On generalized Kummer of rank 3 vector bundles over a genus 2 curve

Alessandra Bernardi, Damiano Fulghesu

To cite this version:

Alessandra Bernardi, Damiano Fulghesu. On generalized Kummer of rank 3 vector bundles over a genus 2 curve. Le Matematiche, 2003, LVIII (II), pp.237-255. hal-00645925

HAL Id: hal-00645925
https://inria.hal.science/hal-00645925
Submitted on 28 Nov 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON GENERALIZED KUMMER OF RANK 3 VECTOR BUNDLES OVER A GENUS 2 CURVE

ALESSANDRA BERNARDI - DAMIANO FULGHESU

1. Introduction.

Let X be a smooth projective complex curve and let $U_{X}(r, d)$ be the moduli space of semi-stable vector bundles of rank r and degree d on X (see [8]). It contains an open Zariski subset $U_{X}(r, d)^{s}$ which is the coarse moduli space of stable bundles, i.e. vector bundles satisfying inequality

$$
\frac{d_{F}}{r_{F}}<\frac{d_{E}}{r_{E}} .
$$

The complement $U_{X}(r, d) \backslash U_{X}(r, d)^{s}$ parametrizes certain equivalence classes of strictly semi-stable vector bundles which satisfy the equality

$$
\frac{d_{F}}{r_{F}}=\frac{d_{E}}{r_{E}}
$$

Each equivalence class contains a unique representative isomorphic to the direct sum of stable bundles. Furthermore one considers subvarieties $S U_{X}(r, L) \subset$ $U_{X}(r, d)$ of vector bundle of rank r with determinant isomorphic to a fixed line bundle L of degree d. In this work we study the variety of strictly semistable bundles in $S U_{X}\left(3, \mathcal{O}_{X}\right)$, where X is a genus 2 curve. We call this variety the generalized Kummer variety of X and denote it by $\operatorname{Kum}_{3}(X)$. Recall that
the classical Kummer variety of X is defined as the quotient of the Jacobian variety $\operatorname{Jac}(X)=U_{X}(1,0)$ by the involution $L \mapsto L^{-1}$. It turns out that our $\operatorname{Kum}_{3}(X)$ has a similar description as a quotient of $\operatorname{Jac}(X) \times \operatorname{Jac}(X)$ which justifies the name. We will see that the first definition allows one to define a natural embedding of $\mathrm{Kum}_{3}(X)$ in a projective space (see section 4). The second approach is useful in order to give local description of $\operatorname{Kum}_{3}(X)$ by following the theory developed in [1] (section 3).

We point out the use of [4] for local computations.
We want to tanks Professor Dolgachev for his patient guidance and his generous suggestions and also Professor Ragusa for a good organization of the Pragmatic.

2. Generalized Kummer variety.

Let A be an s-dimensional abelian variety, A^{r} the r-Cartesian product of A, and $A^{(r)}:=A^{r} / \Sigma_{r}$ be the r-symmetric power of A. We can define the usual map $a_{r}: A^{(r)} \rightarrow A$ such that $a_{r}\left(\left\{x_{1}, \ldots, x_{r}\right\}\right)=x_{1}+\cdots+x_{r}{ }^{1}$. This surjective map is just a morphism of varieties since there is no group structure on $A^{(r)}$. However, all fibers of a_{r} are naturally isomorphic.

Definition 2.1. The generalized Kummer $_{r}$ variety associated to an abelian variety A is

$$
\operatorname{Kum}_{r}(A):=a_{r}^{-1}(0)
$$

It is easy to see that

$$
\operatorname{dim}\left(\operatorname{Kum}_{r}(a)\right)=s(r-1)
$$

When $\operatorname{dim} A>1, A^{(r)}$ is singular. If $\operatorname{dim} A=2, A^{(r)}$ admits a natural desingularization isomorphic to the Hilbert scheme $A^{[r]}:=\operatorname{Hilb}(A)^{[r]}$ of $0-$ dimensional subschemes of A of length r (see [5]). Let $p r: A^{[r]} \rightarrow A^{(r)}$ be the usual projection. It is known that the restriction of $p r$ over $\operatorname{Kum}_{r}(A)$ is a resolution of singularities. Also $\widetilde{\operatorname{Kum}}_{r}(A)$ admits a structure a holomorphic symplectic manifold (see [1]).

2.1 The Kummer variety of Jacobians.

Let X be a smooth connected projective curve of genus g and $\mathrm{SU}_{X}(r, L)$ be the set of semi-stable vector bundles on X of rank r and determinant which is

[^0]isomorphic to a fixed line bundle L. Let $\operatorname{Jac}(X)$ be the Jacobian variety of X which parametrizes isomorphism classes of line bundles on X of degree 0 , or, equivalently the divisor classes of degree 0 . We have a natural embedding:
\[

$$
\begin{gathered}
\operatorname{Kum}_{r}(\operatorname{Jac}(X)) \hookrightarrow \operatorname{SU}_{X}\left(r, \mathcal{O}_{X}\right) \\
\left\{a_{1}, \ldots, a_{r}\right\} \mapsto\left(L_{a_{1}} \oplus \ldots \oplus L_{a_{r}}\right)
\end{gathered}
$$
\]

where $L_{a_{i}}:=\mathcal{O}_{X}\left(a_{i}\right)$. Obviously, the condition $a_{1}+\ldots+a_{r}=0$ means that $\operatorname{det}\left(L_{a_{1}} \oplus \ldots \oplus L_{a_{r}}\right)=0$ and $\operatorname{deg}\left(L_{A_{i}}\right)=0$ for all $i=1, \ldots, r$. Consequently the $\operatorname{Kummer}^{\operatorname{variety}} \operatorname{Kum}_{r}(\operatorname{Jac}(X))$ describes exactly the completely decomposable bundles in $\mathrm{SU}_{X}(r)$ (from now on we'll write only $\mathrm{SU}_{X}(r)$ instead of $\mathrm{SU}_{X}\left(r, \mathcal{O}_{X}\right)$).

In this paper we restrict ourselves with the case $g=2$ and rank $r=3$. In this case $\operatorname{Kum}_{3}(\operatorname{Jac}(X))$ is a 4 -fold.

3. Singular locus of $\operatorname{Kum}_{3}(\operatorname{Jac}(X))$.

From now we let A denote $\operatorname{Jac}(X)$. Let us define the following map:

$$
\begin{array}{rlc}
\pi: A^{(2)} & \rightarrow & \operatorname{Kum}_{3}(A) \\
\{a, b\} & \mapsto & L_{a} \oplus L_{b} \oplus L_{-a-b} .
\end{array}
$$

This map is well defined and it is a $(3: 1)$ - covering of $\operatorname{Kum}_{3}(A)$. Let now $\rho: A^{2} \rightarrow A^{(2)}$ be the (2:1)-map which sends $(x, y) \in A^{2}$ to $\{x, y\} \in A^{(2)}$. If we consider the map:

$$
\begin{equation*}
p:=(\pi \circ \rho): A^{2} \rightarrow A^{(2)} \rightarrow \operatorname{Kum}_{3}(A) \subset A^{(3)} \tag{1}
\end{equation*}
$$

we get a ($6: 1$)-covering of $\operatorname{Kum}_{3}(A)$.
Notations: Let X and Y be two varieties and $f: X \rightarrow Y$ be a finite morphism. We let $\operatorname{Sing}(X)$ denote the singular locus of $X, B_{f} \subseteq Y$ the branch locus of f and $R_{f} \subseteq X$ the ramification locus of f.
Observation: $B_{\pi}=\pi\left(B_{\rho}\right)$.
Proof. Since $B_{\rho}=\left\{\{x, y\} \in A^{(2)} \mid x=y\right\}$ and $\pi(\{x, x\})=\{x, x,-2 x\} \in B_{\pi}$ we obviously get that $\pi\left(B_{\rho}\right) \subset B_{\pi}$.
Conversely, for any point $\{x, y, z\}$ of B_{π}, at least two of the three elements x, y, z are equal to some t. Therefore $\pi(\{t, t\})=\{x, y, z\}$, and hence $B_{\pi} \subset$ $\pi\left(B_{\rho}\right)$.

