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Abstract: A computational study into the motion perception dynamics of a multistable psy-
chophysics stimulus is presented. A diagonally drifting grating viewed through a square aperture is
perceived as moving in the actual grating direction or in line with the aperture edges (horizontally
or vertically). The different percepts are the product of interplay between ambiguous contour cues
and specific terminator cues. We present a dynamical model of motion integration that performs
direction selection for such a stimulus and link the different percepts to coexisting steady-states
of the underlying equations. We apply the powerful tools of bifurcation analysis and numerical
continuation to study changes to the model’s solution structure under the variation of parameters.
Indeed, we apply these tools in a systematic way, taking into account biological and mathematical
constraints, in order to fix model parameters. A region of parameter space is identified for which
the model reproduces the qualitative behaviour observed in experiments. The temporal dynamics
of motion integration are studied within this region; specifically, the effect of varying the stimulus
gain is studied, which allows for qualitative predictions to be made.

Key-words: motion, perception, multistability, visual cortex, barber pole, bifurcation



Analyse de bifurcation appliquée à un modèle
d’intégration de mouvement en présence d’un

stimulus multistable
Résumé : Nous présentons une analyse d’un modèle de la dynamique de la
perception du mouvement, en présence d’un stimulus multistable. Un réseau en
mouvement dans la diagonale présenté derrière une ouverture carrée est perçu
comme se déplaçant dans la direction du réseau ou dans la direction des cotés
de l’ouverture (horizontalement ou verticalement). Ces différents percepts sont
le produit de l’interaction entre les indices ambigus des contours du réseau et
les indices de terminaisons de lignes. Nous présentons un modèle dynamique
de l’intégration du mouvement qui effectue la sélection de la direction pour un
tel stimulus, en reliant les différents percepts à des états d’équilibre coexistants
des équations sous-jacentes. Nous appliquons les puissants outils d’analyse de
bifurcations et de continuation pour étudier les changements de la structure des
solutions du modèle en fonction des paramètres. Nous appliquons ces outils
de façon systématique afin de fixer les paramètres du modèle, en prenant en
compte les contraintes biologiques et mathématiques. Une région de l’espace
des paramètres est identifiée, région dans laquelle le modèle reproduit le com-
portement qualitatif observé dans les expériences. La dynamique temporelle de
l’intégration du mouvement est étudiée au sein de cette région; plus précisé-
ment, nous étudions l’effet produit par la modification du gain du stimulus ce
qui permet d’effectuer des prédictions qualitatives.

Mots-clés : mouvement, perception, multistabilité, cortex visuel, barber pole,
bifurcation
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4 Rankin, Tlapale etal.

1 Introduction

The interesting and long-studied aperture problem constitutes an important
ambiguity that must be resolved by the visual system in order to attribute
an accurate direction of motion to moving objects (Wallach, 1935; Wuerger
et al, 1996). The motion of a uniform contour is consistent with many possible
directions in the absence of terminator information provided by line endings.
The ambiguous contour information is referred to as a 1D cue and the specific
terminator information, which can be intrinsic to the object or produced by an
occluding aperture, is referred to as a 2D cue.

In this article, we focus on a classical psychophysics stimulus used to probe
the interactions between 1D and 2D motion cues, the so-called “barber pole”
illusion (Hildreth, 1983, Chapter 4) . A a diagonally drifting grating viewed
through an elongated rectangular aperture is perceived as drifting in the direc-
tion of the long edge of the aperture. The illusion is generated by the larger
number of unambiguous (but misleading) 2D cues parallel to the long edges
of the aperture. Mitigating the effect of the 2D cues can break the illusion as
demonstrated in experiments by introducing a depth separation between grat-
ing and aperture (Shimojo et al, 1989), or, by introducing indentations on the
aperture edges (Kooi, 1993). More interesting is the fact that for certain stim-
ulus parameters, the barber pole can elicit a multistable perceptual response.
The effect of the ratio of the lengths of the aperture edges, or terminator ratio,
was investigated in (Castet et al, 1999; Fisher and Zanker, 2001). For large
ratios the direction of the long aperture edge dominates perception. However,
for ratios close to 1 : 1 the stimulus is multistable with a tri-modal response
for the perceived direction; the main percepts either agree with the direction
perpendicular to the grating’s orientation or with one of the two aperture edge
directions . Another interesting aspect in resolving the aperture problem is the
temporal dynamics of the integration of 1D and 2D cues. The barber pole il-
lusion was studied in ocular following experiments (Masson et al, 2000); early
tracking responses were shown to be initiated in the contour direction with a
later response in the direction of the long axis of the aperture. The existence of
an early response dominated by 1D cues, which is later refined when 2D cues
are processed is supported by further studies in ocular following (Barthélemy
et al, 2010), psychophysics (Lorenceau et al, 1993) and physiology (Pack and
Born, 2001).

The middle temporal area (MT) of the visual pathway, that receives the
majority of its synaptic inputs from the primary visual cortex (V1), plays a key
role in the perception of moving objects and, more specifically, the solution of
the aperture problem. MT is characterised by direction-selective neurons that
are organised in a columnar fashion, similar to the organisation of orientation-
selective neurons in V1 (Diogo et al, 2003). For an extensive discussion of
the function of MT, see the following review articles (Britten, 2003; Born and
Bradley, 2005). Cortical responses of MT have been linked specifically to percep-
tion of motion; see again the review article (Britten, 2003) and, more recently,
the paper (Serences and Boynton, 2007).

