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On the variety parametrizing completely decomposable polynomials

Enrique Arrondo and Alessandra Bernardi

Abstract: The purpose of this paper is to relate the variety parameterizing completely decomposable
homogeneous polynomials of degree d in n+1 variables on an algebraically closed field, called Splitd(P

n),
with the Grassmannian of n−1 dimensional projective subspaces of Pn+d−1. We compute the dimension
of some secant varieties to Splitd(P

n) and find a counterexample to a conjecture that wanted its dimension
related to the one of the secant variety to G(n−1, n+d−1). Moreover by using an invariant embedding
of the Veronse variety into the Plücker space, we are able to compute the intersection of G(n−1, n+d−1)
with Splitd(P

n), some of its secant variety, the tangential variety and the second osculating space to the
Veronese variety.

Introduction

A classic problem inspired by Waring problem in number theory is the following: which is the least integer s such
that a general homogeneous polynomial of degree d in n + 1 variables can be written as Ld

1 + · · · + Ld
s , where

L1, . . . , Ls are linear forms? In terms of algebraic geometry, this problem is equivalent to find the least s such
that the s-th secant variety of the d-uple Veronese embedding of Pn is the whole ambient space. In general, it is
interesting to find projective varieties with defective secant varieties, i.e. not having the expected dimension. This
problem has been completely solved by J. Alexander and A. Hirschowitz (see [AH], or [BO] for a recent proof with
a different approach), who found all the defective secant varieties to Veronese varieties. Our original problem can
be rephrased in the language of tensors. Specifically, given an (n + 1)-dimensional vector space W , which is the
least integer s such that a general tensor in SdW can be written as a sum of s completely decomposable symmetric
tensors?

With this new language, it is natural to wonder about the same problem in the case of tensors not necessarily
symmetric. For example, the case of tensors in W1 ⊗ · · · ⊗ Wd, yields the question of studying the smallest s-th
secant variety of a Segre variety filling up the ambient space (see [AOP1], [CGG3], [CGG4] for some known
results regarding this problem). Another interesting problem is the case in which the tensors are skew-symmetric
or, geometrically, the study of the smallest s-th secant variety of a Grassmann variety filling up the ambient Plücker
space. In this case, the only known examples of defective s-th secant varieties are: the third secant varieties to
G(2, 6) –which is also isomorphic to G(3, 6)– and to G(3, 7) and the fourth secant varieties to G(3, 7) and G(2, 8)
–which is also isomorphic to G(5, 8)– ([CGG1], [McG] and [AOP2]).

There is a particularly interesting numerical relation among the different types of tensors we just mentioned.
Indeed, the dimension of the above SdW is

(
n+d

n

)
, which coincides with the dimension of the space

∧n
W ′ of

skew-symmetric tensors on an (n + d)-dimensional vector space W ′. Therefore the projectivization of the space of
homogeneous polyonomials of degree d in n + 1 variables has the same dimension as the Plücker ambient space of
the Grassmannian G(n− 1, n+ d− 1). Moreover, this Grassmannian has dimension nd, which is also the dimension
of the variety, which we will call Splitd(P

n), parametrizing those polynomials that decompose as the product of d
linear forms. These coincidences led Ehrenborg to formulate (see [Eh]) the following

Conjecture 0.1. (Ehrenborg) The least positive integer s such that the s-th secant variety to G(n− 1, n + d− 1)

fills up P(n+d

d )−1 is the same least s ∈ N such that the s-th secant variety to Splitd(P
n) fills up P(n+d

d )−1.

If this were true, defective secant varieties to Grassmannians would also produce defective secant varieties to
Split varieties. It is easy to see that, if d = 2, then the conjecture is true (Proposition 1.10). Unfortunately, the other
possible defective cases coming from Grassmannians, namely the third secant varieties to Split4(P

3), to Split3(P
4)
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and to Split4(P
4), and the fourth secant varieties to Split4(P

4), Split6(P
3) and Split3(P

6), are not defective (Example
1.9). In particular, we get that Ehrenborg’s conjecture is not true.

The starting point of this paper was to understand until which extent Ehrenborg’s conjecture remains true and
to find if there is actually a relation between the defectivity of secant varieties to Grassmannians and the defectivity
of secant varieties of Split varieties. Since M.V. Catalisano, A.V. Geramita and A. Gimigliano conjecture in [CGG1]
that the only defective secant varieties to Grassmannians are those listed above, one could conjecture that any Split
variety with d 6= 2 has regular secant varieties (i.e. with the expected dimension). In fact, we were not able to find
any defective case.

We thus turn to the core of Ehrenborg’s conjecture and study what is behind the numerical coincidence. Our
main idea is to identify the (n + 1)-dimensional vector space W with SnV , where V is a two-dimensional vector

space. Then we use the well known isomorphism between
∧d

(Sn+d−1V ) and Sd(SnV ) (see [Mu]), which has a nice
and classical interpretation. Precisely, the d-uple Veronese variety is naturally embedded in G(n − 1, n + d − 1) as
the set of n-secant spaces to the rational normal curve in Pn+d−1. This allows to consider G(n − 1, n + d − 1) and
Splitd(P

n) as subvarieties of the same projective space. Depending on the context, we will regard this space as the
Plücker space of G(n − 1, n + d − 1) or the projective space parametrizing classes of homogeneous polynomials of
degree d in n + 1 variables.

With the point of view of homogeneous polynomials, we observe (Remark 3.2) that points of Splitd(P
n) are

characterized by belonging to certain osculating spaces to the Veronese variety. Hence, in order to completely
understand Splitd(P

n) we will need to first understand these osculating spaces.
The goal of this paper is to use the previous identification to compare Splitd(P

n) –or any other variety related
to it, like osculating spaces to the Veronese variety– with G(n − 1, n + d − 1). In particular, intersecting those
varieties with G(n − 1, n + d − 1), we can regard the corresponding types of polynomials as (n − 1)-dimensional
linear subspaces of Pn+d−1.

We like to recall that Splitd(P
n) is often called in the literature the “Chow variety of zero cycles” in fact it can

be also interpreted as the projection of the Segre Variety Seg(Pn×· · ·×Pn) from the GL(V )-complement to SdV in
V ⊗d to P(SdV ) itself (see [GKZ] for a wide description of Chow varieties and [C] for a recent use of those variety
to study the “codimension one decomposition”).

We start the paper with section 1, in which we introduce the preliminaries and give some first results about
Splitd(P

n) without still using its relation with G(n − 1, n + d − 1). More precisely, we prove the regularity of the
secant varieties to Splitd(P

n) in a certain range not depending on d (Proposition 1.8). We also include in this section
our counterexample to Ehrenborg’s conjecture.

In section 2, we first describe in coordinates the embeddings of the Veronese variety, Splitd(P
n) and G(n−1, n+

d− 1) in the same projective space. This allows us to give a first general result about the intersection of Splitd(P
n)

and G(n−1, n+d−1) (Proposition 2.7), which we can improve in the case d = 3 (Proposition 2.10). In the Example
2.11 (which we will need later on)we use this geometric description and we show that some particular elements of
G(n − 1, n + d − 1) cannot be in Splitd(P

n).
In section 3 we study the intersection between G(n − 1, n + d − 1) and the tangential variety to the d-uple

Veronese variety. We arrive to the precise intersection in Corollary 3.11. Since this tangential variety parameterizes
classes of homogeneous polynomials that can be written as Ld−1M (where L and M are linear forms) we can also
give a necessary condition on M for Ld−1M to represent an element of G(n − 1, n + d − 1) (Proposition 3.12). As
a consequence of the results of this section, we can compute the intersection of G(n − 1, n + d − 1) and Splitd(P

n)
when d = 2.

In order to compute the above intersection when d = 3, we will need to study first the intersection between
G(n − 1, n + d − 1) and the second osculating space to the Veronese variety, to which we devote section 4 (see
Theorem 4.3 for the precise result). With the result of this section, we eventually give in section 5 the intersection
between G(n − 1, n + d − 1) and Splitd(P

n) when d = 3 (Theorem 5.4).
We end this paper with an appendix in which we give various results about the intersection of G(n−1, n+d−1)

with several secant varieties to the d-uple Veronese variety. In particular, we completely describe this intersection
when d = 2 and for any secant variety. We include this appendix, even if sometimes we just sketch the proofs,
because the results we got give an idea of how the techniques introduced in the paper can be useful.

We like to thank Silvia Abrescia for the many and useful conversations and Maria Virginia Catalisano for
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suggestions and ideas.
During the preparation of this work, the first author was supported by the Spanish project number MTM2006-

04785; the second author was supported by MIUR and by funds from the University of Bologna.

1 Preliminaries and first results

Throughout all the paper, the symbol Pn will denote the projective space over an algebraically closed field K of
characteristic zero, and we will fix a system of homogeneous coordinates x0, . . . , xn. We also write G(k, d + k) for

the Grassmannian of k-spaces in Pd+k and ~G(k, V ) for the Grassmannian of k-spaces in V .
We will indicate for brevity the polynomial ring K[x0, . . . , xn] with R and its homogeneous part of degree d

with Rd. With this notation, P(Rd) is naturally identified with the set of hypersurfaces of degree d in Pn and, in
particular, P(R1) is identified with (Pn)

∗
.

Definition 1.1. The Veronese variety is the subset of P(Rd) parametrizing d-uple hyperplanes, i.e. classes of forms
that are a d-th power of linear forms. We will write Splitd(P

n) for the subset of hypersurfaces that are the union of
d hyperplanes.

Remark 1.2. If we use as homogeneous coordinates for P(Rd) the coefficients of the monomials, the d-uple Veronese
embedding

νd : P(R1) →֒ P(Rd) = P(n+d

d )−1

[L] 7→ [Ld].

(whose image is the Veronese variety) can be written as

(u0 : . . . : un) 7→ (ud
0 : ud−1

0 u1 : ud−1
0 u2 : . . . : ud

n).

Similarly, Splitd(P
n) is the image of the finite map (of degree d!):

φ : P(R1) × d. . . × P(R1) →֒ P(Rd)
([L1], . . . , [Ld]) 7→ [L1 · · ·Ld]

which sends the point ([u
(1)
0 , . . . , u

(1)
n ], . . . , [u

(d)
0 , . . . , u

(d)
n ]) to the point whose coordinates form the canonical basis of

the space V of symmetric forms of K[u
(1)
0 , . . . , u

(1)
n ; . . . ;u

(d)
0 , . . . , u

(d)
n ] of multidegree (1, . . . , 1). Hence, Splitd(P

n) has
dimension nd and it is the image of P(R1)×· · ·×P(R1) under the linear subsystem V ⊂ H0(OP(R1)×···×P(R1)(1, . . . , 1))
of symmetric forms. When d = 2, Split2(P

n) can also be regarded as the set of classes of (n+1)× (n+1) symmetric
matrices of rank at most two.

Definition 1.3. If X ⊂ PN is a projective variety of dimension n then the s-th Secant Variety of X is defined as
follows:

Secs−1(X) :=
⋃

P1,...,Ps∈X

< P1, . . . , Ps >.

Its expected dimension is
expdim(Secs−1(X)) = min{N, sn + s − 1}

but this is not always equal to dim(Secs−1(X)) in fact there are many exceptions. When δs−1 = expdim(Secs−1(X))−
dim(Secs−1(X)) > 0 we will say that Secs−1(X) is defective and δs−1 is called defect.

Before starting the study on the dimension of secant varieties of Split varieties we need to introduce some
important instruments classically utilized to study secant varieties.

Definition 1.4. If X ⊂ PN is an irreducible projective variety, an m-fat point (or an m-th point) on X is the
(m − 1)-th infinitesimal neighborhood of a smooth point P ∈ X and it will be denoted by mP (i.e. it is the
projective scheme mP defined by the ideal sheaf Im

P,X ⊂ OX).
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If dim(X) = n then an m-fat point mP on X is a 0-dimensional scheme of length
(
m−1+n

n

)
. If Z is the union of

the (m − 1)-th infinitesimal neighborhoods in X of s generic smooth points on X, we will say for short that Z is
the union of s generic m-fat points on X.

The most useful (and classical) theorem for the computation of the dimension of a secant variety of a projective
variety is the so called Terracini’s Lemma.

Theorem 1.5. (Terracini’s Lemma) Let X be an irreducible variety in PN , and let P1, . . . , Ps be s generic points
on X. Then, the projectivized tangent space to Secs−1(X) at a generic point Q ∈< P1, . . . , Ps > is the linear span
in PN of the tangent spaces TPi

(X) to X at Pi, i = 1, . . . , s, i.e.

TQ(Secs−1(X)) =< TP1
(X), . . . , TPs

(X) > .

Proof. For a proof see [Te] or [Ad].

From Terracini’s Lemma we immediately get a way of checking the defectivity of secant varieties. We include
the precise result for Splitd(P

n), although the same technique works for arbitrary varieties with a generically finite
map to a projective space.

Corollary 1.6. The secant variety Secs−1 (Splitd(P
n)) is not defective if and only if s general fat points on P(R1)×

d. . . × P(R1) impose min{s(dn + 1),
(
n+d

d

)
} independent conditions to the linear system V of symmetric forms of

multidegree (1, . . . , 1) in K[u
(1)
0 , . . . , u

(1)
n ; . . . ;u

(d)
0 , . . . , u

(d)
n ].