Since A^{2} is smooth, we have $\operatorname{Sing}\left(A^{(2)}\right) \subset B_{\rho}$. Obviously $B_{\rho} \subset R_{\pi}$, hence $\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right) \subset B_{\pi}$. As a consequence we obtain that $\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right) \subseteq B_{\pi}$. Therefore we have to study the (3:1)-covering $\pi: A^{(2)} \rightarrow \operatorname{Kum}_{3}(A)$.

Since π is not a Galois covering, in order to give the local description at every point $Q \in \operatorname{Kum}_{3}(A)$, we have to consider the following three cases separately:

1. $Q \in \operatorname{Kum}_{3}(A)$ s.t. $\pi^{-1}(Q)$ is just a point;
2. $Q \in \operatorname{Kum}_{3}(A)$ s.t. $\pi^{-1}(Q)$ is a set of two different points;
3. $Q \in \operatorname{Kum}_{3}(A)$ s.t. $\pi^{-1}(Q)$ is a set of exactly three points.

Let us begin studying these cases.
Case 3. When $Q \in \operatorname{Kum}_{3}(A)$ s.t. $\sharp\left(\pi^{-1}(Q)\right)=3$ we have that $Q \notin B_{\pi}$. Since $\pi\left(B_{\rho}\right)=B_{\pi}$ any point of $\pi^{-1}(Q)$ is smooth in $A^{(2)}$. Then Q is a smooth point of the Kummer variety.

Case 2. When $Q \in \operatorname{Kum}_{3}(A)$ s.t. $\sharp\left(\pi^{-1}(Q)\right)=2$ we fix the two points $P_{1}, P_{2} \in A^{(2)}$ s.t $\pi\left(P_{1}\right)=\pi\left(P_{2}\right)=Q$. In this case $Q=\{x, x,-2 x\}$ with $x \neq-2 x$; let us fix $P_{1}=\{x, x\}, P_{2}=\{x,-2 x\}$. Let $U \subset \operatorname{Kum}_{3}(A)$ be a sufficiently small analytic neighborhood of Q such that $\pi^{-1}(U)=$ $U_{1} \sqcup U_{2}$ where U_{1} and U_{2} are respectively analytic neighborhoods of P_{1} and P_{2} and also $U_{1} \cap U_{2}=\emptyset$. Let \widetilde{Q} a generic point of U, so $\widetilde{Q}_{\tilde{Q}}=\{x+\epsilon, x+\delta,-2 x-\epsilon-\delta\}$; the preimage of \widetilde{Q} by π is $\pi^{-1}(\widetilde{Q})=\{\{x+\epsilon, x+\delta\},\{x+\epsilon,-2 x-\epsilon-\delta\},\{x+\delta,-2 x-\epsilon-\delta\}\}$, but $\{x+\epsilon, x+\delta\} \in U_{1}$ and $\{x+\epsilon,-2 x-\epsilon-\delta\},\{x+\delta,-2 x-\epsilon-\delta\} \in U_{2}$, it means that P_{1} has ramification order equal to 1 and P_{2} has ramification order equal to 2 . Therefore there is an analytic neighborhood of P_{1} which is isomorphic by π to an analytic neighborhood of Q. This allows us to study a generic point of B_{ρ} instead of a generic point of B_{π}.

Case 1. When $Q \in \operatorname{Kum}_{3}(A)$ s.t. $\sharp\left(\pi^{-1}(Q)\right)=3$ we consider a point $P \in A^{(2)}$ s.t. $\pi^{-1}(Q)=P \Rightarrow Q=\{x, x, x\}$ s.t. $3 x=0 \Rightarrow x$ is a $3-$ torsion point of A. Now our abelian variety is a complex torus of dimension 2 , so we have exactly $3^{2 g}=3^{4}=81$ such points.

Proposition 3.1. The singular locus of $\mathrm{Kum}_{3}(A)$ is a surface which coincides with the branch locus B_{π} of the projection $\pi: A^{(2)} \rightarrow \operatorname{Kum}_{3}(A)$ and it is locally isomorphic at a generic point to $\left(\mathbb{C}^{2} \times Q, \mathbb{C} \times o\right)$ where Q is a cone over a rational normal curve and o is the vertex of such a cone (see [1]).

Moreover there are exactly 81 points of $\operatorname{Sing}\left(\operatorname{Kum}_{3}(X)\right)$ whose local tangent cone is isomorphic to the spectrum of:

$$
\frac{\mathbb{C}\left[\left[u_{1}, \ldots, u_{7}\right]\right]}{I}
$$

where I is the ideal generated by the following polynomials:

$$
\begin{aligned}
& u_{5}^{2}-u_{4} u_{6} \\
& u_{4} u_{7}-u_{5} u_{6} \\
& u_{6}^{2}-u_{5} u_{7} \\
& u_{3} u_{4}+u_{2} u_{5}+u_{1} u_{6} \\
& u_{3} u_{5}+u_{2} u_{6}+u_{1} u_{7} .
\end{aligned}
$$

Proof. According to what we saw in Case 2, an analytic neighborhood of $Q \in$ $\operatorname{Kum}_{3}(A)$ such that $\sharp\left(\pi^{-1}(Q)\right)=2$ is isomorphic to a generic element of B_{ρ}. We have to study the (2:1)-covering $A^{2} \rightarrow A^{(2)}$.
Since $A=\operatorname{Jac}(X), \mathrm{A}$ is a smooth abelian variety, this means that A is a complex torus $\left(\mathbb{C}^{g} / \mathbb{Z}^{2 g}\right)$ where g is the genus of X; in our case X is a genus 2 curve, $A \simeq\left(\mathbb{C}^{2} / \mathbb{Z}^{4}\right)$. Thus, in local coordinates at $P \in A, \widehat{\mathcal{O}_{P}} \simeq \mathbb{C}\left[\left[z_{1}, z_{2}\right]\right]$, so we consider U_{P} (a neighborhood of $P \in A$) isomorphic to \mathbb{C}^{2}. Therefore we obtain that locally at $Q \in A^{2}, \widehat{\mathcal{O}}_{Q} \simeq \widehat{\mathcal{O}}_{P} \otimes \widehat{\mathcal{O}}_{P} \simeq \mathbb{C}\left[\left[z_{1}, z_{2} ; z_{3}, z_{4}\right]\right]$.
We fix a coordinate system $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)$ in A^{2} such that $A^{2} \supset U_{P} \ni P=$ $(0,0 ; 0,0)$. Let Q be a point in U_{P}, in the fixed coordinate system $Q=$ $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)$. Since P is such that $\rho(P) \in B_{\rho}$, by definition of ρ, we have: $A^{(2)}=A^{2} /<i>$, where i is the following involution of U_{P} :

$$
\begin{align*}
& i: U_{P} \rightarrow U_{P} \tag{2}\\
& i:\left(z_{1}, z_{2} ; z_{3}, z_{4}\right) \mapsto\left(z_{3}, z_{4} ; z_{1}, z_{2}\right)
\end{align*}
$$

The involution i is obviously linear and its associated matrix is $M=e_{1,3}+e_{3,1}+$ $e_{2,4}+e_{4,2}$ (where $e_{i, j}$ is the matrix with 1 in the i, j position and 0 otherwhere).

Its eigenvalues $\lambda_{1}=-1$ and $\lambda_{2}=1$ have both multiplicity 2 , so its diagonal form is:

$$
\tilde{M}=(1,1,-1,-1)
$$

which in a new coordinate system:

$$
\left\{\begin{array}{l}
x_{1}=\frac{z_{1}+z_{3}}{2} \\
x_{2}=\frac{z_{2}+z_{4}}{2} \\
x_{3}=\frac{z_{1}-z_{3}}{2} \\
x_{4}=\frac{z_{2}-z_{4}}{2}
\end{array} .\right.
$$

corresponds to the linear transformation:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}, x_{2},-x_{3},-x_{4}\right)
$$

The algebra of invariant polynomials with respect to this actions is generated by the homogeneous forms ($x_{1}, x_{2}, x_{3}^{2}, x_{4}^{2}, x_{3} x_{4}$). Let us now consider these forms as local coordinates ($s_{1}, s_{2}, s_{3}, s_{4}, s_{5}$) around $\rho(P)$, here we have that the completion of the local ring is isomorphic to the following one:

$$
\left(\frac{\mathbb{C}\left[\left[s_{1}, \ldots s_{5}\right]\right]}{\left(s_{1}^{2}-s_{2} s_{3}\right)}\right) .
$$

Therefore B_{ρ} at a generic point is locally isomorphic to ($\mathbb{C}^{2} \times Q, \mathbb{C} \times o$) where Q is a cone over a rational normal curve (we can see this rational normal curve as the image of \mathbb{P}^{1} in \mathbb{P}^{3} by the Veronese map $\left.\nu_{2}:\left(\mathbb{P}^{1}\right)^{*} \rightarrow\left(\mathbb{P}^{3}\right)^{*}, \nu_{2}(L)=L^{2}\right)$ and o the vertex of this cone. (What we have just proved in our particular case of $\operatorname{Kum}_{3}(A)$ can be found in a more general form in [1].) Therefore we have the same local description of singularity of $\mathrm{Kum}_{3}(A)$ out of the correspondent points of the 81 three-torsion points of A.