Several models of motion integration have been proposed in the literature to
solve the aperture problem, providing some insights into the underlying neural
mechanisms. Building on the first linear/non-linear models (Chey et al, 1997;
Simoncelli and Heeger, 1998), several approaches added extensions to modulate
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the motion integration stages: feedback between hierarchical layers (Grossberg
et al, 2001; Bayerl and Neumann, 2004), inclusion of input form cues (Berzhan-
skaya et al, 2007; Bayerl and Neumann, 2007), luminance diffusion gating (Tla-
pale et al, 2010b), or depth cues (Beck and Neumann, 2010). Although these
models reproduce the predominant percepts in a wide range of stimuli, in none
of the articles describing them are multistable results depicted. Furthermore,
although they show some limited individual case of dynamical behaviour just on
the level of simulations, there is no rigorous analysis of the dynamical behaviour
and no comprehensive parameter studies that fully explore all possible dynam-
ical behaviour. In summary, the questions of what mechanisms are behind
multistable motion perception and what dynamical processes are involved have
largely been overlooked from the modelling point of view.

The focus of this paper will be the analysis of a mathematical model of mo-
tion integration with an input that generates a multistable perceptual response.
To do so, we study cortical behaviour at the population level; see (Pouget et al,
2000) for a discussion of how information can be encoded at a population level.
We work within the neural fields formalism, a mathematical framework that was
originally studied in (Wilson and Cowan, 1972; Amari, 1971, 1972); see (Ermen-
trout and Terman, 2010, Chapter 11) for various derivations of the equations.
Instead of looking at the spiking behaviour of individual, interconnected neu-
rons, the neural field approximation represents the mean firing rate of a neural
population at the continuum limit and activity levels are represented in a spa-
tially continuous way. Neural fields equations have been successfully applied to
the study of motion in, e.g., (Giese, 1998; Deco and Roland, 2010) and (Tlapale
et al, 2010a). In the later, the complex model presented, describing behaviour
of multiple cortical layers and their feedforward and feedback connections, was
capable of performing motion integration on both natural image sequences and
classical psychophysics presentations. In terms of multistable stimuli, the 1 : 1
barber pole discussed above lead to coexisting steady states in the model, but
the temporal dynamics of multistable perception were not investigated. We aim
to develop a tractable model of manageable complexity that allows for a de-
tailed study of the temporal dynamics of multistable motion perception using
powerful tools from dynamical systems theory.

A natural tool for the study of dynamical systems for which multiple steady-
state solutions co-exist is bifurcation analysis. Throughout the manuscript
when the term solution is used this refers to a steady-state solution. In dy-
namical systems theory, a bifurcation is a critical point encountered under the
variation of one or more parameters at which there is a change in the stability
and number of solutions. Indeed, under the variation of a parameter a solution
of a dynamical system will vary in state space; when the solution is plotted
in terms of some norm against the parameter, it lies on a solution branch. A
dynamical system may have multiple solution branches that are characterised
by, for example, different spatial and stability properties. At special points
when varying a parameter, solution branches can meet and bifurcate from each
other. At these so-called bifurcation points, the number of solutions and their
stability changes. In order to know what type of behaviour a model can pro-
duce it is necessary to gain full understanding of the type of bifurcations that
occur, the types of solutions that are involved and at which parameter values.
For a general introduction to bifurcation analysis of finite dimensional systems
see (Strogatz, 1994; Kuznetsov, 1998), and of infinite dimensional systems with
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6 Rankin, Tlapale etal.

symmetries see (Chossat and Lauterbach, 2000; Haragus and Iooss, 2010). Bi-
furcation analysis has been used to study pattern formation in a number of
different settings (Ermentrout and Cowan, 1980; Bressloff and Kilpatrick, 2008;
Coombes and Owen, 2005). More specifically, a spatialised model of V1 has been
used to investigate hallucinatory visual patterns (Bressloff et al, 2001; Golubit-
sky et al, 2003; Bressloff and Kilpatrick, 2008), localised patterns have been
studied in models of working memory (Laing et al, 2002; Guo and Chow, 2005;
Faye et al, 2012) and in a model of texture perception (Faye et al, 2011). In all
of these studies only spontaneous activity is studied, that is, in the absence of
any cortical input.

