EXTRACTING GEOMETRICAL FEATURES & PEAK FRACTIONAL ANISOTROPY FROM THE ODF FOR WHITE MATTER CHARACTERIZATION

Aurobrata Ghosh 1 Rachid Deriche 1
1 ATHENA - Computational Imaging of the Central Nervous System
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Spherical Functions (SF) play a pivotal role in Diffusion MRI (dMRI) in representing sub-voxel-resolution micro- architectural information of the underlying tissue. This in- formation is encoded in the geometric shape of the SF. In this paper we use a polynomial approach to extract geometric characteristics from SFs in dMRI such as the maxima, min- ima and saddle-points. We then use differential geometric tools to quantify further details such as principal curvatures at the extrema. Finally we propose new scalar measures like the Peak Fractional Anisotropy (PFA) and Total-PFA, to represent this rich source of information for characteriz- ing white-matter (WM) fibers. As an example we illustrate our method on the Orientation Distribution Function (ODF) estimated from real data.
Type de document :
Communication dans un congrès
IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Mar 2011, Chicago, United States. 2011
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00645804
Contributeur : Aurobrata Ghosh <>
Soumis le : lundi 28 novembre 2011 - 16:26:32
Dernière modification le : jeudi 11 janvier 2018 - 16:44:49
Document(s) archivé(s) le : mercredi 29 février 2012 - 02:30:06

Fichier

output.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00645804, version 1

Collections

Citation

Aurobrata Ghosh, Rachid Deriche. EXTRACTING GEOMETRICAL FEATURES & PEAK FRACTIONAL ANISOTROPY FROM THE ODF FOR WHITE MATTER CHARACTERIZATION. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Mar 2011, Chicago, United States. 2011. 〈hal-00645804〉

Partager

Métriques

Consultations de la notice

825

Téléchargements de fichiers

145