Now we have to study what happens at those 3 -torsion. Let Q_{0} be one of them, we already know that $p^{-1}\left(Q_{0}\right)=(x, x):=P_{0}$ is such that $3 x=0$. Let us fix $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right) \in \mathbb{C}^{2} \times \mathbb{C}^{2}$ a local coordinate system around P_{0} in order to describe locally the $(6: 1)-$ covering $p: A^{2} \rightarrow \operatorname{Kum}_{3}(A)$. We observe that for a generic P in that neighborhood, the pre-image of $p(P)$ is the set of the following 6 points:

$$
\begin{gathered}
P_{1}:=\left(z_{1}, z_{2} ; z_{3}, z_{4}\right), \\
P_{2}:=\left(z_{3}, z_{4} ; z_{1}, z_{2}\right), \\
P_{3}:=\left(z_{3}, z_{4} ;\left(-z_{1}-z_{3}\right),\left(-z_{2}-z_{4}\right)\right), \\
P_{4}:=\left(\left(-z_{1}-z_{3}\right),\left(-z_{2}-z_{4}\right) ; z_{3}, z_{4}\right), \\
P_{5}:=\left(\left(-z_{1}-z_{3}\right),\left(-z_{2}-z_{4}\right) ; z_{1}, z_{2}\right), \\
P_{6}:=\left(z_{1}, z_{2} ;\left(-z_{1}-z_{3}\right),\left(-z_{2}-z_{4}\right)\right) .
\end{gathered}
$$

Observe that $i\left(P_{1}\right)=P_{2}, i\left(P_{3}\right)=P_{4}, i\left(P_{5}\right)=P_{6}$ where i is the involution defined in (2). We now define a trivolution τ of $\mathbb{C}^{2} \times \mathbb{C}^{2}$ as follows:

$$
\begin{align*}
\tau: & \mathbb{C}^{2} \times \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \times \mathbb{C}^{2} \tag{3}\\
\left(z_{1}, z_{2} ; z_{3}, z_{4}\right) & \mapsto\left(z_{3}, z_{4} ;\left(-z_{1}-z_{3}\right),\left(-z_{2}-z_{4}\right)\right) .
\end{align*}
$$

It is easy to see that:

$$
\begin{aligned}
P_{1} \xrightarrow{\tau} P_{3} \xrightarrow{\tau} P_{5} \xrightarrow{\tau} P_{1}, \\
P_{2} \xrightarrow{\tau} P_{6} \xrightarrow{\tau} P_{4} \xrightarrow{\tau} P_{2}
\end{aligned}
$$

The matrices that represent i and τ are respectively:

$$
i=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad \tau=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & -1 & 0 \\
0 & -1 & 0 & -1
\end{array}\right)
$$

furthermore $<\tau, i>\simeq \Sigma_{3}$, then the local description of $\operatorname{Kum}_{3}(X)$ around Q_{0} is isomorphic to A^{2} / Σ_{3}.

In what follows we have used [4] program in order to do computations. First we recall Noether's theorem ([3] pag. 331)
Theorem 3.2. Let $G \subset G L(n, \mathbb{C})$ be a given finite matrix group, we have:

$$
\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{G}=\mathbb{C}\left[R_{G}\left(z^{\beta}\right):|\beta| \leq|G|\right] .
$$

where R_{G} is the Reynolds operator.
In other words, the algebra of invariant polynomials with respect to the action of G is generated by the invariant polynomials whose degree is at most the order of the group. In our case the order of G is 6 , so it is not hard to compute $\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right]^{G}$. Then, after reducing the generators, we obtain that $\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right]^{G}$ is generated by:
$f_{1}:=z_{2}^{2}+z_{2} z_{4}+z_{4}^{2}, \quad f_{2}:=2 z_{1} z_{2}+z_{2} z_{3}+z_{1} z_{4}+2 z_{3} z_{4}$, $f_{3}:=z_{1}^{2}+z_{1} z_{3}+z_{3}^{2}, \quad f_{4}:=-3 z_{2}^{2} z_{4}-3 z_{2} z_{4}^{2}$,
$f_{5}:=z_{2}^{2} z_{3}+2 z_{1} z_{2} z_{4}+2 z_{2} z_{3} z_{4}+z_{1} z_{4}^{2}$,
$f_{6}:=-2 z_{1} z_{2} z_{3}-z_{2} z_{3}^{2}-z_{1}^{2} z_{4}-2 z_{1} z_{3} z_{4}, f_{7}:=3 z_{1}^{2} z_{3}+3 z_{1} z_{3}^{2}$.
Let us now write $\mathbb{C}\left[z_{1}, \ldots, z_{4}\right]^{G}=\mathbb{C}\left[f_{1}, \ldots, f_{7}\right]$ as:

$$
\mathbb{C}\left[u_{1}, \ldots, u_{7}\right] / I_{G},
$$

where I_{G} is the syzygy ideal. It is easy to obtain that I_{G} is generated by the following polynomials:

$$
\begin{gathered}
u_{1}\left(u_{2}^{2}-4 u_{1} u_{3}\right)+3\left(u_{5}^{2}-u_{4} u_{6}\right) \\
u_{2}\left(u_{2}^{2}-4 u_{1} u_{3}\right)+3\left(u_{4} u_{7}-u_{5} u_{6}\right) \\
u_{3}\left(u_{2}^{2}-4 u_{1} u_{3}\right)+3\left(u_{6}^{2}-u_{5} u_{7}\right) \\
u_{3} u_{4}+u_{2} u_{5}+u_{1} u_{6} \\
u_{3} u_{5}+u_{2} u_{6}+u_{1} u_{7} c r
\end{gathered}
$$

and so we have the completion of the local ring at P :

$$
\widehat{\mathcal{O}}_{P} \simeq \frac{\mathbb{C}\left[\left[u_{1}, \ldots, u_{7}\right]\right]}{I_{G}} .
$$

Let now calculate the tangent cone in Q_{0} in order to understand which kind of singularity occurs in Q_{0}. With [4] aid we find that this local cone is:

$$
\operatorname{Spec}\left(\frac{\mathbb{C}\left[\left[u_{1}, \ldots, u_{7}\right]\right]}{I}\right)
$$

where I is the ideal generated by the following polynomials:

$$
\begin{gathered}
u_{5}^{2}-u_{4} u_{6} \\
u_{4} u_{7}-u_{5} u_{6} \\
u_{6}^{2}-u_{5} u_{7} \\
u_{3} u_{4}+u_{2} u_{5}+u_{1} u_{6} \\
u_{3} u_{5}+u_{2} u_{6}+u_{1} u_{7} .
\end{gathered}
$$

The degree of the variety $V(I) \subset \mathbb{P}^{6}$ is 5 , this means that Q_{0} is a singular point of multiplicity 5 .