In this article, we propose a spatialised ring model of direction selection,
where the connectivity in the direction space and physical space is closely re-
lated to the Mexican-hat type connectivity typically used in the ring model of
V1 (Ben-Yishai et al, 1995; Somers et al, 1995; Hansel and Sompolinsky, 1997).
We apply analytical tools such as stability analysis and normal form computa-
tions in order to identify and categorise bifurcations in our model. These tools
have been used successfully to study the neural field equations, see, for exam-
ple (Curtu and Ermentrout, 2004; Coombes et al, 2007; Roxina and Montbrióa,
2011). However, in the presence of an input to the model, these analytical tools
are no longer applicable; although certain perturbation-type methods can be
applied if the input is considered to have a specific, simple spatial structure
and to be small (Veltz and Faugeras, 2010; Ermentrout et al, 2010; Kilpatrick
and Ermentrout, 2012). Note that in the study (Veltz and Faugeras, 2010),
large inputs with a simple spatial structure were also studied with numerical
continuation. In this paper, we first investigate the model’s behaviour in the ab-
sence of an input using analytical techniques. Then building on the knowledge
gained we apply the tool of numerical continuation to track solution branches
under parameter variation and detect bifurcation points; effectively continua-
tion provides a computational tool for performing bifurcation analysis. For
an introduction to continuation algorithms see (Krauskopf et al, 2007). For
the problem we study here the continuation module LOCA of the numerical
tools package Trilinos is well suited (Heroux et al, 2005). Numerical bifur-
cation tools have not previously been used to study a neural fields model in
the presence of a large, spatially complex input. Furthermore, the application
of bifurcation analysis and numerical continuation to the study of a model of
motion integration is new. These methods allow us to build a complete pic-
ture of the model’s possible dynamics in terms of parameter regions exhibiting
qualitatively different behaviour and to identify the boundaries between these
regions. In this way, we are able to ensure that parameter regions in which a
desired behaviour is present are not isolated and that the behaviour is robust
with respect to small changes in the model set up. The typical approach of a
simple numerical search in parameter space often misses important parameter
regions and does not provide information about robustness of behaviour with
respect to parameter variation. The technical parts of this paper form the
basis of the strategy employed to fix model parameters based on biological and
mathematical constraints. We perform a systematic study of the model’s so-
lution structure depending on key parameters including the stimulus strength
and identify a parameter region for which the model has steady-state solutions
corresponding to the three predominant percepts (diagonal, horizontal, verti-
cal) observed in experiment (Fisher and Zanker, 2001) . An extended study of
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the system’s temporal dynamics allows for experimental predictions to be made
regarding the distributions of the different percepts seen for different length pre-
sentations. In particular we predict that for long enough presentations only the
horizontal and vertical percepts should be seen.

2 Model of direction selection

The model described here uses a neural fields description of the firing-rate ac-
tivity of a population of neurons in middle temporal area (MT) over a physical
(cortical) space and a feature space of motion direction. Two essential mecha-
nisms are represented by the model: direction selectivity in the feature space
and spatial diffusion of activity across the physical space. Stimulus input to the
model is represented as preprocessed motion direction signals from V1 complex
cells. Such a representation is comparable to classic motion detectors such as
the output of elaborated Reichardt detectors (Van Santen and Sperling, 1984;
Bayerl and Neumann, 2004) or of motion filters. The output of the model is the
time evolution of activity levels across the physical-direction space.

The functionality of the model is encoded by the connectivity across direction-
space and physical-space, which is processed by a nonlinearity. In the direction
space, the connectivity is based on a narrowly tuned excitation with broadly
tuned inhibition, as described for MT in (Grunewald and Lankheet, 1996).
Such a Mexican-hat-type connectivity in the orientation-space has been used
previously for the ring model of orientation selection (Ben-Yishai et al, 1995;
Bressloff et al, 2001). Here, we assume that the inhibition tuning in MT is broad
enough to be approximated by uniform lateral inhibition; with uniform lateral
inhibition when cells selective for a particular direction are active, cells selective
for the opposite direction are inhibited. This is consistent with known direc-
tion selectivity properties of MT (Albright, 1984; Diogo et al, 2003) and with
recordings from MT with transparent drifting dot patterns moving in opposite
directions (Snowden et al, 1991). Furthermore, the uniform lateral inhibition
connectivity has the convenient property of fixing the first non-trivial Fourier
mode of the connectivity to be the largest, which is necessary for the model to
produce tuning-curve solutions. In the physical space, diffusion is captured by
an inverted Mexican hat connectivity, which has been used in a number of neu-
ral fields models with delays; see, for example, (Hutt et al, 2003; Venkov et al,
2007) and (Veltz, 2011, Chapter 6). As motivated in (Venkov et al, 2007), for
cortical tissue the principal pyramidal cells are often surrounded by inhibitory
interneurons and their long range connections are typically excitatory (Gilbert
et al, 1996; Salin and Bullier, 1995; McGuire et al, 1991). The inverted Mexi-
can hat connectivity propagates activity outwards from stimulated regions and
is consistent with a model output that describes a coherent motion across the
physical space.

2.1 Representation of the stimulus

The stimulus that we consider here is a single drifting grating viewed through a
square aperture, which has been shown to exhibit multistability of the viewer’s
percept during the first 2 seconds of presentation (Castet et al, 1999; Fisher
and Zanker, 2001). For longer presentations, the stimulus is known to exhibit
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8 Rankin, Tlapale etal.