Proof. By Terracini’s Lemma, dim(Secs−1(Splitd(P
n))) = dim(< TP1

(Splitd(P
n)), . . . , TPs

(Splitd(P
n)) >), with

P1, . . . , Ps general points of Splitd(P
n). Since the hyperplanes of P(n+d

d )−1 containing TPi
(Splitd(P

n)) are those
containing the fat point 2Pi, it follows that dim(Secs−1(Splitd(P

n))) =
(
n+d

d

)
−1−h0(IZ(1)), where Z is the scheme

union of the fat points 2P1, . . . , 2Ps.
On the other hand, by Remark 1.2, Splitd(P

n) is the image of P(R1)× d. . .×P(R1) by the finite map φ determined
by V . Therefore h0(IZ(1)) is the dimension of the space of forms in V vanishing on φ−1(Z). By the symmetry of
the forms of V , it is enough to take preimages P ′

1, . . . , P
′
s of P1, . . . , Ps by φ, and h0(IZ(1)) is still the dimension of

the forms of V vanishing at 2P ′
1, . . . , 2P ′

s. The result follows now at once.

From this corollary, we can prove directly the non-defectivity of several secant varieties to Splitd(P
n). We start

from a technical result.

Lemma 1.7. Let Q1, . . . , Qd, P1, . . . , Pn ∈ P(R1) = Pn be a set of points in general position. Then there exist dn+1

symmetric forms F, Fij ∈ K[u
(1)
0 , . . . , u

(1)
n ; . . . ;u

(d)
0 , . . . , u

(d)
n ], with i = 1, . . . , n and j = 1, . . . , d, of multidegree

(1, . . . , 1), such that:

(i) F (Q1, . . . , Qd) 6= 0 while F (Pi, A2, . . . , Ad) = 0 for any i = 1, . . . , n and any A2, . . . , Ad ∈ P(R1).

(ii) Fij(Pk, A2, . . . , Ad) = 0 for any i, k = 1, . . . , n, j = 1, . . . , d, k 6= i and A2, . . . , Ad ∈ P(R1).

(iii) F, F11, . . . , Fnd are independent modulo I2, where I ⊂ K[u
(1)
0 , . . . , u

(1)
n ; . . . ;u

(d)
0 , . . . , u

(d)
n ] is the multihomoge-

neous ideal of (Q1, . . . , Qd) in P(R1) × · · · × P(R1).

Proof. For any linear form L ∈ K[u0, . . . , un], we will denote with L̃ the symmetrized form

L̃ := L(u
(1)
0 , . . . , u(1)

n ) · L(u
(2)
0 , . . . , u(2)

n ) · · ·L(u
(d)
0 , . . . , u(d)

n ).

Since the points are in general position we can take a linear form L ∈ K[u0, . . . , un] vanishing at P1, . . . , Pn and
not vanishing at any Q1, . . . , Qd. We thus take F = L̃, which satisfies (i).

Similarly, for any i = 1, . . . , n and j = 1, . . . , d, we can find Lij ∈ K[u0, . . . , un] vanishing at P1, . . . , Pi−1, Pi+1, . . . , Pn, Qj ,

and we take Fij = L̃ij , and clearly (ii) holds.

4



Finally, to prove (iii), assume that there is a linear combination λF + λ11F11 + · · · + λndFnd ∈ I2. Evaluating
at the point (Q1, . . . , Qd), we get λ = 0. On the other hand, taking an arbitrary point U ∈ P(R1) of coordinates
[u0, . . . , un], and evaluating at (Q1, . . . , Qj−1, Qj+1, . . . , Qd, U) we get, for any j = 1, . . . , d, that the linear form

Σn
i=1λijFij(Q1, . . . , Qj−1, Qj+1, . . . , Qd, U) ∈ K[u0, . . . , un]

is in the square of the ideal of Qi in P(R1). This clearly implies that this linear form is identically zero. Morevover,
evaluating it at each Pi, with i = 1, . . . , n, we get λij = 0, which completes the proof.

Proposition 1.8. If d > 2 and 3(s − 1) ≤ n, then Secs−1(Splitd(P
n)) is not defective.

Proof. It is enough to apply Corollary 1.6. We thus take s general points A1, . . . , As ∈ P(R1) × d. . . × P(R1) and
need to show that the evaluation map ϕ : V → H0(OZ) is surjective, where Z is the scheme union of the fat points
2A1, . . . , 2As.

For each i = 1, . . . , s, we write Ai = (Qi1, . . . , Qid). Since n ≥ 3(s− 1) and d > 2, we can pick Pi1, . . . , Pin ∈ Pn

in general position and such that they contain the points Qj1, Qj2, Qj3 for any j = 1, . . . , i−1, i+1, . . . , s. Applying
Lemma 1.7, we can find symmetric forms Fi, Fi1, . . . , Fi,nd ∈ V such that the image of them under the evaluation
map ϕ maps surjectively to H0(O2Ai

). Also, the properties (i) and (ii) of the lemma imply, together with our choice
of Pi1, . . . , Pin ∈ Pn, that these forms map to zero in any direct summand O2Aj

of H0(OZ). Since this is true for
any i, the surjectivity of ϕ follows.

We finish this section discussing Ehrenborg’s conjecture.

Example 1.9. It is a known result (see for example [CGG1]) that Sec3−1(G(2, 6)) has defect δ2 = 1, i.e one
expects that Sec2(G(2, 6)) = P34 but dim(Sec2(G(2, 6))) = 33; we need Sec3(G(2, 6)) in order to fill up P34.
However, it is not true that the least integer s such that Secs−1(Split4(P

3)) fills up the ambient space is 4 too;
in fact Sec2(Split4(P

3)) = P34 (we checked this using the previous techniques, and making computations with
[CoCoA]).

In the same way, we can also prove that the third secant varieties to Split3(P
4) and to Split4(P

4), and the fourth
secant varieties to Split4(P

4), Split6(P
3) and Split3(P

6), are not defective

The only case for which we are able to prove that Ehrenborg’s conjecture is true is for d = 2.

Proposition 1.10. The dimensions of Secs−1(G(1, n + 1)) and Secs−1(Split2(P
n)) are equal.

Proof. The embedding of G(1, n+1) into P(n+2
2 )−1≃P(R2) = P(K[x0, . . . , xn]2) allows to look at the Grassmannian as

the set of quadrics whose representative (n+2)×(n+2) matrices are skewsymmetric and of rank at most 2. Therefore
Secs−1(G(1, n + 1)) ≃ {M ∈ Mn+2(K) | M = −MT , rk(M) ≤ 2s}, then codim(Secs−1(G(1, n + 1))) =

(
n+2−2s

2

)
.

In the same way Split2(P
n) ≃ {M ∈ Mn+1(K) | M = MT , rk(M) ≤ 2}; therefore

Secs−1(Split2(P
n)) ≃ {M ∈ Mn+1(K) | M is symmetric and rk(M) ≤ 2s}, then codim(Secs−1(Split2(P

n)) =(
n+2−2s

2

)
= codim(Secs−1(G(1, n + 1))).

2 Veronese varieties and Grassmannians

In this section we want to study the other problem inspired to us by Ehrenborg’s conjecture: the “intersection”
between G(n− 1, n+ d− 1) and Splitd(P

n). To do this, we will need to identify the ambient spaces of both varieties
(see Remark 2.3).

We collect first in a lemma the main results (written in an intrinsic way) of a classical construction that we will
need in the sequel.
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Lemma 2.1. Consider the map φn,d : P(K[t0, t1]n) → ~G(d, K[t0, t1]n+d−1) that sends the class of p0 ∈ K[t0, t1]n
to the d-dimensional subspace of K[t0, t1]n+d−1 of forms of the type p0q, with q ∈ K[t0, t1]d−1. Then the following
hold:

(i) The image of φn,d, after the Plücker embedding of ~G(d, K[t0, t1]n+d−1), is the n-dimensional d-th Veronese
variety.

(ii) Identifying ~G(d, K[t0, t1]n+d−1) with the Grassmann variety of subspaces of dimension n−1 in P(K[t0, t1]
∗

n+d−1),
the above Veronese variety is the set V of n-secant spaces to a rational normal curve Σ ⊂ P(K[t0, t1]

∗

n+d−1).

(iii) For any p ∈ K[t0, t1]s, with s < n, there is a commutative diagram

P(K[t0, t1]n−s)
φn−s,d

−→ ~G(d, K[t0, t1]n+d−s−1)
↓ ↓

P(K[t0, t1]n)
φn,d

−→ ~G(d, K[t0, t1]n+d−1)

where the vertical arrows are inclusions naturally induced by the multiplication by p.

(iv) When identifying ~G(d, K[t0, t1]n+d−1) with the Grassmann variety of subspaces of dimension n−1 in P(K[t0, t1]
∗

n+d−1),
the image by φn,d of P(K[t0, t1]n−s) ⊂ P(K[t0, t1]n) as in (iii) is the set of n-secants to Σ containing the subscheme
Z ⊂ Σ defined by the zeros of p.

Proof. Write p0 = u0t
n
0 + u1t

n−1
0 t1 + · · ·+ untn1 . Then a basis of the subspace of K[t0, t1]n+d−1 of forms of the type

p0q is given by: 



u0t
n+d−1
0 + · · · + untd−1

0 tn1
u0t

n+d−2
0 t1 + · · · + untd−2

0 tn+1
1

. . .

u0t
n
0 td−1

1 + · · · + untn+d−1
1 .

The coordinates of these elements with respect to the basis {tn+d−1
0 , tn+d−2

0 t1, . . . , t
n+d−1
1 } of K[t0, t1]n+d−1 are

thus given by the rows of the matrix




u0 u1 . . . un 0 . . . 0 0
0 u0 u1 . . . un 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 u0 u1 . . . un 0
0 . . . 0 0 u0 . . . un−1 un




.

The standard Plücker coordinates of the subspace φn,d([p0]) are the maximal minors of this matrix. It is known
(see for example [AP]), these minors form a basis of K[u0, . . . , un]d, so that the image of φ is indeed a Veronese
variety, which proves (i).

To prove (ii), we still recall some standard facts from [AP]. Take homogeneous coordinates z0, . . . , zn+d−1 in
P(K[t0, t1]

∗

n+d−1) corresponding to the dual basis of {tn+d−1
0 , tn+d−2

0 t1, . . . , t
n+d−1
1 }. Consider Σ ⊂ P(K[t0, t1]

∗

n+d−1)
the standard rational normal curve with respect to these coordinates. Then, the image of [p0] by φn,d is precisely
the n-secant space to Σ spanned by the divisor on Σ induced by the zeros of p0. This completes the proof of (ii).

Part (iii) comes directly from the definitions. Finally, in order to prove (iv), observe that (iii) implies that the
image by φn,d of P(K[t0, t1]n−s) ⊂ P(K[t0, t1]n) is the subset of subspaces of K[t0, t1]n+d−1 all of whose elements
are divisible by some pp0 with p0 ∈ K[t0, t1]n−s, in particular divisible by p. The proof of (ii) implies that the
corresponding subspace in P(K[t0, t1]

∗

n+d−1) contains the subscheme Z ⊂ Σ defined by the zeros of p.

Remark 2.2. In the above proof we used coordinates to describe the curve Σ, because it will be useful for us later
on. However, it can be described also in an intrinsic way. Specifically, the elements of P(K[t0, t1]

∗

n+d−1) are linear
forms K[t0, t1]n+d−1 → K up to multiplication by a constant. Then Σ is nothing but the set of classes of linear
forms of the type F 7→ F (a0, a1) for some a0, a1 ∈ K.
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Remark 2.3. In order to relate our Veronese variety V with the standard Veronese variety, we will identify R1

with K[t0, t1]n by assigning to any L = u0x0 + · · · + unxn ∈ R1 the homogeneous form L(tn0 , tn−1
0 t1, . . . , t

n
1 ) =

u0t
n
0 +u1t

n−1
0 t1 + · · ·+untn1 ∈ K[t0, t1]n. If we just write Pn+d−1 instead of P(K[t0, t1]

∗

n+d−1), the map φ : P(R1) →

G(n − 1, n + d − 1) sends the class of the linear form to the subspace of Pn+d−1 defined (in the above coordinates)
as the intersection of the hyperplanes:





u0z0 + · · · + unzn = 0
u0z1 + · · · + unzn+1 = 0
. . .

u0zd−1 + · · · + unzn+d−1 = 0

. (1)

From now on we will use Plücker coordinates, but in a way that is dual to the standard one. Specifically, for any
projective space Pd+k with homogenous coordinates z0, . . . , zd+k, if Λ ⊂ Pd+k is the space defined by the linearly
independent equations

u1,0z0 + · · · + u1,d+kzd+k = 0
...

ud,0z0 + · · · + ud,d+kzd+k = 0

for each 0 ≤ i1 < · · · < id ≤ d + k we define pi1···id
to be the determinant

pi1···id
:=

∣∣∣∣∣∣∣

u1,i1 · · · u1,id

...
...

ud,i1 · · · ud,id

∣∣∣∣∣∣∣
. (2)

In this way, the Plücker embedding is described as follows:

p : G(k, n) →֒ P(n+1
k+1)−1

Λ 7→ {{pi1···id
} | 0 ≤ i1 < · · · < id ≤ d + k}

(3)

Now the system defined in (2) can be also interpreted as a linear system where the variables are ud
0, u

d−1
0 u1, . . . , u

d
n.