What we want to do now is to describe the singular locus of the local description. Let us start to calculate the Jacobian of $V\left(I_{G}\right)$, what we find is the following 5×7 matrix:
$J_{G}:=\left(\begin{array}{ccccccc}u_{2}^{2}-8 u_{1} u_{3} & 2 u_{1} u_{2} & -4 u_{1}^{2} & -3 u_{6} & 6 u_{5} & -3 u_{4} & 0 \\ -4 u_{2} u_{3} & 3 u_{2}^{2}-4 u_{1} u_{3} & -4 u_{1} u_{2} & 3 u_{7} & -3 u_{6} & -3 u_{5} & 3 u_{4} \\ -4 u_{3}^{2} & 2 u_{2} u_{3} & u_{2}^{2}-8 u_{1} u_{3} & 0 & -3 u_{7} & 6 u_{6} & -3 u_{5} \\ u_{6} & u_{5} & u_{4} & u_{3} & u_{2} & u_{1} & 0 \\ u_{7} & u_{6} & u_{5} & 0 & u_{3} & u_{2} & u_{1} \\ & & & & & & \end{array}\right)$
Local equations define a fourfold, so we have to find the locus where the dimension of $\operatorname{Ker}\left(J_{G}\right)$ is at least 5 . In order to do it we calculate the minimal system of generators of all 3×3 minors of J_{G}, we intersect the corresponding variety with $V\left(I_{G}\right)$, we find a minimal base of generators of the ideal corresponding to this intersection and we compute its radical; the polynomials we find define, after suitable change of coordinates, the (reduced) variety of singular locus
$V\left(I_{S}\right)$, where $I_{S}=\left(u_{6}^{2}-u_{5} u_{7}, u_{5} u_{6}-u_{4} u_{7}, u_{5}^{2}-u_{4} u_{6}, u_{3} u_{6}-u_{2} u_{7}, u_{3} u_{5}-\right.$ $u_{1} u_{7}, u_{2} u_{6}-u_{1} u_{7}, u_{3} u_{4}-u_{1} u_{6}, u_{2} u_{5}-u_{1} u_{6}, u_{2} u_{4}-u_{1} u_{5}, u_{2}^{2}-u_{1} u_{3}, u_{3}^{3}-$ $\left.u_{7}^{2}, u_{2} u_{3}^{2}-u_{6} u_{7}, u_{1} u_{3}^{2}-u_{5} u_{7}, u_{1} u_{2} u_{3}-u_{4} u_{7}, u_{1}^{2} u_{3}-u_{4} u_{6}, u_{1}^{2} u_{2}-u_{4} u_{5}, u_{1}^{3}-u_{4}^{2}\right)$. We verified that the only one singular point of $V\left(I_{S}\right)$ is the origin. Now, let us consider the map from \mathbb{C}^{2} to \mathbb{C}^{7} such that:

$$
\begin{equation*}
(t, s) \mapsto\left(t^{2}, t s, s^{2}, t^{3}, t^{2} s, t s^{2}, s^{3}\right) \tag{4}
\end{equation*}
$$

This is the parametrization of $V\left(I_{S}\right)$; as we have already done we can find relations between these polynomials and verify that the ideal we get is equal to I_{S}. Now we can consider the following smooth parametrization from \mathbb{C}^{2} to \mathbb{C}^{9} :

$$
(t, s) \mapsto\left(t, s, t^{2}, t s, s^{2}, t^{3}, t^{2} s, t s^{2}, s^{3}\right)
$$

(which is nothing but the graph of (4)) whose projective closure is the Veronese surface $\nu_{3}\left(\mathbb{P}^{2}\right)=V_{2,3}$ where $\nu_{3}:\left(\mathbb{P}^{2}\right)^{*} \rightarrow\left(\mathbb{P}^{9}\right)^{*}, \nu_{3}(L)=L^{3}$.
What we want to find now is the tangent cone in Q_{0} seen inside the singular locus. Using [4] we find that its corresponding ideal \widetilde{I}_{C} is generated by following polynomials:

The ideal \widetilde{I}_{C} has multiplicity 4 (the corresponding variety has degree four) and its radical is the following ideal:

$$
I_{C}=\left(u_{2}^{2}-u_{3} u_{1}, u_{4}, u_{5}, u_{6}, u_{7}\right)
$$

Then $V\left(I_{C}\right)$ is a cone and $V\left(\tilde{I}_{C}\right)$ is a double cone.
This gives the description of the singularity at one of the 813 -torsion points.

4. Degree of $\mathrm{Kum}_{3}(\boldsymbol{A})$.

To find the degree of $\operatorname{Kum}_{3}(A)$, we have to recall some general facts about theta divisors.

4.1 The Riemann theta divisor.

Let X be a curve of genus g and $\Theta_{\mathrm{Jac}(X)}$ is the Riemann theta divisor. It is known that it is an ample divisor and

$$
\operatorname{dim}\left|r \Theta_{\mathrm{Jac}(X)}\right|=r^{g}-1
$$

(see [6] Theorem p. 317). Recall that for any fixed point $q_{0} \in X$ there exists an isomorphism:

$$
\psi_{g-1,0}: \operatorname{Pic}^{g-1}(X) \rightarrow \mathrm{Jac}(X)=\operatorname{Pic}^{0}(X)
$$

The set W_{g-1} of effective line bundles of degree $g-1$ is a divisor in $\operatorname{Pic}^{g-1}(X)$ denoted by $\Theta_{\mathrm{Pic}^{g-1}(X)}$. By Riemann's Theorem there exists a divisor k of degree 0 such that:

$$
\psi_{g-1,0}\left(\Theta_{\mathrm{Pic}^{g-1}(X)}\right)=\Theta_{\mathrm{Jac}(X)}-k .
$$

In a similar way we can define the generalized theta divisor as follows:

$$
\Theta_{\mathrm{SU}_{X}(r, L)}^{g e n}=\left\{E \in \operatorname{Pic}^{g-1}(X): h^{0}(E \otimes L)>0\right\} .
$$

It is known that

$$
\operatorname{Pic}\left(\mathrm{SU}_{X}(r, L)\right)=\mathbb{Z} \Theta_{\mathrm{SU}_{X}(r, L)}^{g e n}
$$

and there exists a canonical isomorphism:

$$
\left|r \Theta_{\mathrm{Pic}^{g-1}(X)}\right| \simeq\left|\Theta_{\mathrm{SU}_{X}(r)}^{g e n}\right|^{*}
$$

(see [2]).

4.2 Degree of $\operatorname{Kum}_{3}(\boldsymbol{A})$

Let us consider the ($2: 1$)-map

$$
\begin{gathered}
\phi_{3}: \operatorname{SU}_{3}(X) \longrightarrow\left|3 \Theta_{\operatorname{Pic}^{1}(X)}\right| \simeq\left|\Theta_{\mathrm{SU}_{X}(3)}^{g e n}\right|^{*} \\
E \longmapsto D_{E}=\left\{L \in \operatorname{Pic}^{1}(X): h^{0}(E \otimes L)>0\right\} .
\end{gathered}
$$

Definition 4.1. $\Theta_{\eta}:=\left\{E \in \mathrm{SU}_{X}(3): h^{0}(E \otimes \eta)>0\right\} \subset \mathrm{SU}_{X}(3)$ where η is a fixed divisor in Pic ${ }^{1}(X)$.