perceptual switching of the kind studied in, for example, binocular rivalry ex-
periments (Blake, 2001). However, the focus in this article will be the early
dynamics after onset of the stimulus. The stimulus is shown in Fig. 1(a) and
the three dominant percepts are labelled as diagonal D (the direction perpendic-
ular to the grating’s orientation at 0◦) , horizontal H (in line with the horizontal
aperture edge at −45◦ ) or vertical V (in line with the vertical aperture edge at
45◦ ). Note that here in the description of the stimulus and later in the numer-
ical results of Sec. 4 we give angles in degrees; however, for ease of presentation
in the technical parts that follow in this section and in Sec. 3 angles are given
in radians. One of the most significant simplifications in the model is that we
consider a 1D approximation of the cortex for physical space, which restricts the
way in which the stimulus can be represented as input to the model, as discussed
below. We consider the different cues at different points on a 1D cut across the
stimulus, as shown in Fig. 1(b). On the interior of the aperture the input is
directionally ambiguous because 1D motion cues centred around the direction
of the drifting grating are received. At the aperture edges the input is specific
because 2D motion cues parallel to the aperture edges are received. It is the
interplay between these two types of competing motion signals that produces
the multistable percept. In this paper, we use the terms stable and unstable in
the sense of dynamical systems theory to reflect whether a solution is attract-
ing or repelling in state-space; the term multistable refers to the coexistence of
different possible percepts for a visual stimulus.

The inclusion of 2D physical space would allow for many variations to the
stimulus to be considered. However, there are a number modifications that are
possible with the present 1D representation that we now discuss. For exam-
ple, rectangular apertures are often considered with a specific ratio between
the different edges (Fisher and Zanker, 2001) and by taking a 1D cut across
the stimulus this information would be lost. However, a similar effect could be
achieved by giving a stronger weighting to the longer aperture edge. Another
feature often investigated in psychophysics experiments is the angle of the grat-
ing with respect to the aperture edges (Castet et al, 1999). Again, although
certain information is lost in the 1D cut, such a change to the stimulus could
be considered by placing the 2D elements as shown in Fig. 1(c) asymmetrically
about v = 0 (but still orthogonal to each other). Furthermore, the choice of the
cut made Fig. 1(b) is quite arbitrary. For example, moving the cut closer to the
line between the top left and bottom right corners would widen the stimulated
region in x; in terms of the models response, we would expect the further sepa-
ration of the 2D cue elements to delay the time it takes for the 2D cues to affect
on the dynamics. The specific case where a cut is taken between two corners of
the aperture would result in there being competition between 2D different cues
at the aperture edge points. The stimulus shown in Fig. 1(c) could be modified
to incorporate this by adding points at both v = ±45◦ at each aperture edge
x = ±0.75 as opposed to v = 45◦ at x = −0.75 and v = −45◦ at x = 0.75 as is
currently the case. Overall the 1D approximation used here is well suited to the
specific stimulus studied with its particular symmetry properties, that is, with
a square aperture and a grating that forms an equal angle with each aperture
edge.
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Figure 1: Description of the model stimulus. (a) A sinusoidal luminance grating
viewed through a square aperture (grey); a large arrow indicates the diagonal
grating direction D (v = 0◦). Indicated by small arrows are the horizontal H
(v = 45◦) and vertical V (v = −45◦) directions corresponding to the aperture
edges. (b) A cut across the aperture is used to represent the stimulus in the 1D
physical space x (black line). At points on the interior of the aperture (black
line is dashed) many directions are stimulated, on the edges of the aperture
a single direction is stimulated parallel to the edge (black points) and outside
the aperture no direction is stimulated (black line is solid). (c) Representation
of the stimulus Iext in physical-direction space (x, v); at each point x each of
the possible directions v ∈ (−180◦, 180◦) is either stimulated (white) or not
stimulated (black). Multiple directions are stimulated on the interior of the
aperture x ∈ (−0.75, 0.75), unique directions are stimulated at the aperture
edges x = −0.75 and x = 0.75. Note that the 1D cut in panel (b) is illustrative
and the actual interior and exterior regions used in the model are those shown
in panel (c).
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10 Rankin, Tlapale etal.

2.2 Neural field equation

We now introduce the neural field equation that describes the neuronal popu-
lation’s activity, detailing how the different elements discussed so far enter into
the model. The firing rate activity of a single population of neurons in MT is
denoted

p : (x, v, t) ∈ Ω× V × R+ → p(x, v, t) ∈ R+, (1)

where Ω is the spatial domain (a bounded subset of R) and V = R/2πZ is the
direction space. Note that we impose the restriction that p ≥ 0, because it is
not physically relevant to have a negative firing rate. We assume that x and
v are independent variables: every direction v is represented at each physical
position x. The neural field equation is given by

∂p

∂t
= −µp+ S(λ [Jp+ T + kIext]),

p(x, v, 0) = p0(x, v),
(2)

where µ is the decay rate, J is the connectivity operator, k is the input gain
(analogous to contrast) for the stimulus Iext (Fig. 1(c)) and T is the constant
threshold parameter. The parameter λ is the stiffness (slope at x = 0) of
the sigmoid nonlinearity S(x) = 1

1+exp(−x) . The choice of a sigmoid function,
which is smooth and infinitely differentiable, facilitates the study of steady-state
behaviour and allows for the application of numerical continuation (Veltz and
Faugeras, 2010). The initial condition at t = 0 is p0(x, v). The connectivity J
has the following form

Jp = ν1(GE ? p)− ν2(GI ? p)− ν3p. (3)

The first two terms represent a difference of 2D Gaussian functions GE and GI
, where ν1 and ν2 represent the relative strength of excitation and inhibition,
respectively. The convolutions GE? and GI? are defined by:

