B. K. Horn and B. G. Schunk, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Nagel, Displacement vectors derived from second-order intensity variations in image sequences, Computer Vision, Graphics, and Image Processing, pp.85-117, 1983.

I. Cohen and I. Herlin, Optical flow and phase portrait methods for environmental satellite image sequences, Proceedings of European Conference on Computer Vision, 1996.
DOI : 10.1007/3-540-61123-1_134

URL : https://hal.archives-ouvertes.fr/inria-00626437

E. Mémin and P. Pérez, Dense estimation and object-based segmentation of the optical flow with robust techniques, IEEE Transactions on Image Processing, vol.7, issue.5, pp.703-719, 1998.
DOI : 10.1109/83.668027

D. Béréziat, I. Herlin, and L. Younes, A generalized optical flow constraint and its physical interpretation, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), pp.2487-2492, 2000.
DOI : 10.1109/CVPR.2000.854890

T. Corpetti, E. Mémin, and P. Pérez, Dense estimation of fluid flows, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.3, pp.365-380, 2002.
DOI : 10.1109/34.990137

URL : https://hal.archives-ouvertes.fr/hal-00329724

T. Isambert, J. P. Berroir, and I. Herlin, A multiscale vector spline method for estimating the fluids motion on satellite images, Proceedings of European Conference on Computer Vision, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00264727

I. Herlin, E. Huot, J. Berroir, F. Dimet, and G. Korotaev, Estimation of a Motion Field on Satellite Images from a Simplified Ocean Circulation Model, 2006 International Conference on Image Processing, 2006.
DOI : 10.1109/ICIP.2006.312742

URL : https://hal.archives-ouvertes.fr/inria-00604618

N. Papadakis, P. Héas, and É. Mémin, Image Assimilation for Motion Estimation of Atmospheric Layers with Shallow-Water Model, Proceedings of Asian Conference on Computer Vision, pp.864-874, 2007.
DOI : 10.1007/978-3-540-76386-4_82

URL : https://hal.archives-ouvertes.fr/hal-00596194

D. Béréziat and I. Herlin, Solving ill-posed Image Processing problems using Data Assimilation, Numerical Algorithms, vol.14, issue.7, pp.219-252, 2011.
DOI : 10.1007/s11075-010-9383-z

O. Titaud, A. Vidard, I. Souopgui, and F. Dimet, Assimilation of image sequences in numerical models, Tellus A, vol.105, issue.C8, pp.30-47, 2010.
DOI : 10.1111/j.1600-0870.2009.00416.x

URL : https://hal.archives-ouvertes.fr/inria-00332815

G. Korotaev, E. Huot, F. Dimet, I. Herlin, S. V. Stanichny et al., Retrieving ocean surface current by 4-D variational assimilation of sea surface temperature images, Remote Sensing of Environment, vol.112, issue.4, pp.1464-1475, 2008.
DOI : 10.1016/j.rse.2007.04.020

URL : https://hal.archives-ouvertes.fr/hal-00283896

E. Huot, I. Herlin, and G. Korotaev, Assimilation of SST Satellite Images for Estimation of Ocean Circulation Velocity, IGARSS 2008, 2008 IEEE International Geoscience and Remote Sensing Symposium, pp.847-850, 2008.
DOI : 10.1109/IGARSS.2008.4779127

URL : https://hal.archives-ouvertes.fr/inria-00583029

E. Huot, I. Herlin, N. Mercier, and E. Plotnikov, Estimating Apparent Motion on Satellite Acquisitions with a Physical Dynamic Model, 2010 20th International Conference on Pattern Recognition, pp.41-44, 2001.
DOI : 10.1109/ICPR.2010.19

URL : https://hal.archives-ouvertes.fr/inria-00538317