Observation: $\phi_{3}\left(\Theta_{\eta}\right)=H_{\eta} \subset\left|3 \Theta_{\operatorname{Pic}^{1}(X)}\right|$ and H_{η} is a hyperplane. Since $\left.\phi_{3}\right|_{\mathrm{Kum}_{3}(A)}: \operatorname{Kum}_{3}(A) \rightarrow \phi_{3}\left(\operatorname{Kum}_{3}(A)\right)$ is a $(1: 1)$-map (it is a well known fact but we will see it in the next section), we have that $\Theta_{\eta} \cap \operatorname{Kum}_{3}(X) \simeq$ $H_{\eta} \cap \phi_{3}\left(\operatorname{Kum}_{3}(X)\right)$. In order to study the degree of $\operatorname{Kum}_{3}(A)$ we have to take four generic divisors $\eta_{1}, \ldots, \eta_{4} \in \operatorname{Pic}^{1}(X)$ and consider the respective $\Theta_{\eta_{1}}, \ldots, \Theta_{\eta_{4}} \subset \operatorname{SU}_{X}(3)$. The intersection $\Theta_{\eta_{i}} \cap \operatorname{Kum}_{3}(A)$ is equal to $\left\{L_{a} \oplus\right.$ $\left.L_{b} \oplus L_{-a-b} \in \operatorname{Kum}_{3}(X): h^{0}\left(L_{a} \oplus L_{b} \oplus L_{-a-b} \otimes \eta_{i}\right)>0\right\}=\left\{L_{a} \oplus L_{b} \oplus L_{-a-b} \in\right.$ $\left.\operatorname{Kum}_{3}(A): h^{0}\left(L_{a} \otimes \eta_{i}\right)>0\right\} \cup\left\{L_{a} \oplus L_{b} \oplus L_{-a-b} \in \operatorname{Kum}_{3}(A): h^{0}\left(L_{b} \otimes \eta_{i}\right)>\right.$ $0\} \cup\left\{L_{a} \oplus L_{b} \oplus L_{-a-b} \in \operatorname{Kum}_{3}(A): h^{0}\left(L_{-a-b} \otimes \eta_{i}\right)>0\right\}$ for all $i=1, \ldots, 4$. If $L_{a} \oplus L_{b} \oplus L_{-a-b}$ is a generic element of $\operatorname{Kum}_{3}(A)$ and p is the (6:1)covering of $\operatorname{Kum}_{3}(A)$ defined as in (1), then $p^{-1}\left(L_{a} \oplus L_{b} \oplus L_{-a-b}\right) \subset A^{2}$ is a set of 6 points. It's easy to see that $p((a, b)) \in \Theta_{\eta_{i}} \cap \operatorname{Kum}_{3}(X)$ if and only if or $h^{0}\left(L_{a} \otimes \eta_{i}\right)>0$ or $h^{0}\left(L_{b} \otimes \eta_{i}\right)>0$ or $h^{0}\left(L_{-a-b} \otimes \eta_{i}\right)>0$ where $(a, b) \in A^{2}$ and $L_{a}, L_{b}, L_{-a-b} \in \operatorname{Pic}^{0}(X)$ are three line bundles respectively associated to $a, b,-a-b \in A$.

Let us recall Jacobi's Theorem ([6] page: 235):
Jacobi's Theorem: Let X be a curve of genus $g, q_{0} \in X$ and $\omega_{1}, \ldots, \omega_{g}$ a basis for $H^{0}\left(X, \Omega^{1}\right)$. For any $\lambda \in \operatorname{Jac}(X)$ there exist g points $p_{1}, \ldots, p_{g} \in X$ such that

$$
\mu\left(\sum_{i=1}^{g}\left(p_{i}-q_{0}\right)\right)=\lambda
$$

where

$$
\begin{aligned}
\mu & : \operatorname{Div}^{0}(X) \rightarrow \operatorname{Jac}(X) \\
\sum_{i}\left(p_{i}-q_{i}\right) & \mapsto\left(\sum_{i} \int_{q_{i}}^{p_{i}} \omega_{1}, \ldots, \sum_{i} \int_{q_{i}}^{p_{i}} \omega_{g}\right)
\end{aligned}
$$

Since $\operatorname{Jac}(X)$ is isomorphic to $\operatorname{Pic}^{0}(X)$, this theorem has the following two corollaries:

1. if q_{0} is a fixed point of C, then for all $L_{a} \in \operatorname{Pic}^{0}(X)$, there are two points P_{1}, P_{2} in X such that $L_{a} \simeq \mathcal{O}_{X}\left(P_{1}+P_{2}-2 q_{0}\right) ;$
2. Consider the isomorphism

$$
\begin{aligned}
\psi_{1,0} & : \operatorname{Pic}^{1}(X) \xrightarrow{\sim} \operatorname{Pic}^{0}(X) \\
\eta & \mapsto \eta \otimes \mathcal{O}_{X}\left(-q_{0}\right)
\end{aligned}
$$

For every $i=1, \ldots, 4$ there are $q_{i_{1}}, q_{i_{2}} \in C$ such that $\eta_{i} \simeq \mathcal{O}_{X}\left(q_{i_{1}}+q_{i_{2}}-\right.$ q_{0}).

Now these two facts imply that $h^{0}\left(L_{a} \otimes \eta_{i}\right)>0$ if and only if $h^{0}\left(\mathcal{O}_{X}\left(P_{1}+\right.\right.$ $\left.\left.P_{2}-2 q_{0}\right) \otimes \mathcal{O}_{X}\left(q_{i, 1}+q_{i, 2}-q_{0}\right)\right)>0$, and this happens if and only if $h^{0}\left(\mathcal{O}_{X}\left(P_{1}+P_{2}+q_{i, 1}+q_{i, 2}-3 q_{0}\right)\right)>0$.

Notations: Θ_{-k} is a translate of theta divisor by $k \in \operatorname{Pic}^{0}(X)$.
By Riemann's Singularity Theorem (see [6], p. 348) the dimension $h^{0}\left(\mathcal{O}_{X}\left(P_{1}+\right.\right.$ $\left.P_{2}+q_{i, 1}+q_{i, 2}-3 q_{0}\right)$) is equal to the multiplicity of $\psi_{1,0}\left(P_{1}+P_{2}+q_{i, 1}+\right.$ $q_{i, 2}-3 q_{0}$) in Θ_{-k} (by a suitable $k \in \operatorname{Pic}^{0}(X)$), i.e. it is equal to the multiplicity of $\left(P_{1}+P_{2}+q_{i, 1}+q_{i, 2}-4 q_{0}\right)$ in Θ_{-k}. It follows from this fact that $h^{0}\left(\mathcal{O}_{X}\left(P_{1}+P_{2}+q_{i, 1}+q_{i, 2}-3 q_{0}\right)\right)$ is greater than zero if and only if $\left(P_{1}+P_{2}+q_{i, 1}+q_{i, 2}-4 q_{0}\right) \in \Theta_{-k}$.

Notations:

$$
\begin{aligned}
& \Theta_{i}:=\Theta_{-k-\eta_{i}+q_{0}} ; \\
& R_{i}:=\left\{(a, b) \in A^{2}:(a+b) \in\left\{-\Theta_{i}\right\}\right\} \\
& \Xi_{i}:=\left(\Theta_{i} \times A\right) \cup\left(A \times \Theta_{i}\right) \cup R_{i} .
\end{aligned}
$$

Now $\left(P_{1}+P_{2}+q_{i, 1}+q_{i, 2}-4 q_{0}\right) \in \Theta_{-k}$ iff $P_{1}+P_{2}-2 q_{0} \in \Theta_{i}$ which is equivalent to say that L_{a} belongs to Θ_{i}, but this implies that $p((a, b)) \in \Theta_{\eta_{i}} \cap$ $\operatorname{Kum}_{3}(A)$ if and only if $L_{a} \in \Theta_{i}$ or $L_{b} \in \Theta_{i}$ or $L_{-a-b} \in \Theta_{i}$ (or equivalently L_{a+b} belongs to $\left\{-\Theta_{i}\right\}$), i.e. $(a, b) \in \Xi_{i}$.

Therefore we can conclude:
$(a, b) \in A^{2}$ is such that $p((a, b)) \in \operatorname{Kum}_{3}(A) \cap \Theta_{\eta_{i}}, i=1, \ldots, 4$ if and only if $(a, b) \in \Xi_{i}$.

The last conclusion together with the observation that $\sharp\left(p r^{-1}\left(L_{a} \oplus L_{b} \oplus\right.\right.$ $\left.\left.L_{-a-b}\right)\right)=6$ gives the following proposition:

Proposition 4.2. $\operatorname{deg}\left(\operatorname{Kum}_{3}(A)\right)=\frac{1}{6}\left(\sharp\left(\Xi_{1} \cap \Xi_{2} \cap \Xi_{3} \cap \Xi_{4}\right)\right)$.
Proof. $\sharp\left(\Xi_{1} \cap \Xi_{2} \cap \Xi_{3} \cap \Xi_{4}\right)=6 \cdot \sharp\left(\operatorname{Kum}_{3}(A) \cap \Theta_{\eta_{1}} \cap \Theta_{\eta_{2}} \cap \Theta_{\eta_{3}} \cap \Theta_{\eta_{4}}\right)=$ $6 \cdot \operatorname{deg}\left(\operatorname{Kum}_{3}(A)\right)$.