GE ? p =

∫
Ω

∫
V

gEx (x− y)gEv (v − w)p(y, w, t)dwdy, (4)

GI ? p =

∫
Ω

∫
V

gIx(x− y)bIv(v − w)p(y, w, t)dwdy, (5)

where g∗x(x) = 1√
2πσ∗

x

exp(− |x|
2

2σ∗
x

) for σ∗x = σIx, σ
E
x and similarly for gEv (v). In

physical space, we have an inverted Mexican hat type connectivity so σEx > σIx.
The width of excitation in direction space is set by σEv and the uniform lateral
inhibition is represented by the box-function bIv(v) = 1

2π . In order to illustrate
the shape of the connectivity function across (x, v)-space we first plot in Fig. 2(a)
the function Mx(x) = ν1g

E
x − ν2g

I
x with σEx > σIx and ν2 > ν1 along with its

Fourier transform M̂x(j). Similarly in panel (b) we plot Mv(v) = ν1g
E
v − ν2b

I
v

and its Fourier transform M̂v(k). Furthermore, the full connectivity M(x, v) =
ν1g

E
x (x)gEv (v)−ν2g

I
x(x)bIv(v) is plotted in panel (c); functions with the shape of

Mx andMv are recovered by taking 1D slices across this surface. The parameter
ν3 is ignored here as this serves only to shift the surface up or down. Restrictions
on the choice of parameters describing the connectivity function are discussed
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in Sec. 3.2.
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Figure 2: Profile of the connectivity function. (a) Form of the connectivity
Mx in x-space and the corresponding Fourier transform M̂x. (b) Form of the
connectivity Mv in v-space and the corresponding Fourier transform M̂v. (c)
Full, coupled connectivity M . The functions Mx and Mv correspond to the 1D
slices at v = 0 (black curve) and x = 0 (white curve), respectively.

An additional linear threshold term ν3p is used to tune the maximum firing
rate of direction-selected solutions, whereas the constant threshold T is used
to tune the firing rate of homogeneous, non-direction-selected solutions. It is
convenient to include the linear threshold term in the connectivity operator as
this simplifies the stability computations in Sec. 3.2. The choice of all parameters
is discussed in Sec. 4.

3 Analytic results in the absence of stimulus, k =
0

In this section we discuss inherent properties of Eq. (2) and its solutions without
a stimulus input. The results we obtain analytically provide a foundation of
knowledge about the different types of solution the model can produce, the role
of key parameters and a means to set appropriate values of parameters based
on mathematical and biological constraints.

We begin our study by looking at the symmetry properties satisfied by the
connectivity and the governing equation in Sec. 3.1. We show that Eq. (2)
with the connectivity J as described above is equivariant with respect to a
certain symmetry group. This important property dictates the types of solution
that can be produced by the model. Furthermore, it determines the type of
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12 Rankin, Tlapale etal.

bifurcations that occur.
In the single population model that we consider here, the only types of

solutions that we encounter are steady states (or, persistent states). Given
an initial condition p0, the time evolution of the equations can be computed
numerically; the particular initial condition chosen will determine which steady-
state solution the system converges to. It is important to note that the transient
dynamics encountered before the system converges to a steady state can also
be greatly affected by the initial condition. In Sec. 3.2 we calculate analytically
the steady states that have the additional property of being independent of
both the physical and direction space. For these spatially independent solutions
a constant level of activity persists across (x, v)-space; this type of solution
can be thought of as the baseline activity that we would see in the absence
of a stimulus (or below the contrast threshold). We give an expression that
allows us to compute these solutions depending on the system parameters. Also
in Sec. 3.2, we compute the eigenvalues and eigenvectors of the connectivity
operator J (a spatial-mode decomposition), which allows us in turn to compute
the stability of the steady-state solutions dependent on the nonlinearity stiffness
λ. We show that for small enough λ the steady-state solutions are stable. As
λ is increased, the most destabilising mode of J , as determined by its largest
eigenvalue will become unstable at a critical value of λ. This critical value is
the system’s principal bifurcation point.

We determine the type of the principal bifurcation in Sec. 3.3. Further-
more, given the mode of J that loses stability in this bifurcation, and given the
symmetry properties of the governing equation, we are able to characterise the
spatially dependent solutions produced by the model. A normal form compu-
tation determines the way in which the transition from spatially homogeneous
solutions to spatially dependent solutions occurs in the model.

3.1 Symmetry group

Here we discuss the symmetry properties of Eq. (2), which will play an impor-
tant role in determining the type of bifurcation that the model produces. The
general concept is to specify the group of translations and reflections for which
the governing equation is equivariant. The same group of translations and re-
flections, when applied to a solution of the equations, will produce coexisting
solutions; for example, we will see in Sec. 3.3 that translational invariance in v
means that a direction-selected solution associated with one specific direction
can be translated by any angle to give direction-selected solutions associated
with all other possible directions. Note that when a stimulus is introduced, the
symmetry group of the equations will be in some way reduced and it is, therefore,
important to first identify the full symmetry group before its introduction.