The solution (ud
0(pi1···id

), ud−1
0 u1(pi1···id

), . . . , ud
n(pi1···id

)) gives the correspondence between the space of homoge-
neous polynomials P(Rd) and the Plücker space of G(n − 1, n + d − 1): an element of the Plücker ambient space
{{pi1···id

} is hence associated to the polynomial ud
0(pi1···id

)xd
0 + ud−1

0 u1(pi1···id
)xd−1

0 x1 + · · · + ud
n(pi1···id

)xd
n.

Example 2.4. After Remark 2.3, we are implicitly identifying P(Rd) with the Plücker ambient space of G(n −
1, n + d− 1). When using the standard coordinates in each of these varieties (the coefficients of the polynomial and
Plücker coordinates, respectively), this identification should be made explicit for any concrete case. For example,
let us make explicit such an identification in the case n = 2, d = 3. In this case, the map φ2,3 assigns to any linear
form u0x0 + u1x1 + u2x2 the line of P4 given as intersection of the hyperplanes





u0z0 +u1z1 +u2z2 = 0
u0z1 +u1z2 +u2z3 = 0

u0z2 +u1z3 +u2z4 = 0

so that it has Plücker coordinates
p012 = u3

0

p013 = u2
0u1

p014 = u2
0u2

p023 = u0u
2
1 − u2

0u2

p024 = u0u1u2

p034 = u0u
2
2

p123 = u3
1 − 2u0u1u2

p124 = u2
1u2 − u0u

2
2

p134 = u1u
2
2

p234 = u3
2.
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Since the Veronese embedding P(R1) → P(R3) is defined by u0x0 +u1x1 +u2x2 7→ (u0x0 +u1x1 +u2x2)
3, the above

relations show that an element of the ambient Plücker space is naturally identified with the polynomial

p012x
3
0 + 3p013x

2
0x1 + 3p014x

2
0x2 + 3(p023 + p014)x0x

2
1 + 6p024x0x1x2+

+3p034x0x
2
2 + (p123 + 2p024)x

3
1 + 3(p034 + p124)x

2
1x2 + 3p134x1x

2
2 + p234x

3
2.

(4)

After the identification of Remark 2.3, we can restate Lemma 2.1 in terms of polynomials in K[x0, . . . , xn].

Lemma 2.5. Let p := a0t
s
0 + a1t

s−1
0 t1 + · · · + ast

s
1 ∈ K[t0, t1]s and set, for j = 1, . . . , n − s + 1, the linear forms

N0 := a0x0 + a1x1 + · · · + asxs

N1 := a0x1 + a1x2 + · · · + asxs+1

...
. . .

. . .

Nn−s := a0xn−s + a1xn−s+1 + · · · + asxn.

Then, in the set up of Lemma 2.1, and identifying P(K[t0, t1]n) with P(R1), the inclusion P(K[t0, t1]n−s) ⊂
P(K[t0, t1]n) is identified with P(K[N0, . . . , Nn−s]1) ⊂ P(R1) and its image by φn,d in G(n − 1, n + d − 1) is
the locus

G′ := {Λ ∈ G(n − 1, n + d − 1) | Λ ∩ Σ ⊇ Z}

where Z ⊂ Σ is the subscheme defined by the zeros of p. Moreover, diagram (iii) of Lemma 2.1 can be written as

P(K[N0, . . . , Nn−s]1)
φn−s,d

−→ G(n − s − 1, n + d − s − 1)
↓ ↓

P(K[x0, . . . , xn]1)
φn,d

−→ G(n − 1, n + d − 1)

where Pn+d−s−1 is identified with the projection of Pn+d−1 from < Z >, and the natural map G(n − s − 1, n + d −
s − 1) → G(n − 1, n + d − 1) is identified with the inclusion of G′.

Proof. It is enough to recall that the subspace P(K[t0, t1]n−s) ⊂ P(K[t0, t1]n) corresponds to the subspace of
polynomials in K[t0, t1]n divisible by p. These polynomials take the form (a0t

s
0 + a1t

s−1
0 t1 + · · · + ast

s
1)(b0t

n−s
0 +

b1t
n−s−1
0 t1 + · · ·+ bn−st

n−s
1 ), which, as elements of R1, are precisely those of the form b0N0 + · · ·+ bn−sNn−s. The

rest of the statement is obtained directly from Lemma 2.1.

Remark 2.6. When s = n, there is only one form N0 and G′ is just one point of G(n − 1, n + d − 1), which is
precisely the point of V corresponding to [Nd

0 ].
When s = n − 1, the set G′ is a projective space of dimension d, so it is the whole P(K[N0, N1]d). This case

allows to give some first relation between Splitd(P
n) and G(n− 1, n + d− 1), as we do in the following proposition.

Proposition 2.7. The intersection Splitd(P
n)∩G(n− 1, n + d− 1) contains the locus of (n− 1)-linear spaces that

are (n − 1) − secant to Σ.

Proof. If Λ is an (n − 1)-secant space to Σ, then it contains a subscheme Z ⊂ Σ of length n − 1. Hence, Lemma
2.5, implies that Λ, as an element of P(Rd), comes from a homogeneous form in K[N0, N1]d, so that it necessarily
splits.

At this point of the discussion it becomes interesting to investigate if the previous corollary describes only an
inclusion or an equality. Let us see that, at least for d = 3, the intersection contains another component. We start
with the case n = 2.
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Example 2.8. In the set up of Example 2.4, consider the class of the polynomial x1(x0−x1)(x1−x2). This clearly
gives an element in P9 that is in Split3(P

2). With the identification given in (4), it corresponds to the element of
Plücker coordinates

[p012, p013, p014, p023, p024, p034, p123, p124, p134, p234] = [0, 0, 0, 2,−1, 0,−4, 2, 0, 0].

This point is in G(1, 4), and corresponds precisely to the line of equations z0 − 2z1 = z2 = z4 − 2z3 = 0, which
does not meet the standard rational normal curve Σ ⊂ P4. The geometric interpretation of this line is that it is the
intersection of the following three hyperplanes:

• z2 = 0, the span of the of the tangent lines of Σ at the points [1, 0, 0, 0, 0] and [0, 0, 0, 0, 1],

• z0 − 2z1 + z2 = 0, the span of the of the tangent lines of Σ at the points [1, 0, 0, 0, 0] and [1, 1, 1, 1, 1],

• z2 − 2z3 + z4 = 0, the span of the of the tangent lines of Σ at the points [0, 0, 0, 0, 1] and [1, 1, 1, 1, 1].

Since Σ is a homogeneous variety, we get that, for any choice of different points y1, y2, y3 ∈ Σ, the intersection of
< Ty1

Σ, Ty2
Σ > ∩ < Ty1

Σ, Ty3
Σ > ∩ < Ty2

Σ, Ty3
Σ > is an element of G(1, 4) that is also in Split3(P

2).

The above example can be generalized to any n, showing that Split3(P
n)∩G(n− 1, n + 2) contains not only the

(n + 2)-dimensional subvariety given in Proposition 2.7, but also another (n + 1)-dimensional subvariety (we will
see in Theorem 5.4 that the intersection consists exactly of those two components). We introduce first a notation
that we will use throughout the paper.

Notation 2.9. If Σ is a smooth curve, we will write {r1y1, . . . , rkyk} or r1y1 + · · ·+ rkyk to denote the subscheme
of Σ supported on the different points y1, . . . , yk ∈ Σ with respective multiplicities r1, . . . , rk.

Proposition 2.10. For any n ≥ 2, the intersection of Split3(P
n) and G(n − 1, n + 2) contains the set

{< Z + 2y1 + 2y2 > ∩ < Z + 2y1 + 2y3 > ∩ < Z + 2y2 + 2y3 > | Z ⊂ Σ, length(Z) = n − 2, y1, y2, y3 ∈ Σ}.

Proof. Fix a subscheme Z ⊂ Σ of length n − 2 and let Λ ∈ G(n − 1, n + 2) be a subspace that can be written as

Λ =< Z + 2y1 + 2y2 > ∩ < Z + 2y1 + 2y3 > ∩ < Z + 2y2 + 2y3 > .

In particular Λ contains Z, so that it is contained in the set G′ of Lemma 2.5. Consider the projection of Pn+2 to
P4 from < Z >. In this way, Σ becomes a rational normal curve Σ′ ⊂ P4, while Λ becomes a line Λ′ ⊂ P4 that can
be written as

Λ′ =< 2y′

1 + 2y′

2 > ∩ < 2y′

1 + 2y′

3 > ∩ < 2y′

2 + 2y′

3 >

where each y′
i ∈ Σ′ is the image of yi. By Example 2.8, the line Λ′ is an element of Split3(P

2). With the identifications
of Lemma 2.5, this should be interpreted as follows. The set G′ is identified with G(1, 4), whose Plücker ambient
space is P(K[N0, N1, N2]3), so that the line Λ′ is represented by a polynomial F ∈ K[N0, N1, N2]3 that factor
into three linear forms. Hence, regarding Λ ∈ G′ ⊂ G(n − 1, n + 2) as an element of its ambient Plücker space
P(K[x0, . . . , xn]d), it is represented by the same polynomial F ∈ K[x0, . . . , xn]d. Therefore Λ ∈ Split3(P

n).

Example 2.11. In the same way as in Proposition 2.10, it is possible to prove that certain elements of G(n−1, n+2)
are not in Split3(P

n). In particular, we will need later on (see Lemma 5.2) to check that, given different points
y1, . . . , yk on the rational normal curve Σ ⊂ Pn+2 and nonnegative integers r1, . . . , rk such that r1 + · · · + rk = n,
the linear subspaces

1. < (r1+2)y1, r2y2, r3y3 . . . , rkyk > ∩ < r1y1, (r2+2)y2, r3y3, . . . , rkyk > ∩ < (r1−2)y1, (r2+4)y2, r3y3, . . . , rkyk >

2. < (r1 + 2)y1, r2y2, r3y3, . . . , rkyk > ∩ < r1y1, (r2 + 1)y2, (r3 + 1)y3, r4y4, . . . , rkyk > ∩ < (r1 − 2)y1, (r2 +
3)y2, (r3 + 1)y3, r4y4, . . . , rkyk >
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3. < (r1 + 2)y1, r2y2, . . . , rkyk > ∩ < r1y1, (r2 + 2)y2, r3y3, . . . , rkyk > ∩ < (r1 − 2)y1, (r2 + 3)y2, (r3 +
1)y3, r4y4, . . . , rk >

4. < (r1 + 2)y1, r2y2, . . . , rkyk > ∩ < r1y1, (r2 + 2)y2, r3y3, . . . , rkyk > ∩ < (r1 − 1)y1, (r2 − 1)y2, (r3 +
4)y3, r4y4, . . . , rk >

5. < (r1 + 2)y1, r2y2, . . . , rkyk > ∩ < r1y1, (r2 + 2)y2, r3y3, . . . , rkyk > ∩ < (r1 − 1)y1, (r2 − 1)y2, (r3 + 3)y3, (r4 +
1)y4, r5y5, . . . , rk >

have dimension n−1 and, as elements of G(n−1, n+2), they are not in Split3(P
n). To prove that, we first observe that

all those subspaces always contain a finite subscheme Z ⊂ Σ of length n−2, namely < (r1−2)y1, r2y2, r3y3 . . . , rkyk >
in the first three cases and < (r1 − 1))y1, (r2 − 1)y2, r3y3 . . . , rkyk > in the last two cases. Hence, projecting from
Z, we are reduced to the case n = 2 and we need to check that, given points y1, y2, y3, y4 in the rational normal
curve in P4, the subspaces

< 4y1 > ∩ < 2y1, 2y2 > ∩ < 4y2 >

< 4y1 > ∩ < 2y1, y2, y3 > ∩ < 3y2, y3 >

< 4y1 > ∩ < 2y1, 2y2 > ∩ < 3y2, y3 >

< 3y1, y2 > ∩ < y1, 3y2 > ∩ < 4y3 >

< 3y1, y2 > ∩ < y1, 3y2 > ∩ < 3y3, y4 >

are lines and that, as elements of G(1, 4), they are not in Split3(P
2). By the homogeneity of Σ, we can assume

y1 = [1, 0, 0, 0, 0], y2 = [0, 0, 0, 0, 1], y3 = [1, 1, 1, 1, 1] and y4 = [1, λ, λ2, λ3, λ4] with λ 6= 0, 1. With this choice, the
above five spaces become respectively the lines

z4 = z2 = z0 = 0

z4 = z2 − z3 = z0 − z1 = 0

z4 = z2 = z0 − z1 = 0

z3 = z1 = z0 − 4z1 + 6z2 − 4z3 + z4 = 0

z3 = z1 = λz0 + (−3λ − 1)z1 + (3λ + 3)z2 + (−λ − 3)z3 + z4 = 0

with Plücker coordinates [p012, p013, p014, p023, p024, p034, p123, p124, p134, p234] equal to

[0, 0, 0, 0,−1, 0, 0, 0, 0, 0]

[0, 0, 0, 0,−1, 1, 0, 1,−1, 0]

[0, 0, 0, 0,−1, 0, 0, 1, 0, 0]

[0,−1, 0, 0, 0, 0, 6, 0,−1, 0]

[0,−λ, 0, 0, 0, 0, 3λ + 3, 0,−1, 0]

Using (4), we get respective polynomials
−2x1(3x0x2 + x2

1)

−6x0x1x2 + 3x0x
2
2 − 2x3

1 + 6x2
1x2 − 3x1x

2
2

−x1(6x0x2 + 2x2
1 − 3x1x2)

−3x1(x
2
0 − 2x2

1 + x2
2)

−3x1(λx2
0 − (λ + 1)x2

1 + x2
2).