Notations:

$$
\begin{aligned}
& R_{j}^{a, i}=\left\{(a, b) \in A^{2}: a \in \Theta_{i} \text { and }(a+b) \in\left\{-\Theta_{j}\right\}\right\} \\
& R_{j}^{b, i}=\left\{(a, b) \in A^{2}: b \in \Theta_{i} \text { and }(a+b) \in\left\{-\Theta_{j}\right\}\right\} \text { and } \\
& R_{1,2}=\left\{(a, b) \in A^{2}:(a+b) \in\left\{-\Theta_{1}\right\} \cap\left\{-\Theta_{2}\right\}\right\}
\end{aligned}
$$

Instead of computing directly $\Xi_{1} \cap \Xi_{2} \cap \Xi_{3} \cap \Xi_{4}$, we will compute $\left(\Xi_{1} \cap \Xi_{2}\right) \cap$
$\left(\Xi_{3} \cap \Xi_{4}\right):$

$$
\begin{aligned}
\Xi_{1} \cap \Xi_{2}= & \left(\left(\Theta_{1} \cap \Theta_{2}\right) \times A\right) \cup\left(A \times\left(\Theta_{1} \cap \Theta_{2}\right)\right) \cup\left(\Theta_{1} \times \Theta_{2}\right) \cup \\
& \left(\Theta_{2} \times \Theta_{1}\right) \cup\left(R_{b}^{a, 1}\right) \cup\left(R_{2}^{b, 1}\right) \cup\left(R_{1}^{a, 2}\right) \cup\left(R_{1}^{b, 2}\right) \cup\left(R_{1,2}\right) . \\
\Xi_{3} \cap \Xi_{4}= & \left(\left(\Theta_{3} \cap \Theta_{4}\right) \times A\right) \cup\left(A \times\left(\Theta_{3} \cap \Theta_{4}\right)\right) \cup\left(\Theta_{3} \times \Theta_{4}\right) \cup \\
& \left(\Theta_{4} \times \Theta_{3}\right) \cup\left(R_{b}^{a, 3}\right) \cup\left(R_{4}^{b, 3}\right) \cup\left(R_{3}^{a, 4}\right) \cup\left(R_{3}^{b, 4}\right) \cup\left(R_{3,4}\right) .
\end{aligned}
$$

At the end we will obtain that $\sharp\left(\Xi_{1} \cap \Xi_{2} \cap \Xi_{3} \cap \Xi_{4}\right)=216$ (see also tables 1 . and 2.) and so:

Proposition 4.3. $\operatorname{deg}\left(\operatorname{Kum}_{3}(A)\right)=36$.
Proof. In the following two tables we write at place (i, j) the cardinality of intersection of the subset of $\Xi_{1} \cap \Xi_{2}$ which we write at the place $(0, j)$, with the subset of $\Xi_{3} \cap \Xi_{4}$ which we write at the place ($i, 0$).

\cap	$\left(\Theta_{1} \cap \Theta_{2}\right) \times A$	$A \times\left(\Theta_{1} \cap \Theta_{2}\right)$	$\Theta_{1} \times \Theta_{2}$	$\Theta_{2} \times \Theta_{1}$
$\left(\Theta_{3} \cap \Theta_{4}\right) \times A$	0	4	0	0
$A \times\left(\Theta_{3} \cap \Theta_{4}\right)$	4	0	0	0
$\Theta_{3} \times \Theta_{4}$	0	0	4	4
$\Theta_{4} \times \Theta_{3}$	0	0	4	4
$R_{4}^{a, 3}$	0	4	4	4
$R_{3}^{a, 4}$	0	4	4	4
$R_{4}^{b, 3}$	4	0	4	4
$R_{3}^{b, 4}$	4	0	4	4
$R_{3,4}$	4	4	4	4

Table 1.

In order to be more clear we show some cases:
$\mathbf{R}_{2}^{a, 1} \cap \mathbf{R}_{4}^{b, 3}: R_{2}^{a, 1} \cap R_{4}^{b, 3}=\left\{(a, b) \in A^{2}: a \in \Theta_{1}\right.$ and $b \in \Theta_{3}$ and $(a+b) \in$ $\left.\left\{-\Theta_{2}\right\} \cap\left\{-\Theta_{4}\right\}\right\}$. Recall that $\Theta_{i} \cdot \Theta_{j}=2$. So $(a+b) \in\left\{k_{1}, k_{2}\right\}$ where $\left\{k_{1}, k_{2}\right\}=\left\{-\Theta_{2}\right\} \cap\left\{-\Theta_{4}\right\}$. Fix for a moment $(a+b)=k_{1}$. If we translate Θ_{1} and Θ_{3} by $-k_{1}$ we get that $a \in\left(\Theta_{1}\right)_{-k_{1}}, b \in\left(\Theta_{3}\right)_{-k_{1}}$ and $a+b=0$, then b must be equal to $-a$ and $a \in\left(\left(\Theta_{1}\right)_{-k_{1}}\right) \cap\left(\left(-\Theta_{3}\right)_{+k_{1}}\right)$. Then for

\cap	$R_{2}^{a, 1}$	$R_{1}^{a, 2}$	$R_{2}^{b, 1}$	$R_{1}^{b, 2}$	$R_{1,2}$
$\left(\Theta_{3} \cap \Theta_{4}\right) \times A$	0	0	4	4	4
$A \times\left(\Theta_{3} \cap \Theta_{4}\right)$	4	4	0	0	4
$\Theta_{3} \times \Theta_{4}$	4	4	4	4	4
$\Theta_{4} \times \Theta_{3}$	4	4	4	4	4
$R_{4}^{a, 3}$	4	4	4	4	0
$R_{3}^{a, 4}$	4	4	4	4	0
$R_{4}^{b, 3}$	4	4	4	4	0
$R_{3}^{b, 4}$	4	4	4	4	0
$R_{3}^{b, 4}$	4	4	4	4	0
$R_{3,4}$	0	0	0	0	0

Table 2.
fixed $a+b$ the couple (a, b) has to belong to $\left\{\left(h_{1},-h_{1}\right),\left(h_{2},-h_{2}\right)\right\}$ where $\left(\left(\Theta_{1}\right)_{+k_{1}}\right) \cap\left(\left(-\Theta_{3}\right)_{-k_{1}}\right)=\left\{h_{1}, h_{2}\right\}$. Therefore $\sharp\left(R_{2}^{a, 1} \cap R_{4}^{b, 3}\right)=2 \cdot 2=4$.
$\left(\boldsymbol{\Theta}_{1} \times \boldsymbol{\Theta}_{2}\right) \cap \mathbf{R}_{3,4}: \quad\left(\Theta_{1} \times \Theta_{2}\right) \cap R_{3,4}=\left\{(a, b) \in A^{2}: a \in \Theta_{1}, b \in \Theta_{2}\right.$ and $\left.(a+b) \in\left\{-\Theta_{3}\right\} \cap\left\{-\Theta_{4}\right\}\right\}$. Then, as in the previous case, we have $\sharp\left(\left(\Theta_{1} \times \Theta_{2}\right) \cap R_{3,4}\right)=4$.
$\mathbf{R}_{2}^{a, 1} \cap\left(\left(\boldsymbol{\Theta}_{3} \cap \boldsymbol{\Theta}_{4}\right) \times \mathbf{A}\right): R_{2}^{a, 1} \cap\left(\left(\Theta_{3} \cap \Theta_{4}\right) \times A\right)=\left\{(a, b) \in A^{2}: a \in \Theta_{1} \cap \Theta_{3} \cap\right.$ $\left.\Theta_{4},(a+b) \in\left\{-\Theta_{2}\right\}\right\}$, but since Θ_{i} are generic curves on a surface, their intersection two by two is the empty set, then $\sharp\left(R_{2}^{a, 1}\right) \cap\left(\left(\Theta_{3} \cap \Theta_{4}\right) \times A\right)=$ 0.

4.3 The degree of $\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right)$

As we have already seen, the singular locus of $\operatorname{Kum}_{3}(A)$ is a surface. What we want to do now is to compute its degree. We use the notation from the previous section.

Let us fix two divisors Ξ_{1} and Ξ_{2} in A^{2}. We denote by Δ the diagonal of $A \times A$.

Proposition 4.4. $\operatorname{deg}\left(\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right)\right)=\sharp\left(\Xi_{1} \cap \Xi_{2} \cap \Delta\right)$.
Proof. It is sufficient to consider the restriction to Δ of the map p defined as in (1) and get out the ($1: 1$)-map $\left.p\right|_{\Delta}: \Delta \rightarrow \operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right)$.

