On generalized Kummer of rank 3 vector bundles over a genus 2 curve

Abstract : Let $X$ be a smooth projective complex curve and let $U_X(r,d)$ be the moduli space of semi-stable vector bundles of rank $r$ and degree $d$ on $X$ (see \cite{Se}). It contains an open Zariski subset $U_X(r,d)^s$ which is the coarse moduli space of stable bundles, i.e. vector bundles satisfying inequality $$ \frac{d_F}{r_F} < \frac{d_E}{r_E}. $$ The complement $U_X(r,d)\setminus U_X(r,d)^s$ parametrizes certain equivalence classes of strictly semi-stable vector bundles which satisfy the equality $$ \frac{d_F}{r_F} = \frac{d_E}{r_E}. $$ Each equivalence class contains a unique representative isomorphic to the direct sum of stable bundles. Furthermore one considers subvarieties $\SU_X(r,L) \subset U_X(r,d)$ of vector bundle of rank $r$ with determinant isomorphic to a fixed line bundle $L$ of degree $d$. In this work we study the variety of strictly semi-stable bundles in $\SU_X(3,\mathcal O _X)$, where $X$ is a genus 2 curve. We call this variety the generalized Kummer variety of $X$ and denote it by $\Kum_3(X)$. Recall that the classical Kummer variety of $X$ is defined as the quotient of the Jacobian variety $\Jac(X) = U_X(1,0)$ by the involution $L\mapsto L^{-1}$. It turns out that our $\Kum_3(X)$ has a similar description as a quotient of $\Jac(X) \times \Jac(X)$ which justifies the name. We will see that the first definition allows one to define a natural embedding of $\Kum_3(X)$ in a projective space (see section \ref{deg}). The second approach is useful in order to give local description of $\Kum_3(X)$ by following the theory developed in \cite{Be} (section \ref{sing}).
Type de document :
Article dans une revue
Le Matematiche, Università degli Studi di Catania, 2003, LVIII (II), pp.237-255
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00645925
Contributeur : Alessandra Bernardi <>
Soumis le : lundi 28 novembre 2011 - 18:55:33
Dernière modification le : lundi 10 décembre 2012 - 14:32:16
Document(s) archivé(s) le : mercredi 29 février 2012 - 02:30:58

Fichier

190-711-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00645925, version 1

Collections

Citation

Alessandra Bernardi, Damiano Fulghesu. On generalized Kummer of rank 3 vector bundles over a genus 2 curve. Le Matematiche, Università degli Studi di Catania, 2003, LVIII (II), pp.237-255. 〈hal-00645925〉

Partager

Métriques

Consultations de la notice

196

Téléchargements de fichiers

68