Since none of the above polynomials split into linear factors, they do not represent points in Split3(P
2).

10



3 Tangential varieties to Veronese varieties and Grassmannians

We want to devote the rest of the paper to understand the intersection of Splitd(P
n) and G(n − 1, n + d − 1). The

strategy will be to relate the algebraic properties of polynomials with the geometry of subspaces in Pn+d−1 (where
we have the rational normal curve Σ defining V , thus giving the connection between the two approches). The main
idea is that a polynomial representing a point in Splitd(P

n) is characterized by having many linear factors. This is
translated in terms of geometry by means of osculating spaces, and we will devote this section to the first case, the
tangential varities.

We recall first the background for this theory.

Notation 3.1. Denote with Ok
x(X) the k-th osculating space to a projective variety X at the point x ∈ X, and

with τ(X) the tangential variety to X (observe that O0
x(X) = x and O1

x(X) = Tx(X)).

Remark 3.2. We recall from [BCGI] that, for any [Ld] ∈ V , the elements of Ok
[Ld](V ) are precisely those represented

by forms of the type Ld−kF where F ∈ Rk. Therefore any point of Splitd(P
n), which can be written as [Lm1

1 · · ·Lmt

t ]

with L1, . . . , Lt ∈ R1 different linear forms and m1, . . . ,mt positive integers with
∑t

i=1 mi = d, can be obtained as

the only point in the intersection Od−m1

[Ld
1 ]

(V ) ∩ · · · ∩ Od−mt

[Ld
t ]

(V ). Hence we have an equality

Splitd(P
n) =

⋃
P

t

i=1
mi = d

Λ1, . . . , Λt ∈ V

Od−m1

Λ1
(V ) ∩ · · · ∩ Od−mt

Λt
(V )

where the subspaces Λ1, . . . ,Λt are assumed to be different. In the particular case d = 3, we can simply write

Split3(P
n) = τ(V )

⋃( ⋃

Λ1,Λ2,Λ3∈V

O2
Λ1

(V ) ∩ O2
Λ2

(V ) ∩ O2
Λ3

(V )
)

because any form of degree three containing a square necessarily splits.

In order to understand the intersection of Splitd(P
n), with G(n−1, n+d−1), it is therefore enough to understand

the intersection of the osculating spaces to V . A first geometric result in this direction is the following.

Proposition 3.3. Let Λ be a point in the osculating space Ok
Λ0

(V ) with k < d. If we regard Λ0 as an n-secant

linear subspace to the rational normal curve Σ ⊂ Pn+d−1, then Λ0 contains the points (counted with multiplicity) of
the intersection Λ ∩ Σ.

Proof. Let L ∈ R1 be a linear form such that Λ0 = [Ld]. Since λ ∈ Ok(V ) with k < d, Remark 3.2 implies that Λ
is represented by a form of the type Ld−kM .

On the other hand, let Z ⊂ Σ be the schematic intersection of Λ and Σ and set s = length(Z). Let p ∈ K[t0, t1]s
be the polynomial whose scheme of zeros in P1 corresponds to Z ⊂ Σ. By Lemma 2.5, the Plücker ambient
space of the set G′ of (n − 1)-dimensional subspaces containing Z is P(K[N0, . . . , Nn−s]d), for some linear forms
N0, . . . , Nn−s ∈ K[x0, . . . , xn].

Hence we get Ld−kM ∈ K[N0, . . . , Nn−s]. Since d − k > 0, necessarily L ∈ K[N0, . . . , Nn−s]. Again by Lemma
2.5, this implies that Λ0 is in G, i.e. it contains Z, as wanted.

We introduce next the main tool that we will use to study the osculating spaces to V and their intersection with
G(n − 1, n + d − 1).

Definition 3.4. Consider the incidence variety

I := {(Λ, y) ∈ G(n − 1, n + d − 1) × Σ | lengthy(Λ ∩ Σ) ≥ r} ⊂ G(n − 1, n + d − 1) × Σ.

Fix Λ0 ∈ G(n − 1, n + d − 1) such that the intersection between Λ0 and Σ in Pn+d−1 is a zero-dimensional scheme
whose support at a point y ∈ Λ0 ∩ Σ has length r. Let π1 be the projection from I to G(n − 1, n + d − 1). We

denote by Zy ⊂ P(n+d

d )−1 the image by π1 of a neighborhood of I near (Λ0, y).
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Remark 3.5. Let Λ0 ∈ V be a point corresponding to a subspace Λ0 ⊂ Pn+d−1 meeting Σ at points y1, . . . , yk with
respective multiplicities r1, . . . , rk (hence r1 + · · · + rk = n). With the above notation, each Zi := Zyi

is smooth at
Λ0 and a neighbourhood of V near Λ0 is given by the intersection Z1 ∩ · · · ∩ Zk. Therefore

TΛ0
(V ) =

k⋂

i=1

TΛ0
(Zi).

The same equality does not hold for arbitrary osculating spaces, in which we only have one inclusion:

k⋂

i=1

Os
Λ0

(Zi) ⊂ Os
Λ0

(V )

for any s. Hence, in order to study tangent or osculating spaces to the Veronese variety V we will study first those
spaces for the Zi.

We devote the rest of the section to the tangent spaces to the Grassmannian, while we will see in later sections
that the inclusion we have for second osculating spaces is enough if d = 3. The first step will be to compute the
intersection of G(n − 1, n + d − 1) with the tangent spaces to each of the above neighborhoods.

Theorem 3.6. Let Λ ∈ G(n − 1, n + d − 1) meeting Σ at a zero-dimensional scheme whose support at a point
y ∈ Λ0 ∩ Σ has length r. If Zy is as in Definition 3.4, then the intersection between the tangent space to Zy in Λ0

and the Grassmannian G(n − 1, n + d − 1) is

TΛ0(Zy) ∩ G(n − 1, n + d − 1) =

= {Λ ∈ G(n − 1, n + d − 1) | Λ ⊃ Or−1
x (Σ), dim(Λ ∩ Λ0) ≥ n − 2}∪

∪{Λ ∈ G(n − 1, n + d − 1) | Or−2
x (Σ) ⊂ Λ ⊂< Λ0, O

r
x(Σ) >}.

Proof. Let the map P1 → Pn+d−1 defined by (t0, t1) 7→ (tn+d−1
0 , tn+d−2

0 t1, . . . t
n+d−1
1 ) be a parameterization of

Σ; without loss of generality we may assume that y = [1, 0, . . . , 0] ∈ Σ and that a1, . . . , ar ∈ K are such that
νn+d−1((t

r
1 + a1t

r−1
1 t0 + · · · + ar−1t1t

r−1
0 + art

r
0)

∗) = y. Hence Λ0 ∈ G(n − 1, n + d − 1) is defined in Pn+d−1 by

the equations zr = · · · = zr+d−1 = 0. We will study the affine tangent space T̂Λ0
(Zy) in the affine chart of the

Plücker coordinates {pr,...,r+d−1 6= 0}. Observe that in this affine chart we have a system of coordinates given by
{pr,...,̂i,...,r+d−1,j}, with i ∈ {r, . . . , r + d − 1} and j 6∈ {r, . . . , r + d − 1}, while the other Plücker coordinates are
homogeneous forms of degree at least two in these coordinates.
Let Hi for i = 1, . . . , n + d − r be the hyperplane of Pn+d−1 defined by the equation

Hi : arzi−1 + ar−1zi + · · · + a1zr+i−2 + zr+i−1 = 0.

Hence Zy is described by 



H1 + µ1,d+1Hd+1 + · · · + µ1,n+d−rHn+d−r = 0
...
Hd + µd,d+1Hd+1 + · · · + µd,n+d−rHn+d−r = 0

(5)

with µi,j ∈ K for i = 1, . . . , d and j = d + 1, . . . , n + d − r.
We want to write the matrix of the coefficients of the previous system since it will be the matrix whose d×d minors
will give Plücker coordinates of Zy. Actually we will be interested only in TΛ0(Zy) hence we can write such a matrix
modulo all the terms of degree bigger or equal then 2:

A :=




ar ar−1 · · · · · · · · · a2 a1

ar ar−1 a2

. . .
. . .

...
ar ar−1 · · · ad

∣∣∣∣∣∣∣∣∣

1 0 · · · 0
a1 1
...

. . .
. . . 0

ad−1 · · · a1 1

∣∣∣∣∣∣∣∣∣

µ1,d+1 · · · µ1,n+d−r

...
...

µd,d+1 · · · µd,n+d−r


 . (6)
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With the above system of coordinates, an affine parametrization of Zy ⊂ G(n − 1, n + d − 1) at Λ0 is given by
pr,...,̂i,...,r+d−1,j = ±Ai,j+quadratic terms, so that the other Plücker coordinates are at least quadratic in the

parameters ak, µl,m of Z. Therefore an affine parameterization of TΛ0(Zy) ⊂ P(n+d

d )−1 is given by

{
pr,...,̂i,...,r+d−1,j = ±Ai,j

pi1,...,id
= 0 otherwise

(7)

with the same parameters ak, µl,m as Zy.
Therefore, the first part of (7) shows that, if an element of TΛ0

(Zy) belongs also to G(n− 1, n+ d− 1), it should
correspond to the linear subspace defined by the matrix

B :=




ar ar−1 · · · · · · · · · a2 a1

ar ar−1 a2

. . .
. . .

...
ar ar−1 · · · ad

∣∣∣∣∣∣∣∣∣

1 0 · · · 0
0 1
...

. . .
. . . 0

0 · · · 0 1

∣∣∣∣∣∣∣∣∣

µ1,d+1 · · · µ1,n+d−r

...
...

µd,d+1 · · · µd,n+d−r


 . (8)

On the other hand, the second part of (7) implies that the submatrix of B obtained by removing the central identity
block has rank at most one. Hence ar = · · · = a2 = 0, and depending on the vanishing of a1 or not, B takes one of
the following forms:

B1 =




0 · · · 0
...

...
0 · · · 0

∣∣∣∣∣∣∣

1 0
. . .

0 1

∣∣∣∣∣∣∣

µ1,d+1 · · · µ1,n+d−r

...
...

µd,d+1 · · · µd,n+d−r




with the last block of rank at most one, or

B2 =




0 · · · 0 a1

...
...

0 · · · 0 0

∣∣∣∣∣∣∣

1 0
. . .

0 1

∣∣∣∣∣∣∣

µ1,d+1 · · · µ1,n+d−r

0 · · · 0
· · ·

0 · · · 0


 .

Now observe that, reciprocally, the matrices of the type B1 and B2 represent linear subspaces satisfying the equations
(7), so that they are in TΛ0

(V ). On the other hand, matrices of type B1 correspond to linear subspaces Λ ∈
G(n− 1, n+ d− 1) such that Λ ⊃ Or−1

x (Σ) and dim(Λ∩Λ0) ≥ n− 2, while matrices of type B2 correspond to linear
subspaces Λ ∈ G(n − 1, n + d − 1) such that Or−2

x (Σ) ⊂ Λ ⊂< Λ0, O
r
x(Σ) >.

With this result in mind, we can now compute the intersection of G(n− 1, n + d− 1) with the tangential variety
to V . In the statement, we will use the following notation, which we will often repeat along the paper.

Notation 3.7. Given linear subspaces A ⊂ B ∈ Pn+d−1 of respective dimensions n− 2, n, we will write F (A, B) to
denote the pencil of subspaces Λ ∈ G(n − 1, n + d − 1) such that A ⊂ Λ ⊂ B.

Theorem 3.8. Let Λ0 ∈ G(n−1, n+d−1) such that the intersection between Λ0 and Σ in Pn−1 is a zero-dimensional

scheme with support on {y1, . . . , yk} ⊂ Σ and degree n such that each point yi has multiplicity ri and
∑k

i=1 ri = n
(obviously 1 ≤ k ≤ n). Then

TΛ0(V ) ∩ G(n − 1, n + d − 1) =

k⋃

i=1

F (< Or1−1
y1

(Σ), . . . , Ori−2
yi

(Σ), . . . , Ork−1
yk

(Σ) >, < Ori
yi

(Σ),Λ0 >). (9)

Proof. With the notation of Remark 3.5, Theorem 3.6 shows that, for each i = 1, . . . , k:

TΛ0
(Zi) ∩ G(n − 1, n + d − 1) =
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= {Λ ∈ G(n − 1, n + d − 1) | Λ ⊃ Or−1
yi

(Σ), dim(Λ ∩ Λ0) ≥ n − 2}∪

∪{Λ ∈ G(n − 1, n + d − 1) | Or−2
yi

(Σ) ⊂ Λ ⊂< Λ0, O
r
yi

(Σ) >}.