In order to simplify subsequent calculations we impose periodicity on the
spatial domain so that Ω = R/cZ for some c ∈ R; this simplification does
not affect the stability properties of the system (Faugeras et al, 2008). Let us
consider the group, denoted Γ, of translations of R/cZ: a one parameter group
parametrised by α ∈ R/cZ. An element Γα of this group acts in the following
way on the variables (x, v, t):

Γα · (x, v, t) = (x+ α, v, t). (6)
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Motion integration with a multistable stimulus 13

In general the action of the group Γ on the function p is

Γ · p(x, v, t) def
= p

(
Γ−1(x, v, t)

)
, (7)

and more specifically for a translation in x:

Γα · p(x, v, t) = p(x− α, v, t). (8)

Let

F (p(x, v, t)) =
∂p(x, v, t)

∂t
+ µp(x, v, t) (9)

−S(λ[Jp(x, v, t) + T ]);

it can be shown that F is equivariant with respect to the group Γ or, equivalently
ΓαF (p) = F (Γαp).

Furthermore, the function F is equivariant with respect to the reflection
group generated by R which has the following action on the variables and ac-
tivity:

R · (x, v, t) = (−x, v, t), (10)
R · p(x, v, t) = p(−x, v, t). (11)

If we denote Hx the group generated by Γ and R and since we have
Γα1

Γα2
= Γα1+α2

∀α1, α2,∈ R/cZ,
RΓα = Γ−αR ∀α ∈ R/cZ,
Γ0 = Id,

R2 = Id,

(12)

the group Hx is isomorphic to O(2), the group of two-dimensional orthogonal
transformations. Furthermore, the equation F is equivariant with respect to
the similarly defined group Hv generated by translation and reflection in v.
Therefore, F is equivariant under the action of the symmetry group H = Hx ×
Hv which is isomorphic to O(2)×O(2).

3.2 Spatially homogeneous solutions and their stability

Steady-state solutions are those for which ∂p
∂t = 0. We first consider solutions

that are independent in both the physical space x and velocity space v and the
level of activity across the population p is equal to a constant value p̄ ∈ R+. To
find these solutions we set the right hand side of Eq. (2) equal to 0 and, thus,
search for solutions p̄ to the following equation

µp̄ = S (λ [Jp̄+ T ]) .

Given that for the normalised Gaussian functions we have GE ? p̄ = p̄ and
GI ? p̄ = p̄, we can further write

µp̄ = S (λ [(ν1 − ν2 − ν3)p̄+ T ]) , (13)
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14 Rankin, Tlapale etal.

an implicit expression for p̄.
Next, we wish to determine the linear stability of Eq. (2) at the solution p̄

depending on system parameters. The first task is to compute the spectrum
of the operator J . In order to do this we decompose J into Fourier modes by
obtaining its eigenvalues and the associated eigenvectors; this information will
determine exactly which (Fourier) modes of J have the greatest destabilising
effect. The eigenvalues ζ(j,k) of J are given by the following relation:

ζ(j,k) = ν1ĝ
E
x (j) ĝEv (k)− ν2 ĝ

I
x(j) b̂Iv(k)− ν3, (14)

where ĝEx (j), ĝEv (k) and ĝIx(j) are Fourier coefficients of the respective periodi-
cally extended Gaussian functions. The coefficients b̂Iv(k) are defined as follows:

b̂Iv(k) =

{
1 for k = 0,

0 otherwise.
(15)

Due to the functions gEx , gIx, gEv and bIv being even, their Fourier coefficients are
real positive and even. Hence we have ζ(±j,±k) = ζ(j,k).

The dimension of the eigenspace E(j,k) associated with each eigenvalue ζ(j,k)

depends on the indices j and k. Here we let the indices (j, k) be positive num-
bers. The eigenvectors χ(j,k) are given by:

χ(j,k) =



{1} j = 0, k = 0,

{eikv, e−ikv} j = 0, k > 0,

{e 2πijx
c , e−

2πijx
c } j > 0, k = 0,

{ei( 2πjx
c +kv), ei(

2πjx
c −kv),

ei(kv−
2πjx
c ), e−i(

2πjx
c +kv)} j > 0, k > 0.

(16)

The eigenvectors could equivalently be represented as combinations of sin and
cos functions.

Using the modal decomposition of J , we can obtain an expression for the
eigenvalues associated with the solution p̄, for each Fourier mode of J . The sign
of the eigenvalue for each mode will tell us whether it is stable (−) or unstable
(+). We define S1 to be the linear coefficient in the Taylor expansion of S at the
fixed point p̄; note that we Taylor expand about λ[(ν1 − ν2 − ν3)p̄+ T ] and S1

depends on the values of several other system parameters. By linearising about
the solution p̄ of Eq. (2), we obtain the following expression for the eigenvalues

%(j,k) = −µ+ λS1ζ(j,k). (17)

By identifying the mode of J with the largest eigenvalue ζ(j,k), we can find the
smallest value λ for which p̄ is unstable. Indeed for small enough λ the solutions
are stable as %(j,k) ≈ 0. For the values of σEx , σIx and σEv used in this paper (see
Table 1) and imposing certain restrictions on the values of ν1, ν2 and ν3, we
can identify exactly which modes (j, k) are the most destabilising. If we impose
ν1 > 0, 0 ≤ ν3 < ν1 and ν2 > ν1 then the following properties hold:

• The mode (0, 0) is stable because ζ(0,0) = ν1 − ν2 − ν3 < 0.

