33) and Jensen’s inequality give

t
o [ / d81(Ds, Gaen)*| < Ko (A1 + Ag), (7.38)
0
where,
¢t i
A1 =E /dsl/dfo“(sl)\z,/\Zsl + x0) 0" (EN?, N Z¢ +x0)54()\;31,§)58()\;§,t)] ,
LO 51
rt i
Ay =E / ds, / dET*(EN2, N Ze + 20)E4(N; €, 1) (DSIE(A;g,t))“] .
L0 0
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Sinceo has linear growth, Cauchy-Schwarz inequality and Lemmanigy that A;
is bounded by

Ko (1+ |z0/?) (]E [/dsl/d§58(>\;31,§)515()\;§,t)]) .
0 S1

Again, by Cauchy-Schwarz inequality and Lemma 7.4, we abtai
Ar < Ky (1+ |zof®) (7.39)

Now, we go on with the estimation of,. Using Cauchy-Schwarz inequalityl; is
bounded by

[NIE

K, |E / dsydEa™(EN, N Ze + o) | B / ds,deES (N €,1) (Da, EN E,1))°
O,t]z Ozt]z

Sinceo has linear growth, Cauchy-Schwarz inequality and Lemmaeaa to

Bl

Ap < Koy (1+ | | B / ds,de€° (N E) | E / dside (DueNe 0| |
0,t]2 0,t]2

Lemma 7.4 implies

Ay < Ky, (1+ \xo|8) E / ds,d€ (Dslé'()\;g,t))l6 . (7.40)
0,t]2

Sinces’ andos” are bounded, using (7.32) and Jensen’s inequality, itvicllthat

E / ds,d€ (D5, E(N€,1))"°| < Kus(Ra+ Rp), (7.41)
0,t)2

where,

Ri=E / ds,dEEY (N €, 1) |
[0,¢]?
i ¢
Ry =TFE / ds,;dE** (8.0, N gy + ) EX (N E,8) | M*(s1,&3t) + / E¥N;sy,p)dp | |
[0,1]2 £Vsy
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t
where, M (s1,&;t) = [ 0" (pA, AZ,420)E(N; 1, p)dW, is amartingale, by Lemma
§Vs1
7.4.

Clearly, by Lemma 7.4R; is uniformly bounded it andz,. On the other hand,
using Cauchy-Schwarz and Jensen inequalfigss bounded by

¢
K| E /dsldfo32(sl)\2,)\Zsl—1—3(:0)532()\;5,15) E /d$1d§ Maz(sl,f;t)+/

0,2 0,t]2 §Vsy

Since o has linear growth, again by Cauchy-Schwarz inequality, toenv.2 and
Lemma 7.4, we get

Ro < Koy (1+ |2 ) E / dsydeM* (s, € 1)

0,t]2
Then, Burkholder-Davis-Gundy'’s inequality gives
Ry < Kig (1+ |z|'®) . (7.42)
Coming back to (7.40), using (7.42) and (7.41), we obtain
Ap < Ko (1+ |z0/*%) (7.43)
thus, replacing (7.39) and (7.43) in (7.38) and coming badk 137), imply
J3 < Koo (1+ |20/?) - (7.44)

Consequently, substituting (7.35), (7.36) and (7.44) iB4Y, item (ii) of Proposition
7.6 is established. O

Now, coming back to the proof of Proposition 5.1 and subtituin (7.28), the
first and the second item of Proposition 7.6, expressior) {5.2erified. Finally, this
concludes the proof of Proposition 5.1. O

7.2. Proof of Proposition 4.1

(i) This is a well-known fact which can be established by axtjon.

(ii) For M > 1, we consider a sequence of smooth functi@m’g), such that
=0, if|z|>M+1,;
c M(z) <1, if |z| € [M, M + 1];
=1, if|z|] <M.

EF(N; s1,p)dp

(NI
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o (@M)"(x) =0, if |z & [M, M +1].
« (M) is uniformly bounded inV/ by some constar.

Clearly,o™ — 1 and(¢™)” — 0, pointwise, as\l — +-oc.
By (4.1), we have

/goM(x)U(t,x)dm: l+/ds/Um(s,x)(goM)"(m)dx. (7.45)
0

R R

Letting M — +oc, by Lebesgue’s dominated convergence theorem, the lefi-tide
of (7.45) converges td U(t, z)dz. The integral on the right-hand side of (7.45) is
R

bounded by
t M+1 t
C’/ds / U™ (s,x)dr < C/So‘m (D + EM?s72*) T s,
0 M 0
o T
< ﬁ/sﬁd&
(k%)= )

Previous integral is finite sianT—m > 0, for everym € (0, 1).
Therefore, the integral in the right-hand side of (7.45)gmezero as\l — +oo.
This concludes the proof of the second item of Propositidn 4.

(iii) Let ~ be a continuous and bounded function®nFor everyt > 0, we have
~ 1
/ U(t,x)y(z)de = / t=(D+ k\m\zfza) oy (z)de,
R R

1
ok ka2

= aD 1-m d l -
/Rxfy(x)< R )

1+m
D 21-m) D
= 7/dy7 (\/Tyt"‘> (1+y?) T,
Vi e k

where, for the last equality we sgt= %xt*a. Then, using the change of variable

1]

y = tan(z), we get

/Ru(t’xh(x)dm - DLT / gl (@taf’(z)to‘> [cog2)] T dz.

[NIE]
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Then, by Lebesgue’s dominated convergence theorem,géttjo to zero, we obtain

14+m
D 2i-m)

L
Vi

lim /RU(t,x)'y(x)dm =~(0)

t—0

wherel is defined in (1.4).
Finally, replacingD by its expression in (1.4), the result follows.
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