Let us call for brevity Ai := {Λ ∈ G(n − 1, n + d − 1) | Λ ⊃ Or−1
yi

(Σ), dim(Λ ∩ Λ0) ≥ n − 2} and Bi := {Λ ∈
G(n − 1, n + d − 1) | Or−2

yi
(Σ) ⊂ Λ ⊂< Λ0, O

r
yi

(Σ) >}. By Remark 3.5 we have that

TΛ0
(V ) ∩ G(n − 1, n + d − 1) =

(
k⋂

i=1

TΛ0
(Zi)

)
∩ G(n − 1, n + d − 1).

Then

TΛ0
(V ) ∩ G(n − 1, n + d − 1) =

k⋂

i=1

Ai ∪ Bi

Now it is sufficient to observe that all these intersections are equal to Λ0 except for A1∩· · ·∩Âi∩· · ·∩Ak∩Bi, for all
i = 1, . . . , k, that is {Λ ∈ G(n− 1, n + d− 1) | < Or1−1

y1
(Σ), . . . , O

ri−1−1
yi−1 (Σ), Ori−2

yi
(Σ), O

ri+1−1
yi+1 (Σ), . . . , Ork−1

yk
(Σ) >

⊂ Λ ⊂< Ori
yi

(Σ),Λ0 >} from which we have the statement.

Remark 3.9. Observe that if ♯{y1, . . . , yk} = deg(Λ0 ∩ Σ) = n then (9) becomes:

TΛ0(V ) ∩ G(n − 1, n + d − 1) =

n⋃

i=1

F (< y1, . . . , ŷi, . . . , yn >, < y1, . . . , li, . . . , yn >)

where li = Tyi
(Σ).

On the other hand, if length(Λ0 ∩ Σ) = n and y1 = · · · = yk then (9) becomes:

TΛ0
(V ) ∩ G(n − 1, n + d − 1) = F (On−2

y1
(Σ), On

y1
(Σ)).

Definition 3.10. Let X ⊂ PN be a projective, reduced and irreducible variety. Let X0 ⊂ X be the dense subset
of regular points of X. We define the tangential variety to X as

τ(X) :=
⋃

P∈X0

TP (X).

Corollary 3.11. The intersection between tangential variety to Veronese variety V = νd(P
n) and the Grassmannian

G(n − 1, n + d − 1) is
τ(V ) ∩ G(n − 1, n + d − 1) =

=
⋃

Λ=<r1y1,...,rkyk>∈V

(
k⋃

i=1

F (< Or1−1
y1

(Σ), . . . , Ori−2
yi

(Σ), . . . , Ork−1
yk

(Σ) >, < Ori
yi

(Σ),Λ >)

)
. (10)

Observe that, when d = 2, we have τ(V ) = Sec1(V ) = Split2(P
n), so that the above corollary also gives the

intersection of G(n − 1, n + 1) with Sec1(V ) and Split2(P
n).

Since elements of the tangent space to V at [Ld] take the form [Ld−1M ], one can wonder whether it is possible
to give some information about the linear form M . We conclude this section answering that question.

Proposition 3.12. Let [Ld
0] ∈ V be an element corresponding to an n-secant subspace Λ0 ⊂ Pn+d−1 to Σ. Then, if

Λ ∈ TΛ0(V )∩G(n−1, n+d−1) is given by [Ld−1
0 L1], the point [Ld

1] ∈ V corresponds to a linear space Λ1 ⊂ Pn+d−1

sharing with Λ0 a subscheme of Σ of length n − 1.

Proof. By Theorem 3.8, we have that Λ shares with Λ0 a subscheme Z ⊂ Σ of length n − 1. On the other hand,
the fact that Λ corresponds to Ld−1

0 L1 implies (see Remark 3.2) that Λ ∈ Od−1
[Ld

1 ]
(V ). Hence, by Proposition 3.3, it

follows that Λ1 contains Z, as wanted.
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4 Second osculating space to the Veronese Variety and the Grassman-

nian

We devote this section to study the intersection with the Grassmanniann of the second osculating space to the
Veronese variety. As we have seen, in the case of the first osculating space (i.e. the tangential variety), the
computations were difficult to manage. In fact, the case of the second osculating space is maybe the last handy case
with these techniques, although only the case d = 3 seems to be treatable.

Theorem 4.1. Let Λ0 ∈ G(n − 1, n + 2) such that the intersection Λ0 ∩ Σ ⊂ Pn+2 is a zero-dimensional scheme
whose support contains x ∈ Σ with multiplicity r. Let Zy be as in Definition 3.4 with d = 3. Then the intersection
between the second osculating space to Zy in Λ0 and the Grassmannian G(n − 1, n + 2) satisfies

O2
Λ0

(Zy) ∩ G(n − 1, n + 2) ⊆ A ∪ B ∪ C

where
A = {Λ ∈ G(n − 1, n + 2) | Λ ⊆< Λ0, O

r+1
x (Σ) >, dim(Λ ∩ Or−1

x (Σ)) ≥ r − 2}

B = {Λ ∈ G(n − 1, n + 2) | Or−2
x (Σ) ⊆ Λ,dim(Λ ∩ Or

x(Σ)) ≥ r − 1, dim(Λ∩ < Λ0, O
r
x(Σ) >) ≥ n − 2}

C = {Λ ∈ G(n − 1, n + 2) | Or−1
x (Σ) ⊆ Λ, dim(Λ ∩ Λ0) ≥ n − 3}.

Proof. As in Theorem 3.6 we give a parameterization of Σ around the point x := [1, 0, . . . , 0], and we give the
descripition of Zy via the system (5), that, in this case for d = 3, becomes





H1 + µ1,4H4 + · · · + µ1,n+3−rHn+3−r = 0
H2 + µ2,4H4 + · · · + µ2,n+3−rHn+3−r = 0
H3 + µ3,4H4 + · · · + µ3,n+3−rHn+3−r = 0

Next we have to consider the matrix A defined in (6), but now we have to keep the terms of degree two.
Depending on whether r ≥ 3 or r = 1, 2 the form of the matrix is different, so that we will distinguish the three
cases.

CASE r ≥ 3: In this case the matrix A takes the form:

A =




ar ar−1 ar−2

0 ar ar−1

0 0 ar

∣∣∣∣∣∣

ar−3 + µ1,4ar · · · a1 +
∑r

i=4 µ1,iai

ar−2 + µ2,4ar · · · a2 +
∑r

i=4 µ2,iai

ar−1 + µ3,4ar · · · a3 +
∑r

i=4 µ3,iai

∣∣∣∣∣∣
(11)

∣∣∣∣∣∣

1 +
∑r

i=3 µ1,i+1ai 0 +
∑r

i=2 µ1,i+2ai 0 +
∑r

i=1 µ1,i+3ai

a1 +
∑r

i=3 µ2,i+1ai 1 +
∑r

i=2 µ2,i+2ai 0 +
∑r

i=1 µ2,i+3ai

a2 +
∑r

i=3 µ3,i+1ai a1 +
∑r

i=2 µ3,i+2ai 1 +
∑r

i=1 µ3,i+3ai

∣∣∣∣∣∣

µ1,4 +
∑n−r−1

i=1 µ1,i+4ai · · · µ1,n+3−r

µ2,4 +
∑n−r−1

i=1 µ2,i+4ai · · · µ2,n+3−r

µ3,4 +
∑n−r−1

i=1 µ3,i+4ai · · · µ3,n+3−r


 .

(We apologize with the reader but the matrix A is too big to be written on only one line: it is a (3 × (n + 3 − r))
size and we write first the firsts r columns and secondly the others.)

From this matrix, and proceeding as in the proof of Theorem 3.6, one could get an affine parametrization of

O2
Λx

(V ) ⊂ P(n+3
3 )−1 in the affine open set pr,r+1,r+2 6= 0. However, such a parameterization becomes too complicated,

so that we just write the part that we need to get the result:

• pj,r+1,r+2 =





ar−j , j = 0, 1, 2
ar−j + ar−j+3µ1,4 + · · · + arµ1,j+1, j = 3, . . . , r − 1
µ1,j−r+1 + a1µ1,j−r+2 + · · · + an−j+2µ1,n−r+3, j = r + 3, . . . , n + 2,

• −pj,r,r+2 =





−ara1, j = 0
−ar−ja1 + ar−j+1, j = 1, 2
−ar−ja1 + ar−j+1 + ar−j+3µ2,4 + · · · + arµ2,j+1, j = 3, . . . , r − 1
−a1µ1,j−r+1 + µ2,j−r+1 + a1µ2,j−r+2 + · · · + an−j+2µ2,n−r+3, j = r + 3, . . . , n + 2,
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• pj,r,r+1 =





−ara2, j = 0
−ar−1a2 − ara1, j = 1
−ar−2a2 − ar−1a1 + ar, j = 2
−ar−ja2 − ar−j+1a1 + ar−j+2 + ar−j+3µ3,4 + · · · + arµ3,j+1, j = 3, . . . , r − 1
−a2µ1,j−r+1 − a1µ2,j−r+1 + µ3,j−r+1 + a1µ3,j−r+2 + · · · + an−j+2µ3,n−r+3, j = r + 3, . . . , n + 2.

• p0,r−1,r+2 = ara2 = −p0,r,r+1;

• p1,r−1,r+2 = ar−1a2 − ara1 = −p1,r,r+1 − 2p0,r,r+2;

• p2,r−1,r+2 = ar−2a2 − ar−1a1 = −p2,r,r+1 − 2p1,r,r+2 − p0,r+1,r+2;

• p0,1,r+1 = 0;

• p0,i,r+1 = −arar−i+2 = −p0,i−1,r+2, for i = 3, . . . , r − 1;

• p1,2,r+1 = −arar−1 = −p0,2,r+2;

• p1,i,r+1 = −ar−1ar−i+2 = −p1,i−1,r+2 + p0,i+1,r+1 = −p1,i−1,r+2 − p0,i−1,r+2, for i = 3, . . . , r − 1;

• p2,3,r+1 = −ar−2ar−1 + arar−3 = −p1,3,r+2;

• p2,i,r+1 = −ar−2ar−i+2 + arar−i = −p2,i−1,r+2 + p1,i+1,r+1 − p0,i+2,r+1, for i = 4, . . . , r − 1;

• p0,i,r = 0 for all i = 1, . . . , n + 3 − r;

• p1,i,r = p0,i,r+1 = p0,i−1,r+2 for i = 2, . . . , r − 1;

• p2,i,r = p1,i−1,r+2 for i = 3, . . . , r + 2;

• pi,j,r+2 = pi+1,j+1,r for i = 0, . . . , r − 3 and j = 1, . . . , r − 2;

• pr−i,r−2,r+2 − pr−i,r−1,r+1 = ai+2a1 − ai+1a2 = −pr−i−1,r−1,r+2, for i = 3, . . . , r − 1.

where the bars denote new parameters corresponding to terms of degree two in the parametrization of Zy.
Now it is needless to say that applying all these relations at the matrix B (defined as in the proof of Theorem

3.6) is a complete mess... At the end of the game we succeed with a matrix that can be only of one of the following
forms:

B′ =




0 0 0
0 0 0
0 0 0

∣∣∣∣∣∣

0 · · · 0 ∗ ∗
0 · · · 0 0 0
0 · · · 0 0 0

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣

∗ · · · ∗
∗ · · · ∗
∗ · · · ∗




with the condition that the rank of the submatrix obtained omitting the third block is 2;
or

B′′ =




0 ∗ ∗
0 ∗ ∗
0 0 0

∣∣∣∣∣∣

∗ · · · ∗
∗ · · · ∗
0 · · · 0

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣

∗ · · · ∗
∗ · · · ∗
∗ · · · ∗




with the conditions that at least one of the element of the second row in the firsts two blocks is different from zero,
the submatrix maid by the first two blocks has rank 1 and that that one obtained by omitting the third block has
rank 2.

B′ case: Observe that pr−2,r+1,r+2+i = a2 · B3,r+2+i for i = 1, . . . , n + 1. From the parameterization we get:

1. pr−2,r+1,r+2+i = a2µ3,r+2+i − a4µ1,r+2+i, for i = 1, . . . , n + 1;

2. pr−1,r,r+2+i = a2µ3,r+2+i − a3µ2,r+2+i for i = 1, . . . , n + 1; since it is equal to that we know from the
description of B′ that is zero;

3. pr−3,r+2,r+2+i = a3µ2,r+2+i − a4µ1,r+2+i for i = 1, . . . , n + 1 that we know from the description of B′

that is zero;
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hence pr−2,r+1,r+2+i = 0 for i = 1, . . . , n + 1. Therefore or a2 = 0 or B3,r+2+i = 0 for all i = 1, . . . , n + 1.
Then we get the following three subcases:

B′

I :=




0 0 0
0 0 0
0 0 0

∣∣∣∣∣∣

0 · · · 0 a2 a1

0 · · · 0 0 0
0 · · · 0 0 0

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣

∗ · · · ∗
∗ · · · ∗
0 · · · 0


 ,

B′

II :=




0 0 0
0 0 0
0 0 0

∣∣∣∣∣∣

0 · · · 0 0 a1

0 · · · 0 0 0
0 · · · 0 0 0

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣

∗ · · · ∗
∗ · · · ∗
∗ · · · ∗




with the condition that the rank of the submatrix obtained considering only the last two rows of the last block
is 1;
and

B′

III :=




0 0 0
0 0 0
0 0 0

∣∣∣∣∣∣

0 · · · 0 0 0
0 · · · 0 0 0
0 · · · 0 0 0

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣

∗ · · · ∗
∗ · · · ∗
∗ · · · ∗




with the condition that the last block has rank 2.