Proposition 4.5. $\operatorname{deg}\left(\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right)\right)=42$.
Proof. The following table is used in the same way as we used Table 1 and Table 2 in the previous section:

\cap	Δ
$\left(\Theta_{1} \cap \Theta_{2}\right) \times A$	2
$A \times\left(\Theta_{1} \cap \Theta_{2}\right)$	$/$
$\Theta_{1} \times \Theta_{2}$	$/$
$\Theta_{2} \times \Theta_{1}$	$/$
$R_{2}^{a, 1}$	4
$R_{1}^{a, 2}$	4
$R_{2}^{b, 1}$	$/$
$R_{1}^{b, 2}$	$/$
$R_{1,2}$	32

Table 3.
The following list describes Table 3:
$\boldsymbol{\Delta} \cap \mathbf{A} \times\left(\boldsymbol{\Theta}_{1} \cap \boldsymbol{\Theta}_{2}\right)$: we have not considered the intersection points between Δ and $A \times\left(\Theta_{1} \cap \Theta_{2}\right), \Theta_{1} \times \Theta_{2}, \Theta_{2} \times \Theta_{1}$ because we have already counted them in $\left(\left(\Theta_{1} \cap \Theta_{2}\right) \times A\right) \cap \Delta$.
$\Delta \cap \mathbf{R}_{2}^{b, 1}$: the previous argument can be used for $\Delta \cap R_{2}^{b, 1}$ and $\Delta \cap R_{1}^{b, 2}$: we have already counted these intersection points respectively in $R_{2}^{a, 1}$ and in $R_{1}^{a, 2}$.
$\mathbf{R}_{2}^{\mathrm{a}, 1} \cap \boldsymbol{\Delta}$: we have now to show that $\sharp\left(R_{2}^{a, 1} \cap \Delta\right)=4$. The set $R_{2}^{a, 1} \cap \Delta$ is $\left\{(a, a) \in A \times A \mid a \in \Theta_{1}, \quad 2 a \in\left(-\Theta_{2}\right)\right\}$ which is equal to $\{(a, a) \in$ $A \times A: 2 a \in\left(\left(-\Theta_{2}\right) \cap\left(2 \cdot \Theta_{1}\right)\right)$ and $\left.a \in \Theta_{1}\right\}$. Let now L_{1} be the line bundle on A associated to Θ_{1}. The line bundle L_{1}^{2} is associated to ($2 \cdot \Theta_{1}$) and its divisor is linearly equivalent to $2 \Theta_{1}$. As a consequence of this fact we have that $2 a \in\left(2 \Theta_{1} \cap\left(-\Theta_{2}\right)\right)$ then $\sharp\left\{2 \Theta_{1} \cap\left(-\Theta_{2}\right)\right\}=4$. Now, since the map from Θ_{1} to $\left(2 \cdot \Theta_{1}\right)$ is $1: 1$ we get the conclusion.
$\mathbf{R}_{\mathbf{1 , 2}} \cap \boldsymbol{\Delta}$: finally we have that ($R_{1,2} \cap \Delta$) is equivalent to the set $\{a \in A \mid 2 a \in$ $\left.\left(\left(-\Theta_{1}\right) \cap\left(-\Theta_{2}\right)\right)\right\}$ whose cardinality is 32 .

5. On action of the hyperelliptic involution and $\mathrm{Kum}_{3}(A)$.

Let X be a curve of genus 2 . Consider the degree 2 map:

$$
\begin{gathered}
\phi_{3}: \mathrm{SU}_{X}(3) \xrightarrow{2: 1} \mathbb{P}^{8}=\left|3 \Theta_{\operatorname{Pic}^{1}(X)}\right| \\
E \longmapsto D_{E}=\left\{L \in \operatorname{Pic}^{1}(X) / h^{0}(E \otimes L)>0\right\}
\end{gathered}
$$

(see [7]). Let τ^{\prime} be the involution on $\mathrm{SU}_{X}(3)$ acting by the duality:

$$
\tau^{\prime}(E)=E^{*}
$$

and τ the hyperelliptic involution on $\operatorname{Pic}^{1}(X)$:

$$
\tau(L)=\omega_{X} \otimes L^{-1}
$$

We will use the following well known relation:

$$
\tau \circ \phi_{3}(E)=\phi_{3} \circ \tau^{\prime}(E) .
$$

On $\mathrm{SU}_{X}(3)$ there is also the hyperelliptic involution h^{*} :

$$
E \mapsto h^{*}(E)
$$

induced by the hyperelliptic involution h of the curve X. We define $\sigma:=\tau^{\prime} \circ h^{*}$. It is the involution which gives the double covering of $\mathrm{SU}_{X}(3)$ on \mathbb{P}^{8}. The fixed locus of σ is obviously contained in $\mathrm{SU}_{X}(3)$ and we recall:

$$
\begin{equation*}
\phi_{3}(\operatorname{Fix}(\sigma))=\text { Coble sextic hypersurface } \tag{5}
\end{equation*}
$$

(see [7]). By definition, the strictly semi-stable locus $\mathrm{SU}_{X}(3)^{s s}$ of $\mathrm{SU}_{X}(3)$ consists of isomorphism classes of split rank 3 semi-stable vector bundles of determinant \mathcal{O}_{X}. Its points can be represented by the vector bundles of the form $F \oplus L$ or $L_{a} \oplus L_{b} \oplus L_{c}$ with trivial determinant where L, L_{a}, L_{b}, L_{c} are line bundles and F is a rank 2 vector bundle. We want to consider the elements of the form $L_{a} \oplus L_{b} \oplus L_{c}$ (those belonging to $\operatorname{Kum}_{3}(A)$) and actions of previous involutions on them:

- $\tau^{\prime}\left(L_{a} \oplus L_{b} \oplus L_{c}\right)=\left(L_{a} \oplus L_{b} \oplus L_{c}\right)^{*}=L_{-a} \oplus L_{-b} \oplus L_{-c} ;$
- $\tau^{\prime}\left(h^{*}\left(L_{a} \oplus L_{b} \oplus L_{c}\right)\right)=L_{a} \oplus L_{b} \oplus L_{c}$.

This implies that $\sigma\left(\operatorname{Kum}_{3}(A)\right)=\operatorname{Kum}_{3}(A) \subset \operatorname{SU}_{X}(3)$ which means that $\operatorname{Kum}_{3}(A) \subset \operatorname{Fix}(\sigma)$ and then $\phi_{3}\left(\operatorname{Kum}_{3}(X)\right) \subset$ Coble sextic (see 5).

Let us now consider rank 2 semistable vector bundles of trivial determinant: $\mathrm{SU}_{X}(2)$. If we take its symmetric square, we obtain a semisable rank three vector bundle with trivial determinant:

$$
\mathrm{SU}_{X}(2) \rightarrow \mathrm{SU}_{X}(3) ; \quad E \mapsto \operatorname{Sym}^{2}(E)
$$

We want to study the action of involutions defined on the beginning of this paragraph on $\operatorname{Sym}^{2}(E)$ with $E \in \operatorname{SU}_{X}(2)$. Since $\operatorname{Sym}^{2}(E)^{*}=\operatorname{Sym}^{2}(E)=$ $h^{*}\left(\operatorname{Sym}^{2}(E)\right)$, then $\sigma\left(\operatorname{Sym}^{2}(E)\right)=\operatorname{Sym}^{2}(E) \subset \operatorname{SU}_{X}(3)$, so $\operatorname{Sym}^{2}\left(\operatorname{SU}_{X}(2)\right) \subset$ $\operatorname{Fix}(\sigma)$, and, again by $(5), \phi_{3}\left(\operatorname{Sym}^{2}\left(\mathrm{SU}_{X}(2)\right)\right) \subset$ Coble sextic.

Now we want to see the action of τ on $\left|3 \Theta_{\operatorname{Pic}^{1}(X)}\right|$. It is known that $\operatorname{Fix}(\tau)=\mathbb{P}^{4} \sqcup \mathbb{P}^{3}$.

