On the variety parameterizing completely decomposable polynomials

Enrique Arrondo 1 Alessandra Bernardi 2
2 GALAAD - Geometry, algebra, algorithms
CRISAM - Inria Sophia Antipolis - Méditerranée , UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR6621
Abstract : The purpose of this paper is to relate the variety parameterizing completely decomposable homogeneous polynomials of degree $d$ in $n+1$ variables on an algebraically closed field, called $\Split_{d}(\PP n)$, with the Grassmannian of $n-1$ dimensional projective subspaces of $\PP {n+d-1}$. We compute the dimension of some secant varieties to $\Split_{d}(\PP n)$ and find a counterexample to a conjecture that wanted its dimension related to the one of the secant variety to $\GG (n-1, n+d-1)$. Moreover by using an invariant embedding of the Veronse variety into the Plücker space, we are able to compute the intersection of $\GG (n-1, n+d-1)$ with $\Split_{d}(\PP n)$, some of its secant variety, the tangential variety and the second osculating space to the Veronese variety.
Type de document :
Article dans une revue
Journal of Pure and Applied Algebra, Elsevier, 2011, 215 (3), pp.201-220. 〈10.1016/j.jpaa.2010.04.008〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00645963
Contributeur : Alessandra Bernardi <>
Soumis le : lundi 28 novembre 2011 - 22:28:10
Dernière modification le : vendredi 12 janvier 2018 - 01:48:43
Document(s) archivé(s) le : vendredi 16 novembre 2012 - 12:20:57

Fichier

Arrondo_Bernardi.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Enrique Arrondo, Alessandra Bernardi. On the variety parameterizing completely decomposable polynomials. Journal of Pure and Applied Algebra, Elsevier, 2011, 215 (3), pp.201-220. 〈10.1016/j.jpaa.2010.04.008〉. 〈hal-00645963〉

Partager

Métriques

Consultations de la notice

264

Téléchargements de fichiers

134