B′′ case: Let i be the least index such that B′′
2,i is different from zero, i = 2, . . . , r − 1. Observe that pi,r,r+2+j =

B′′
2,i · B

′′
3,r+2+j for all j = 1, . . . , n + 1. As previously we get from the parameterization that

1. pi,r,r+2+j = ar−i+1µ3,r+2+j − ar−i+2µ2,r+2+j for j = 1, . . . , n + 1;

2. pi−1,r+1,r+2+j = ar−i+1µ3,r+2+j − ar−i+3µ1,r+2+j that we know from the form of B′′ that is zero for all
j = 1, . . . , n + 1;

3. pi−2,r+2,r+2+j = ar−i+2µ2,r+2+j − ar−i+3µ1,r+2+j that again we know from the form of B′′ that is zero
for all j = 1, . . . , n + 1.

Hence pi,r,r+2+j = B′′
2,i · B

′′
3,r+2+j = 0 and, since B′′

2,i is different from zero, we get that B′′
3,r+2+j = 0 for all

j = 1, . . . , n + 1. Therefore B′′ becomes:

B′′ =




0 ∗ ∗
0 ∗ ∗
0 0 0

∣∣∣∣∣∣

∗ · · · ∗
∗ · · · ∗
0 · · · 0

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣

∗ · · · ∗
∗ · · · ∗
0 · · · 0




with the condition that the first two blocks have rank 1.

It is not difficult to see that the case B′
I is contained in the case B′′, hence the only remaining meaningful cases are

B′
II , B′

III and B′′ that describe respectively the sets C, B, and {Λ ∈ G(n − 1, n + 2) | x ∈ Λ ⊆< Λ0, O
r+1
x (Σ) >

, dim(Λ ∩ Or−1
x (Σ)) ≥ r − 2}, which is clearly contained in A.

CASE r = 2: The analogous of the matrix A defined in (6) now is:

A =




a2 a1

0 a2

0 0

∣∣∣∣∣∣

1 0 + µ1,4a2 0 + µ1,4a1 + µ1,5a2

a1 1 + µ2,4a2 0 + µ2,4a1 + µ2,5a2

a2 a1 + µ3,4a2 1 + µ3,4a1 + µ3,5a2

∣∣∣∣∣∣
∣∣∣∣∣∣

µ1,4 + µ1,5a1 + µ1,6a2 · · · µ1,n + µ1,n+1a1 + µ1,n+2a2 µ1,n+1 + µ1,n+2a1 µ1,n+2

µ2,4 + µ2,5a1 + µ2,6a2 · · · µ2,n + µ2,n+1a1 + µ2,n+2a2 µ2,n+1 + µ2,n+2a1 µ2,n+2

µ3,4 + µ3,5a1 + +µ3,6a2 · · · µ3,n + µ3,n+1a1 + µ3,n+2a2 µ3,n+1 + µ3,n+2a1 µ3,n+2


 .

With the usual notation, the affine parameterization of O2
Λ0

(Zy) yield that the matrix B takes the form

B =




a2 a1

a2a1 a2
1 − a2

−a2
2 −2a2a1

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣

∗ . . . ∗
∗ . . . ∗
∗ . . . ∗




We also write the following relevant parts of the affine parameterization of O2
Λ0

(Zy)
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1. p0,1,2 = p0,1,3 = 0,

2. p0,1,4 = a2
2 = −p0,2,3,

3. pi,j,k = 0 if i, j, k 6= 2, 3, 4,

4. p0,3,i = a2µ3,i−1 = −p1,2,i for i = 5, . . . , n + 2

Equalities 1. are precisely the vanishing of two of the three minors of the left block of B. If it were a2
2 6= 0, also

the third minor would be zero, i.e. p0,1,4 = 0. Thus equality 2. implies a2
2 = 0. Hence we have a2

2 = 0 in any case.

Since p0,1,2 = 0, also a2a1 = 0. Since also p0,1,3 = 0, either a2 or a2
1 − a2 are zero. With these vanishings in mind,

equations 3. say also that the submatrix of B after removing the central identity block has rank at most two. This
yields three possibilities for B. One of them corresponds exactly to the set C, while each the other two cases splits,
using equations 4., into two different possibilities, which are inside the sets A, B or C.

CASE r = 1: The analogous of the matrix A defined in (6) now is:

A =




a1

0
0

∣∣∣∣∣∣

1 0 0 + µ1,4a1

a1 1 0 + µ2,4a1

0 a1 1 + µ3,4a1

∣∣∣∣∣∣

µ1,4 + µ1,5a1 · · · µ1,n+2

µ2,4 + µ2,5a1 · · · µ2,n+2

µ3,4 + µ3,5a1 · · · µ3,n+2


 .

From this, we obtain our result as above.

Remark 4.2. The statement of Theorem 4.1 can be improved. For example, when r = 1 we know that equality
holds, even for arbitray d, although we preferred to write only the part we need.

Theorem 4.3. Let Λ0 ∈ G(n− 1, n+2) such that the intersection between Λ0 and Σ in Pn−1 is a zero-dimensional

scheme with support on {y1, . . . , yk} ⊂ Σ and degree n such that each point yi has multiplicity ri and
∑k

i=1 ri = n
(obviously 1 ≤ k ≤ n). Then, for any Λ ∈ O2

Λ0
(V ) ∩ G(n − 1, n + 2), there are two possibilities:

1. if dim(< Λ,Λ0 >) = n + 1 then there exist:

(a) yi1 , yi2 ∈ Λ0∩Σ such that Λ∩Σ = {r1y1, . . . , (ri1−1)yi1 , . . . , (ri1−1)yi2 , . . . , rkyk} and Λ∩Λ0 =< Λ∩Σ >;

(b) Q′
1 ∈ O

ri1
yi1

(Σ), Q′
2 ∈ O

ri2
yi2

(Σ) such that (ri1 + 1)yi1 ∈< Λ, Q′
1 >, (ri2 + 1)yi2 ∈< Λ, Q′

2 >

2. if dim(< Λ,Λ0 >) = n then

(a) either Λ ∈ TΛ0
V ;

(b) or there exist yi1 , yi2 ∈ Λ0 ∩ Σ such that < r1y1, . . . , r̂i1yi1 , . . . , r̂i2yi2 , . . . , rkyk >⊂ Λ and < Λ,Λ0 >=<
Λ0, (ri1 + 2)yi1 > ∩ < Λ0, (ri2 + 2)yi2 >.

(c) or there exists yi ∈ Λ0 ∩ Σ such that < r1y1, . . . , r̂iyi, . . . , rkyk >⊂ Λ ⊂< Λ0, (ri + 2)yi >.

Proof. For each i = 1, . . . , k, let Ai,Bi, Ci ⊂ G(n− 1, n + 2) be the sets defined in the statement of Theorem 4.1 for
the point yi ∈ Σ. By Remark 3.5 and Theorem 4.1, we have

O2
Λ0

(V ) ∩ G(n − 1, n + 2) ⊂

k⋂

i=1

(Ai ∪ Bi ∪ Ci). (12)

It is clear from (12) that if Λ ∈ O2
Λ0

(V ) ∩ G(n − 1, n + 2) the dimension of < Λ,Λ0 > is either n or n + 1.
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1. Assume that dim(< Λ,Λ0 >) = n + 1. We always have Ori−1
yi

(Σ) ⊂< Λ,Λ0 >. Moreover, if Λ ∈ Ai, then <
Λ,Λ0 >=< Λ0, O

ri+1
yi

(Σ) > hence Ori+1
yi

(Σ) ⊂< Λ,Λ0 >. Also, if Λ ∈ Bi, then < Λ,Λ0 >=< Λ,Λ0, O
ri
yi

(Σ) >
hence Ori

yi
(Σ) ⊂< Λ,Λ0 >. Since in < Λ,Λ0 > there are at most n+2 points of Σ (counted with multiplicity),

then it follows that an intersection of k sets of the form Ai,Bj , Ck is larger that {Λ0} only if is of the type

C1 ∩ · · · ∩ Ĉi1 ∩ · · · ∩ Ĉi2 ∩ · · · ∩ Ck ∩ Bi1 ∩ Bi2 or C1 ∩ · · · ∩ Ĉi ∩ · · · ∩ Ck ∩ Ai. The latter is not possible
because otherwise Λ ∩ Λ0 would contain all the rjyj with j 6= i and also a hyperplane of < riyi >, and hence
its dimension would be at least n − 2, which would imply that dim(< Λ,Λ0 >) < n + 1, contrary to our
hypothesis.

Assume for simplicity i1 = 1, i2 = 2. Now clearly < (r1 − 1)y1, (r2 − 1)y2, r3y3, . . . , rkyk >⊂ Λ and there
exist Q′

1 ∈ Or1
y1

(Σ) and Q′
2 ∈ Or2

y2
(Σ) such that < (r1 + 1)y1, (r2 − 1)y2, r3y3, . . . , rkyk >⊂< Λ, Q′

1 >, <
(r1 − 1)y1, (r2 + 1)y2, r3y3, . . . , rkyk >⊂< Λ, Q′

2 >. Λx =< x, r1y1, (r2 − 1)y2, r3y3, . . . , rkyk >, it follows from
Corollary 3.11 that Λ ∈ TΛx

V . Hence Λ should belong to an infinite number of tangent space to V , and
this is absurd. Now it remains to show that Λ ∩ Σ is not bigger than {(r1 − 1)y1, (r2 − 1)y2, r3y3, . . . , rkyk}.
Since dim(Λ ∩ Λ0) < n − 2 it cannot happen that r1y1 or r2y2 belong to Λ. Then it is sufficient to show
that, for example, (r3 + 1)y3 /∈ Λ (if we allow r3 = 0 then we are considering the case y3 /∈ Λ0). Suppose
for contradiction that (r1 − 1)y1, (r2 − 1)y2, (r3 + 1)y3, r4y4, . . . , rkyk ∈ Λ. Hence from Corollary 3.11 that
Λ ∈ TΛ1V where Λ1 =< r1y1, (r2 − 1)y2, (r3 + 1)y3, r4y4 . . . , rkyk >. Analogously Λ ∈ TΛ2V where Λ2 =<
(r1 − 1)y1, r2y2, (r3 + 1)y3, r4y4 . . . , rkyk >. Since Λ corresponds to a degree three form, it is not possible
Λ belongs to two different tangent spaces because the elements of the tangent spaces corresponds to a form
containing a double factor.

2. Assume now that dim(< Λ,Λ0 >) = n. Then the projection π : Pn+2 → P2 from Λ0 sends Λ in a point P of
P2. Under this projection Σ is sent to a conic Q and the image Pi of each yi ∈ Σ is obtained by projecting
< (ri + 1)yi >.
If Λ ∈ Ai for some i = 1, . . . , k, then Λ ⊂< Λ0, (ri + 2)yi > and hence P belongs to the tangent line in Pi to
Q.
If instead Λ ∈ Bi\Ci for some i = 1, . . . , k, then dim(Λ∩ < (ri+1)yi >) ≥ ri−1 and, since dim(Λ∩Λ0) ≥ n−3,
then < riyi > is not contained in Λ. Hence there exist P ′ ∈ Λ∩ < (ri + 1)yi > \ < riyi >. Since P ′ ∈ Λ, then
π(P ′) = P , while since P ′ ∈< (ri + 1)yi > \ < riyi >, also π(P ′) = Pi, so that P = Pi.
From this description it is clear that intersections involving either three Ai’s or one (Bj\Cj)’s and one Ai’s or
two Bj\Cj ’s are empty. Let us study the remaining cases.

(a) Assume first, after reordering, that Λ ∈ B1∩C2∩· · ·∩Ck. By definition < (r1−1)y1, r2y2, . . . , rkyk >⊂ Λ
and there exists Q′ ∈< (r1 + 1)y1 > such that (r1 + 1)y1 ∈< Q′,Λ > hence Λ ⊂< Q′,Λ >=< (r1 +
1)y1, r2y2, . . . , rkyk >. By Corollary 3.11, Λ ∈ TΛ0

(V ).

(b) Assume now, after reordering, Λ ∈ A1 ∩ A2 ∩ C3 ∩ · · · ∩ Ck. By definition < Λ,Λ0 >⊆< Λ0, (r1 + 2)y1 >
∩ < Λ0, (r2 + 2)y2 > and this is an equality because both the spaces on the left and the right hand side
have the same dimension n.

(c) The last case Λ ∈ C1 ∩ · · · ∩ Ai ∩ · · · ∩ Ck is trivial by definition.