• The ν2 ĝ
I
x(j) b̂Iv(k) term ensures that all modes for which k = 0 are stable.
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Motion integration with a multistable stimulus 15

• The positive ν1ĝ
E
x (j) ĝEv (k) term produces the destabilising contribution,

which is greatest for j = 0.

• Further, this destabilising contribution is greatest for k closest to 0 and
then diminishes for increasing k.

Therefore, the largest eigenvalue ζ(j,k) of J corresponds to the mode (0, 1) fol-
lowed by the subsequent modes with increasing k. Accordingly, in the analysis
that follows it is convenient to drop the subscript j and to assume that it is
zero, such that ζk = ζ(0,k). The largest eigenvalue is ζ1; therefore, the smallest
value of λ for which %(j,k) = 0 is given by

λc =
µ

S1ζ1
. (18)

This value λc is the system’s principal bifurcation point, which we study in the
next section. The term S1 depends on λ and p̄, but values of λc can be found
by solving the following system for the pair (p̄c, λc):{

p̄c = S(λc[(ν1−ν2−ν3)p̄c+T ])
µ ,

λc = µ
S1(λc[(ν1−ν2−ν3)p̄c+T ])ζ1

.
(19)

By taking advantage of the equality S′ = S(1− S), it was proved in (Veltz and
Faugeras, 2010) that given ζ0 < 0 and ζ1 > 0, the pair (p̄c, λc) is unique. These
two inequalities for the eigenvalues hold given the restrictions on ν1, ν2 and ν3

discussed above.
Bifurcation points associated with other modes that occur as λ is increased

beyond λc can be found in a similar fashion, however, it is the branch of solutions
that are born from the principal bifurcation that will determine the types of
spatially dependent solutions that the model will produce.

3.3 Normal form of the principal bifurcation point

In this section we classify the principal bifurcation point by first, applying the
center manifold theorem and secondly, giving the appropriate change of vari-
ables to reduce the system’s dynamics into a normal form; we now introduce
these concepts. In the previous section we performed a modal decomposition
of the connectivity and computed the linear stability of Eq. (2) with respect
to perturbations in the different modal components. For the different modal
components, or eigenvectors χ(j,k) (Eq. (16)), the sign of the associated eigen-
value %(j,k) (Eq. (17)) gives the linear stability. In the case when %(j,k) = 0 the
stability is neutral; the parameter value for which this occurs is the bifurcation
point. At this bifurcation point it is necessary to also consider nonlinear terms
in some parameter neighbourhood in order to capture the local dynamics. A
center manifold reduction allows us to compute these nonlinear terms by means
of a leading order Taylor approximation; the center manifold theorem allows us
to prove rigorously that the computed reduced system accurately captures the
local dynamics. A normal form computation is a change of variables that clas-
sifies the type of bifurcation present in our system and allows for the dynamics
local to the bifurcation point to be seen clearly. The coefficients found in the
normal form computation provide important information about the direction of
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16 Rankin, Tlapale etal.

bifurcating branches in terms of the bifurcation parameter and the stability of
these branches.

We prove in Appendix A that the relevant hypotheses for the centre manifold
hold in our case. This computation depends both on the symmetry properties
discussed in Sec. 3.1 and the fixed point stability analysis from Sec. 3.2. Indeed,
in the previous section we identified the system’s principal bifurcation point as
given by the pair (p̄c, λc), solutions to the system (19). We now define respec-
tively the first, second and third order coefficients in the Taylor expansion of S
at p̄c to be S1, S2 and S3. We drop the subscript notation for the eigenvectors
χ = eiv and χ = e−iv, which span the two-dimensional eigenspace E1 associated
with the eigenvalue ζ1. The eigenvalues ζ0 (for the homogeneous mode) and ζ2
(for the j = 0, k = 2 mode) will also appear in the analysis that follows.

Here we define a centre manifold on the two dimensional eigenspace of ζ1.
This centre manifold will be independent of physical space x, therefore, the
manifold must be equivariant with respect to the reduced symmetry group Hv,
which is isomorphic to O(2). Here we introduce P the real valued solutions on
the center manifold, which it is convenient to express in terms of a complex
variable w. We decompose P into linear components on the eigenspace E1 and
nonlinear components orthogonal to E1. We set

P = p̄c + w · χ+ w · χ+ Ψ(w,w, λ− λc), w(t) ∈ C, (20)

where Ψ is a grouping of nonlinear terms called the center manifold correction.
A simple change of coordinates can be used to eliminate the constant term p̄c.
From (Haragus and Iooss, 2010, Chapter 2), we have in this case a pitchfork
bifurcation with O(2) symmetry and the reduced equation for the dynamics of
w has the following normal form equation

dw
dt

= aw(λ− λc) + bw|w|2 +O(|w|(|λ− λc|2 + |w|4)), (21)

together with the complex conjugated equation for w. Indeed, due to the fact
that the reduced equation for the dynamics of w must also be O(2)-equivariant,
even powered terms in the reduced equation are prohibited. We define the
parameter dependent linear operator Lλ = −µId + λS1J , which represents the
linearisation of the right hand side of Eq. (2) at p̄c. The linear coefficient a can
be determined by considering the action of Lλ on the eigenvector χ (equivalently,
on the linear terms of P ) at the bifurcation point given by Eq. (18):