Notations: We denote by \mathbb{P}_{τ}^{3} and \mathbb{P}_{τ}^{4}, respectively, the \mathbb{P}^{3} and the \mathbb{P}^{4} which are fixed by action of τ.

Since the image of $\operatorname{Sym}^{2}\left(\operatorname{SU}_{X}(2)\right)$ by ϕ_{3} in \mathbb{P}^{8} has dimension 3 and also $\phi_{3}\left(\operatorname{Sym}^{2}\left(\operatorname{SU}_{X}(2)\right)\right) \subset \operatorname{Fix}(\tau)$, we obtain

$$
\phi_{3}\left(\operatorname{Sym}^{2}\left(\operatorname{SU}_{X}(2)\right)\right) \subset \mathbb{P}_{\tau}^{4}
$$

Let $L_{a} \oplus L_{-a}$ be an element of $\operatorname{Kum}_{2}(X) \subset \mathrm{SU}_{X}(2)$, then $\operatorname{Sym}^{2}\left(L_{a} \oplus L_{-a}\right)=$ $L_{2 a} \oplus L_{-2 a} \oplus \mathcal{O} \in \operatorname{Kum}_{3}(A) \subset \operatorname{SU}_{X}(3)$. It means that $\operatorname{Sym}^{2}\left(\operatorname{Kum}_{2}(A)\right) \subset$ $\operatorname{Kum}_{3}(A)$.

Observation: Since $\left\{L_{2 a} \oplus L_{-2 a} \oplus \mathcal{O} \in \mathrm{SU}_{X}(3)\right\}$ is isomorphic to $S^{2}\left(\left\{L_{a} \oplus\right.\right.$ $\left.L_{-a}\right\}$), we can view $\left\{L_{2 a} \oplus L_{-2 a} \oplus \mathcal{O} \in \mathrm{SU}_{X}(3)\right\}$ as the image of $\operatorname{Kum}_{2}(A)$ inside $\mathrm{SU}_{X}(3)$ under the symmetric square map. Moreover it follows from the surjectivity of the multiplication by 2 map [2] : $A \rightarrow A$ that the image of $\mathrm{Kum}_{2}(A)$ in $\mathrm{SU}_{X}(3)$ is isomorphic to $\mathrm{Kum}_{2}(A)$.

We have already observed that $\left.\phi_{3}\right|_{\mathrm{Kum}_{3}(A)}$ is a (1:1)-map on the image; this fact allows us to view $\phi_{3}\left(\operatorname{Kum}_{3}(A)\right)$ as the $\operatorname{Kum}_{3}(A)$ in $\left|3 \Theta_{\text {Pic }^{1}(X)}\right|$. For the same reason we can view $\phi_{3}\left(\operatorname{Sym}^{2}\left(\mathrm{SU}_{X}(2)\right)\right)$ as $\operatorname{Kum}_{2}(A) \subset\left|3 \Theta_{\operatorname{Pic}_{1}(X)}\right|$. Using this language we can say that $\operatorname{Kum}_{2}(A)$ is left fixed by the action of τ in $\operatorname{Kum}_{3}(A) \subset\left|3 \Theta_{\operatorname{Pic}_{1}(X)}\right|$ because $\left|3 \Theta_{\operatorname{Pic}^{1}(X)}\right| \supset \phi_{3}\left(\operatorname{Kum}_{3}(A)\right) \supset$ $\phi_{3}\left(\operatorname{Sym}^{2}\left(\operatorname{SU}_{X}(2)\right)=\operatorname{Kum}_{2}(A) \subset \mathbb{P}^{4} \subset \operatorname{Fix}(\tau) \subset\left|3 \Theta_{\text {Pic }}^{1}(X)\right|\right.$.
Proposition 5.1. $\operatorname{Fix}(\tau) \cap \phi_{3}\left(\operatorname{Kum}_{3}(A)\right)=\phi_{3}\left(\operatorname{Sym}^{2}\left(\operatorname{Kum}_{2}(A)\right)\right)$.

Proof. By definition $\tau\left(L_{a} \oplus L_{b} \oplus L_{c}\right)=L_{-a} \oplus L_{-b} \oplus L_{-c}$ then $L_{a} \oplus L_{b} \oplus L_{c}$ belongs to $\operatorname{Fix}(\tau)$ if and only if $\{a, b, c\}=\{-a,-b,-c\}$. Let P belong to $\{-a,-b,-c\}$ and $a=P$.

- If P is different from $-a$, suppose that $P=-c$, then $\{-a,-b,-c\}=$ $\{-a,-b, a\}$; moreover $a+b+c=0$ because $L_{a} \oplus L_{b} \oplus L_{c} \in \operatorname{Kum}_{3}(A)$, then $b=0$.
- Now, if $P=-a$ or, equivalently $a=-a$, then $a=0$ and $b=-c$.

In both cases $L_{a} \oplus L_{b} \oplus L_{c} \in \operatorname{Kum}_{3}(A)$ such that $\tau\left(L_{a} \oplus L_{b} \oplus L_{c}\right)=L_{a} \oplus L_{b} \oplus L_{c}$ are of the form $L_{a} \oplus L_{-a} \oplus L_{0}$. This means that they belong to $\operatorname{Kum}_{2}(A) \subset$ $\left|3 \Theta_{\text {Pic }^{1}(X)}\right|$.

The previous proposition tells us also that $\mathbb{P}_{\tau}^{3} \cap \operatorname{Kum}_{3} A=\emptyset$. So the projection of $\operatorname{Kum}_{3}(A) \subset\left|3 \Theta_{\operatorname{Pic}^{1}(X)}\right|$ from \mathbb{P}_{τ}^{3} to \mathbb{P}_{τ}^{4} is a morphism. It would be interesting to find its degree.

Our final observation is the following.
Proposition 5.2. $\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right) \cap \operatorname{Kum}_{2}(A)=\operatorname{Sing}\left(\operatorname{Kum}_{2}(A)\right)$
Proof. Points of $\operatorname{Kum}_{2}(A) \subset \operatorname{Kum}_{3}(A)$ are of the form $(P,-P, 0)$. Singular points of $\mathrm{Kum}_{3}(A)$ are those which have at least two equal components, then $\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right) \cap \operatorname{Kum}_{2}(A)=\{(P,-P, 0)\}$ where $2 P=0$ that are exactly the 15 points of 2 -torsion and one more point $\left(\mathcal{O}_{X}, \mathcal{O}_{X}, \mathcal{O}_{X}\right)$ which are singularities of the usual $\operatorname{Kum}_{2}(A)$. This implies that $\sharp\left(\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right) \cap\right.$ $\left.\operatorname{Kum}_{2}(A)\right)=16$ and $\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right) \cap \operatorname{Kum}_{2}(A)=\operatorname{Sing}\left(\operatorname{Kum}_{2}(A)\right)$.

REFERENCES

[1] A. Beauville, Variété Käheleriennes dont la première classe de Chern est nulle, J. Didderential Geom, 18 (1983), pp. 755-782.
[2] A. Beauville - M.S. Narasimhan - S. Ramanan, Spectral curves and the generalised theta divisor, J. reine angew. Math., 398 (1989), pp. 169-179.
[3] D. Cox - J. Little - O’Shea, Ideals, Varieties, and Algorithms, Springer, 1998.
[4] A. Capani - G. Niesi - L. Robbiano, CoCoA, A system for doing Computations in Commutative Algebra, Available via anonymous ftp from: cocoa.dima.unige.it..
[5] L. Göttsche, Hilbert schemes of points on surfaces, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 483-494.
[6] Griffiths - Harris, Principles of algebraic geometry, J. Wiley and sons, 1978.
[7] Y. Lazlo, Local structure of the moduli space of vector bundles over curves, Comment. Math. Helvetici, 71 (1996), pp. 373-401.
[8] C.S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, 96 (1982).

Alessandra Bernardi
Dipartimento di Matematica " F. Enriques"
v. Saldini 50
20133 Milano (ITALY)
e-mail: bernardi@mat.unimi.it.
Damiano Fulghesu
Viale Madonna, 64
12042 Bra (Cuneo) (ITALY)
e-mail: d.fulghesu@sns.it

[^0]: ${ }^{1}$ here $\left\{x_{1}, \ldots, x_{r}\right\}$ mean an unordered set of r elements.