5 Split Variety and the Grassmannian

Proposition 5.1. Let Λ ∈ O2
Λ1

(V ) ∩ O2
Λ2

(V ) ∩ G(n − 1, n + 2) for some Λ1,Λ2 ∈ V , and assume dim(< Λ,Λ1 >

) = dim(< Λ,Λ2 >) = n + 1. Then there exist s1y1, . . . , skyk ∈ Σ with
∑k

i=1 si = n − 2 such that Λ1 =<
(s1 + 1)y1, (s2 + 1)y2, s3y3, s4y4 . . . , skyk >, Λ2 =< (s1 + 1)y1, s2y2, (s3 + 1)y3, . . . , skyk > and

Λ =< (s1 + 2)y1, (s2 + 2)y2, s3y3, s4y4 . . . , skyk > ∩

∩ < (s1 + 2)y1, s2y2, (s3 + 2)y3, . . . , skyk > ∩ < s1y1, (s2 + 2)y2, (s3 + 2)y3, . . . , skyk > .
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Proof. From Theorem 4.3 we can derive Λ∩Λ1 =< Λ∩Σ >= Λ∩Λ2 and Λ∩Σ = {s1y1, . . . , skyk} with
∑k

i=1 si = n−2
(the si’s do not have to be necessarily different from zero). Moreover we know that Λ1,Λ2 can be obtained form
< Λ ∩ Σ > increasing two si’s by 1.

We show now that the si’s we have to increase do not correspond to four different yi’s. Assume for contradiction,
up to reordering, that Λ1 =< (s1 + 1)y1, (s2 + 1)y2, s3y3, s4y4, s5y5, . . . , skyk >, Λ2 =< s1y1, s2y2, (s3 + 1)y3, (s4 +
1)y4, s5y5, . . . , skyk >. By Theorem 4.3 there exist Q′

1 ∈ Os1+1
y1

(Σ), Q′′
1 ∈ Os3+1

y3
(Σ) such that (s1 +2)y1 ∈< Λ, Q′

1 >
and (s3 + 2)y3 ∈< Λ, Q′′

1 >, hence the (n + 1)-dimensional subspace < Λ, Q′
1, Q

′′
1 > contains the following n + 4

points of Σ: (s1 + 2)y1, (s2 + 1)y2, (s3 + 2)y3, (s4 + 1)y4, s5y5, . . . , skyk, which is clearly a contradiction. Hence we
can assume, up to reordering,

Λ1 =< (s1 + 1)y1, (s2 + 1)y2, s3y3, s4y4, . . . , skyk >

Λ2 =< (s1 + 1)y1, s2y2, (s3 + 1)y3, s4y4, . . . , skyk > .

By Theorem 4.3, there exists Q′
1 ∈< (s1 + 2)y1 > such that < (s1 + 2)y1 >⊂< Λ, Q′

1 >. Since Λ is a hyperplane
in < Λ, Q′

1 >, we can find R′
1 ∈ Λ∩ < (s1 + 2)y1 > \ < s1y1 >. Analogously, we can find R′

2 ∈ Λ∩ < (s2 + 2)y2 >
\ < s2y2 > and R′

3 ∈ Λ∩ < (s3 + 2)y3 > \ < s3y3 >.
We claim that < s1y1, . . . , skyk, R′

1, R
′
2 > has dimension n− 1. Indeed, if s1y1, . . . , skyk, R′

1, R
′
2 were dependent,

the projection from < s1y1, . . . , skyk > would produce a rational normal curve in P4 in which the tangent lines
at the image of y1 and y2 would meet at the image of R′

1 (which would have the same image as R′
2), but this

is impossible. As a consequence of the claim, Λ =< s1y1, . . . , skyk, R′
1, R

′
2 >, so that it is contained in < (s1 +

2)y1, (s2 + 2)y2, s3y3, s4y4, . . . , skyk >.
Analogously, Λ ⊂< (s1 +2)y1, s2y2, (s3 +2)y3, s4y4, . . . , skyk > and Λ ⊂< s1y1, (s2 +2)y2, (s3 +2)y3, . . . , skyk >.

Therefore
Λ ⊂< (s1 + 2)y1, (s2 + 2)y2, s3y3, s4y4 . . . , skyk > ∩

∩ < (s1 + 2)y1, s2y2, (s3 + 2)y3, . . . , skyk > ∩ < s1y1, (s2 + 2)y2, (s3 + 2)y3, . . . , skyk > .

We actually have an equality, since otherwise the usual projection from < s1y1, . . . , skyk > would produce a rational
normal curve Σ′ ⊂ P4, with points y′

1, y
′
2, y

′
3 such that the intersection < Ty′

1
Σ′, Ty′

2
Σ′ > ∩ < Ty′

1
Σ′, Ty′

3
Σ′ > ∩ <

Ty′

2
Σ′, Ty′

3
Σ′ > is more than a line. But since Σ′ is homogeneous, the same would be true for any choice of three

points of Σ′, which is not true, as we showed in Example 2.8.

Lemma 5.2. Let Λ ∈ (O2
Λ1

(V )\TΛ1
(V )) ∩ (O2

Λ2
(V )\TΛ2

(V )) ∩ G(n − 1, n + 2) for some Λ1,Λ2 ∈ V , and assume
dim(< Λ,Λ1 >) = dim(< Λ,Λ2 >) = n. Then Λ1 and Λ2 have n − 1 points of Σ in common (counted with
multiplicity).

Proof. We assume for contradiction that Λ1 and Λ2 have at most n−2 points of Σ in common. Therefore < Λ1,Λ2 >
contains at least n +2 points of Σ. This implies dim(< Λ1,Λ2 >) ≥ n +1. On the other hand, since dim(< Λ,Λ1 >
) = dim(< Λ,Λ2 >) = n, it follows that dim(< Λ,Λ1,Λ2 >) ≤ n + 1. As a consequence, dim(< Λ1,Λ2 >) = n + 1,
Λ ⊂< Λ1,Λ2 > and Λ1 and Λ2 share exactly n − 2 points of Σ.

We will write Λ1 =< r1y1, . . . , rkyk >, with r1 + · · ·+ rk = n. Since Λ1 and Λ2 share n− 2 points of Σ, then Λ2

is obtained by substracting two points to r1y1, . . . , rkyk and adding two more, maybe just substracting or adding
some multiplicities to the points. To simplify the notation, we will include the points of Λ2 \ Λ1 in y1, . . . , yk, so
that maybe some ri (two at most) can be zero. From Theorem 4.3 we know that the possible cases for Λ1 and Λ2

are those described in 2b) and 2c).
We exclude first the possibility that Λ1 is in case 2c) of Theorem 4.3. Otherwise, up to reordering r2y2, . . . , rk, yk ∈

Λ and Λ ⊂< (r1 + 2)y1, r2y2, r3y3, . . . , yk >. Using Proposition 3.3, we get r2y2, . . . , rk, yk ∈ Λ2. We have now two
possibilities (after probably reordering y1, . . . , yk) for Λ2, namely

< (r1 − 2)y1, (r2 + 2)y2, r3y3, r4y4, . . . , rkyk >

< (r1 − 2)y1, (r2 + 1)y2, (r3 + 1)y3, r4y4, . . . , rkyk > .
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This gives the following respective possibilities for < Λ1,Λ2 >:

< r1y1, (r2 + 2)y2, r3y3, r4y4, . . . , rkyk >

< r1y1, (r2 + 1)y2, (r3 + 1)y3, r4y4, . . . , rkyk > .

Observe that it cannot be (r2 + 1)y2 ∈ Λ, since Proposition 3.3 would imply (r2 + 1)y2 ∈ Λ1. Therefore, by part
2. of Theorem 4.3 taking Λ0 = Λ2, we have Λ ⊂< Λ2, (r2 + 4)y2 > or Λ ⊂< Λ2, (r2 + 3)y2 >, depending on the
two possibilities for Λ2. Having also in mind the inclusion Λ ⊂< Λ1,Λ2 >, we get that Λ is contained in one of the
following (corresponding to the two possibilities for Λ2):

< (r1 + 2)y1, r2y2, r3y3 . . . , rkyk > ∩ < r1y1, (r2 + 2)y2, r3y3, . . . , rkyk > ∩ < (r1 − 2)y1, (r2 + 4)y2, r3y3, . . . , rkyk >

< (r1 + 2)y1, r2y2, r3y3, . . . , rkyk > ∩ < r1y1, (r2 + 1)y2, (r3 + 1)y3, r4y4, . . . , rkyk > ∩

∩ < (r1 − 2)y1, (r2 + 3)y2, (r3 + 1)y3, r4y4, . . . , rkyk >

which is a contradiction by Example 2.11 (since Λ is in two different osculating spaces to V , it necessarily belongs
to Split3(P

n)).
We are thus reduced to the possibility that Λ1 is in case 2b) of Theorem 4.3. Therefore, up to reordering,

r3y3, . . . , rkyk ∈ Λ and Λ ⊂< (r1 +2)y1, r2y2, r3y3, . . . , rkyk > ∩ < r1y1, (r2 +2)y2, r3y3, . . . , rkyk >. By Proposition
3.3, it follows that r3y3, . . . , rkyk ∈ Λ2. Hence there are four possibilities (after probably reordering y1, . . . , yk) for
Λ2, namely

< (r1 − 2)y1, (r2 + 2)y2, r3y3, r4y4, r5y5, . . . , rkyk >

< (r1 − 2)y1, (r2 + 1)y2, (r3 + 1)y3, r4y4, r5y5, . . . , rkyk >

< (r1 − 1)y1, (r2 − 1)y2, (r3 + 2)y3, r4y4, r5y5, . . . , rkyk >

< (r1 − 1)y1, (r2 − 1)y2, (r3 + 1)y3, (r4 + 1)y4, r5y5, . . . , rkyk > .

As before, Proposition 3.3 implies that it cannot be (r2 +1)y2 ∈ Λ or (r3 +1)y3 ∈ Λ. Hence, by part 2. of Theorem
4.3 applied for Λ0 = Λ2 in the four possibilities above we have, respectively,

Λ ⊂< Λ2, (r2 + 4)y2 >=< (r1 − 2)y1, (r2 + 4)y2, r3y3, r4y4, . . . , rk >

Λ ⊂< Λ2, (r2 + 3)y2 >=< (r1 − 2)y1, (r2 + 3)y2, (r3 + 1)y3, r4y4, . . . , rk >

Λ ⊂< Λ2, (r3 + 4)y3 >=< (r1 − 1)y1, (r2 − 1)y2, (r3 + 4)y3, r4y4, . . . , rk >

Λ ⊂< Λ2, (r3 + 3)y3 >=< (r1 − 1)y1, (r2 − 1)y2, (r3 + 3)y3, (r4 + 1)y4, r5y5, . . . , rk > .

Since we also have Λ ⊂< (r1 + 2)y1, r2y2, r3y3, . . . , rkyk > ∩ < r1y1, (r2 + 2)y2, r3y3, . . . , rkyk >, we get a contra-
diction from Example 2.11.

Proposition 5.3. Let Λ ∈ (O2
Λ1

(V )\TΛ1
(V ))∩(O2

Λ2
(V )\TΛ2

(V ))∩G(n−1, n+2) for some Λ1,Λ2 ∈ V , and assume
dim(< Λ,Λ1 >) = dim(< Λ,Λ2 >) = n. If Λ1 and Λ2 do have n − 1 points of Σ in common, also Λ contains those
points.

Proof. Since, by hypothesis, the intersection of Λ1 and Λ2 has dimension n− 2, and also the intersection of Λ with
each of them has dimension n − 2, it follows that there are two possibilities:

–Either Λ contains the intersection of Λ1,Λ2, hence their n − 1 common points of Σ.
–Or Λ is contained in the n-dimensional span of Λ1,Λ2. By Theorem 4.3, in any case there exists y1 ∈ Σ∩Λ1 such

that Λ ⊂< Λ1, (r1 +2)y1 >, where r1 is the intersection multiplicity at y1 of Σ and Λ1. Hence Λ ⊂< Λ1, (r1 +2)y1 >
∩ < Λ1,Λ2 >. Since Λ 6= Λ1, necessarily < Λ1, (r1 + 2)y1 > contains < Λ1,Λ2 >, in particular the point of Λ1 ∩ Σ
that is not in Λ2. Since the hyperplane < Λ1, (r1 + 2)y1 >⊂ Pn+2 cannot n + 3 different point of Σ, it follows that
(r1 + 1)y1 ∈ Λ2. We cannot have another y′

1 6= y1 in Σ ∩ Λ1 such that Λ ⊂< Λ1, (r
′
1 + 2)y′

1 >, because the same
reasoning would show (r′1 +1)y′

1 ∈ Λ2, which contradicts the fact that Λ1 and Λ2 share n− 1 points of Σ. Therefore
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Λ1 is in case 2.(c) of Theorem 4.3. The same reasoning for Λ2 shows that there exists y2 ∈ Σ∩Λ2 with multiplicity
r2 and such that (r2 + 1)y2 ∈ Λ1. Moreover, Λ2 is also in case 2.(c) of Theorem 4.3. But then, using again the part
2.(c) of Theorem 4.3, we deduce that Λ should contain (r1 + 1)y1, (r2 + 1)y2 and the other n − r1 − r2 common
points of Σ, which is a contradiction.

Theorem 5.4. The intersection between Split3(P
n) and G(n − 1, n + 2) is

Split3(P
n) ∩ G(n − 1, n + 2) = Xn+1 ∪ Xn+2

where

Xn+1 = {< Z + 2y1 + 2y2 > ∩ < Z + 2y1 + 2y3 > ∩ < Z + 2y2 + 2y3 > | Z ⊂ Σ, length(Z) = n− 2, y1, y2, y3 ∈ Σ}

Xn+2 = {Λ ⊂ G(n − 1, n + 3) | length(Λ ∩ Σ) ≥ n − 1}.

Proof. We have Xn+1 ⊂ Split3(P
n) by Proposition 2.10 and Xn+2 ⊂ Split3(P

n) by Corollary 2.7. Hence Xn+1 ∪
Xn+2 ⊂ Split3(P

n) ∩ G(n − 1, n + 2).
Reciprocally, let Λ ∈ Split3(P

n) ∩ G(n − 1, n + 2). By Remark 3.2, either Λ ∈ τ(V ) ∩ G(n − 1, n + 2) or
Λ ∈ O2

Λ1
(V ) ∩O2

Λ2
(V ) ∩O2

Λ3
(V ) for different subspaces Λ1,Λ2,Λ3 ∈ G(n− 1, n + 2). In the first case, by Corollary

3.11, Λ contains at least n − 1 points of Σ, so that Λ ∈ Xn+2. We will thus assume Λ 6∈ τ(V ) and Λ ∈ O2
Λ1

(V ) ∩
O2

Λ2
(V )∩O2

Λ3
(V ). Theorem 4.3 implies that the span of Λ with each Λi has dimension n+1 or n. Hence for at least

two of the subspaces, say Λ1,Λ2, the dimensions of < Λ,Λ1 > and < Λ,Λ2 > are the same. We study separately
the different possibilities:

If dim(< Λ,Λ1 >) = dim(< Λ,Λ2 >) = n + 1, by Proposition 5.1, we have Λ ∈ Xn+1.
If dim(< Λ,Λ1 >) = dim(< Λ,Λ2 >) = n, by Lemma 5.2 it follows that Λ1,Λ2 have n−1 points of Σ in common,

so that we are done by Proposition 5.3.

6 Appendix

In this appendix we want to explore the following problem: is it possible to detect when the s-th secant variety to
Splitd(P

n) fills up the whole ambient space by just detecting when its intersection with G(n − 1, n + d − 1) is the
whole Grassmannian?

To test the validity of this method, one could replace Splitd(P
n) with νd(P

n), for which the dimensions of all
secant varieties are known (see [AH]). We will see that in fact, the method perfectly works for d = 2 and any secant
variety, and give some partial answer for any d and the second secant variety.

Proposition 6.1. The intersection between the Grassmannian G(n − 1, n + 1) and the variety Secr−1(ν2(P
n)) is

the set of all (n − 1)-spaces of Pn+1 that are (n − r + 1)-secant to the rational normal curve Σ ⊂ Pn+1.

Proof. Assume first that a subspace Λ ⊂ Pn+1 contains a subscheme Z ⊂ Σ of length n − r + 1. By Lemma 2.5,
we can find linear forms N0, . . . , Nr−1 ∈ K[X0, . . . , Xn] such that Λ, as an element of P(K[X0, . . . , Xn]2) lies in
P(K[N0, . . . , Nr−1]2). But now the r-th secant variety of ν2(P(K[N0, . . . , Nr−1]1) is the whole P(K[N0, . . . , Nr−1]2).
Thus necessarily Λ belongs to Secr−1(ν2(P

n)).
We just sketch the proof of the other inclusion (although the case r = 2 is an immediate consequence of Corollary

3.11). The main idea for the proof is that, since d = 2, the Plücker space of G(n−1, n+1) can be identified with the
space of classes of skew-symmetric matrices of order n + 2, while the space of homogeneous polynomials of degree
two in n + 1 variables can be regarded as the space of symmetric matrices of order n + 1. In this language, one can
write down explicitly the identification of these two spaces. Specifically, to any skew-symmetric matrix

A =




0 p0,1 · · · p0,n+1

−p0,1 0 · · · p1,n+1

...
. . .

...
−p0,n+1 −p1,n+1 · · · 0


 .
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the corresponding symmetric matrix is

Q =




p0,1 p0,2 p0,3 · · · p0,n+1

p0,2 p1,2 + p0,3 p1,3 + p0,4 · · · p1,n+1

p0,3 p1,3 + p0,4 p2,3 + p1,4 + p0,5 · · · p2,n+1

...
...

...
p0,n+1 p1,n+1 · · · · · · pn,n+1




.

Take then Λ ∈ G(n − 1, n + 1) represented by a rank-two matrix A as above. If it belongs to Secr−1(ν2(P
n)), this

means that the corresponding matrix Q has rank at most r. It is then possible to verify that this is equivalent to
the fact that the system

A




tn+1
0

tn0 t1
...

tn+1
1


 =




0
0
...
0




admits at least n − r + 1 solutions in P1, counted with multiplicity. It follows that A describes an (n − 1)-space of
Pn+1 that is (n − r + 1)-secant to Σ.

Corollary 6.2. The intersection between Secs−1(Split2(P
n)) and G(n− 1, n + 1) is set-theoretically the locus {Λ ∈

G(n − 1, n + 1) | Λ is (n − 2s + 1) − secant to νn+1(P
1)}.

Proof. This is a consequence of the previous proposition and of the observation that, since Split2(P
n) = {Q ∈

Mn+1(K) s.t. Q is symmetric and rk(Q) = 2} and the elements of Split2(P
n) are of the form [L1 ·L2] with L1, L2 ∈

R1, then Secs−1(Split2(P
n)) = {[L1L2 + · · · + L2s−1L2s] ∈ P(R2) | Li ∈ R1 for i = 1, . . . , 2s} is the set of all

symmetric matrices of Mn+1(K) of rank at most 2s.

Remark 6.3. Observe that, the previous results show that the technique proposed at the beginning of this appendix

works for ν2(P
n) and Split2(P

n). Indeed, Secr−1(ν2(P
n)) = P

n(n+3)
2 if and only if r ≥ n + 1, which is equivalent (by

Proposition 6.1) to Secr−1(ν2(P
n)) ∩ G(n − 1, n + 1) = G(n − 1, n + 1). Similarly, Secs−1(Split2(P

n)) = P
n(n+3)

2 if
and only if s ≥ n+1

2 (because Secs−1(Split2(P
n)) can be interpreted as the space of symmetric matrices of rank at

most 2s) and this is equivalent (by Corollary 6.2) to Secs−1(Split2(P
n)) ∩ G(n − 1, n + 1) = G(n − 1, n + 1).

We end by presenting some generalizations of Proposition 6.1. We need some preliminary results.

Lemma 6.4. Let Λ1,Λ2 ∈ νd(P
n) such that the line spanned by them is contained in G(n− 1, n + d− 1). Then Λ1

and Λ2 share at least n − 1 points of Σ.

Proof. Since the line spanned by Λ1,Λ2 is contained in G(n − 1, n + d − 1), they belong to a pencil of subspaces.
Hence the span of Λ1,Λ2 in Pn+d−1 is a linear space of dimension n. The hypothesis Λ1,Λ2 ∈ νd(P

n), implies that
Λ1,Λ2 contain each n points of Σ. Since < Λ1,Λ2 > can contain at most n+1 points of Σ, the result follows readily.

Proposition 6.5. Let N0, N1 be two linear forms of K[x0, . . . , xn]; then G(n − 1, n + 2) ∩ P(K[N0, N1]3) = {Λ ∈
G(n − 1, n + 2) | deg(Λ ∩ Σ) ≥ n − 1}.

Proof. Take Λ ∈ G(n−1, n+2). If Λ∩Σ contains a subscheme Z ⊂ Σ of length n−1, Lemma 2.5 implies that there
exist linear forms N ′

0, N
′
1 ∈ K[x0, . . . , xn] such that G(n−1, n+2)∩P(K[N ′

0, N
′
1]3) = {Λ ∈ G(n−1, n+2) | Λ∩Σ ⊃

Z}. In particular, N0, N1 ∈ K[N ′
0, N

′
1], so that K[N0, N1] = K[N ′

0, N
′
1] and one of the wanted inclusions follows.

Reciprocally, assume Λ ∈ P(K[N0, N1]3). Then we can consider the twisted cubic C ⊂ P(K[N0, N1]3) defined by
the classes of the type (αN0 + βN1)

3 ∈ K[N0, N1]3. If Λ ∈ C, in particular Λ ∈ ν3(P
n), so that it contains n points

of Σ. If Λ 6∈ C, then it belongs to a bisecant (or tangent) line to Σ. This line is thus trisecant to G(n − 1, n + 2),
hence it is contained in G(n − 1, n + 2). The other inclusion follows now from Lemma 6.4.
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Corollary 6.6. If M ∈ K[N0, N1]3 ∩ G(n − 1, n + 2), with N0, N1 generic linear forms, then M ∈ ν3(P
n).

Proof. If M is a binary form contained into the Grassmannian G(n − 1, n + 2), then by Proposition 6.5 the linear
forms N0, N1 must be “special”, i.e. they have at least n − 1 roots in common.

Lemma 6.7. Let A, B ∈ νd(P
n). If there exists a point C ∈ Sec1(νd(P

n)) ∩ G(n − 1, n + d − 1) such that C ∈<
A, B > rνd(P

n), then < A,B >⊂ G(n − 1, n + d − 1).

Proof. The set of the three points {A, B,C} is contained in the intersection < A, B > ∩G(n − 1, n + d − 1). Since
the Grassmannian is an intersection of quadrics, it cannot exist a point D ∈< A, B > but D /∈ G(n − 1, n + d − 1)
then < A,B >⊂ G(n − 1, n + d − 1).

Proposition 6.8. The intersection between Sec1(νd(P
n)) and G(n− 1, n+ d− 1) is contained in {Λ ∈ G(n− 1, n+

d − 1) | deg(Λ ∩ Σ) ≥ n − 1}.

Proof. Let us take a point A ∈ Sec1(νd(P
n) ∩ G(n − 1, n + d − 1)) r νd(P

n), then there exist π1, π2 ∈ νd(P
n)

such that A ∈< π1, π2 >. Since νd(P
n) is the locus of the (n − 1)-spaces of Pn+d−1 that are n-secant to Σ,

there exist P1, . . . , Pn, Q1, . . . , Qn ∈ Σ such that π1 =< P1, . . . , Pn > and π2 =< Q1, . . . , Qn >. Therefore <
π1, π2 >⊂ (Sec1(νd(P

n)) ⊂ Splitd(P
n). By the Lemma 6.7 we have that < π1, π2 >⊂ G(n − 1, n + d − 1). The

span < π1, π2 > parameterizes a pencil of (n − 1)-spaces contained in Pn ⊂ Pn+d−1 and containing a Pn−2. Then
P1, . . . , Pn, Q1, . . . , Qn lie on a Pn instead of being generic in < Σ >= Pn+d−1, hence ♯{P1, . . . , Pn, Q1, . . . , Qn} =
n + 1.

Proposition 6.9. Let V = ν3(P
n) ⊂ G(n − 1, n + 2), then

Sec1(V ) ∩ G(n − 1, n + 2) = {Λ ∈ G(n − 1, n + 2) | deg(Σ ∩ Λ) ≥ n − 1}.

Proof. Proposition 6.8 presents one inclusion. Let’s then prove that {Λ ∈ G(n − 1, n + 2) | deg(Σ ∩ Λ) ≥ n − 1} ⊆
Sec1(ν3(P

n)) ∩ G(n − 1, n + 2).
Let Λ ∈ G(n − 1, n + 2) be a subspace containing a subscheme Z ⊂ Σ of length n − 1.

Consider the projection π : Pn+2 → P3 from < Z >⊂ Pn+2. Observe that all Λ̃ ∈ G(n − 1, n + 2) that intersect
Σ in degree n are sent by π in the rational normal cubic Σ′ ⊂ P3, and π(Λ) = Q does not belong to such a cubic.
A line L ∈ P3 passing through Q can be or tangent or bisecant to the cubic.

If L is the tangent line to Σ′ at a point y′, consider y ∈ Σ the point of Σ whose image is y. Then < Z >⊂ Σ ⊂<
Z + 2y >, so that Λ ∈ τ(V ).

If it is bisecant consider the Pn obtained as π−1(L) = H ⊂ Pn+2. Since L intersects the rational normal cubic
in two points, then H contains two Pn−1’s, say Λ1 and Λ2, that intersect Σ in degree n, therefore from one side we
can assume that H is spanned by them, from the other side H can intersect Σ at most in degree n + 1, hence Λ1

and Λ2 have a 0-dimensional scheme of degree n − 1 on Σ in common.
Therefore we have found that an element Λ ∈ {Λ ∈ G(n − 1, n + 2) | deg(Σ ∩ Λ) ≥ n − 1} belongs to a pencil

of Pn−1’s, that is a line in the Grassmannian and in particular such a line is spanned by two points belonging to
G(n − 1, n + 2) ∩ V , therefore Λ ∈ Sec1(V ) ∩ G(n − 1, n + 2).
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