Lλ · χ = (−µ+ λS1J) · χ,
= (−µ+ λS1ζ1) · χ,
= (−µ+ λ

µ

λc
) · χ,

=
µ

λc
(λ− λc) · χ,

which, by comparing with Eq. (21), gives a = µ
λc
> 0. The fact that a is positive

means that the principal solution branch is stable before the bifurcation point.
Note that the linear term disappears at the bifurcation point λ = λc and it is
necessary to consider higher order terms in order to quantify the dynamics. The
sign of the cubic coefficient b determines the direction of the bifurcating branch;
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Motion integration with a multistable stimulus 17

see Fig. 3 for the two possibilities when a > 0. We now use the expression for
solutions P on the center manifold to determine the coefficient b in terms of
our model parameters. Substituting the expression (20) for P into Eq. (2) we
obtain

dP
dt

= (−µ+ λcS1J)︸ ︷︷ ︸
Lλc

(P − p̄c) +
λ2
cS2

2
(J(P − p̄c))2

+
λ3
cS3

6
(J(P − p̄c))3 +O(P 4), (22)

where J(P − p̄c) = ζ1w · χ+ ζ1w · χ+ JΨ and the linear terms are collected in
the operator Lλc . Higher order terms in the Taylor expansion may be neglected
given the form of Eq. (21) assuming that a and b are non-zero. It remains to
determine the coefficient and b by matching terms between Eqs. (21), (22).

In order to compute b we Taylor expand Ψ at λ = λc:

Ψ(w,w, 0) =

∞∑
p,q=2

ψpqw
pwq,

where the coefficients ψpq are orthogonal to the eigenvectors χ and χ. We
identify terms with common powers in the Taylor expansion in order to obtain
the following equation to be solved for b:

LλcΨ21 +
λ2
cS2

2
(2JΨ11ζ1χ+ 2JΨ20ζ1χ) +

λ3
cS3

6
3ζ3

1χ
2χ = bχ.

After some calculations given in Appendix B, we obtain the following expression
for b:

b = λ3
cζ

3
1

(
S3

2
+
λcS

2
2

µ

[
ζ0

(1− ζ0
ζ1

)
+

ζ2

2(1− ζ2
ζ1

)

])
. (23)

As we can see from Eq. (23), the criticality of the pitchfork bifurcation, as
determined by the sign of b, depends on all system parameters in a complex
way. We briefly discuss the implications of this criticality in our model.

• b < 0: The bifurcation is supercritical (Haragus and Iooss, 2010). The new
branch of solutions exist after the bifurcation, i.e. for λ > λc. Furthermore
the branch of solutions will be stable (attracting) local to the bifurcation.
In our model, for increasing λ passing the bifurcation point, there would
be smooth transition (smooth change in activity levels) from spatially
homogeneous solutions to a direction-selected solution.

• b > 0 The bifurcation is subcritical (Haragus and Iooss, 2010). The new
branch of solutions exist before the bifurcation, i.e. for λ < λc. Fur-
thermore the branch of solutions will be unstable (repelling) local to the
bifurcation. In our model, for increasing λ passing the bifurcation point,
there would be non-continuous transition (jump in activity levels) from
spatially homogeneous solutions to a direction-selected solution (see be-
low for explanation).

Sketches of the bifurcation diagrams for the two cases are shown in Fig. 3. In
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the second case, and from the analysis in (Veltz and Faugeras, 2010), we know
that the unstable branch existing for λ < λc must also have a fold bifurcation
λf at some point 0 < λ < λc. Thus the unstable branch of solutions existing
for λ < λc will change direction and stability at λf . For λf < λ < λc there are
coexisting stable solutions and for λ > λc the direction-selected solution is the
only stable one. Therefore, passing the bifurcation at λc results in a jump from
spatially homogeneous solutions to a direction-selected solution.

.

.

b < 0 b > 0

λ λ

(a) (b)

λc λcλf

|.| |.|

✻
✻

Figure 3: Sketch of bifurcation diagrams in λ for some norm |.| of a (a) supercrit-
ical or (b) subcritical pitchfork. Lower solution branch corresponds to spatially
homogeneous solutions, upper solution branch corresponds to direction-selected
solutions; stable parts are black, unstable parts are grey. Pitchfork occurs at λc
and in (b) there is a fold bifurcation on the direction-selected branch λf ; arrows
indicate temporal dynamics when passing λc on the lower branch.

Ultimately we need to choose a value of λ such that

1. In the absence of a stimulus there are no direction selected solutions;

2. When a stimulus is introduced a solution is selected that is intrinsically
present in the model.

For λ too large the model will produce direction-selected solutions in the absence
of a stimulus. For λ too small the solutions will be purely driven by the stimulus
once it is introduced, the connectivity that dictates the solutions intrinsically
present in the model will not play a role. Therefore, for the case b < 0 we must
choose a value close to but still less than λc. For the case b > 0 we must choose
a value close to but still less than λf .

The bifurcating branch of solutions is characterised by the mode involved
((j, k) = (0, 1)), that is, the solutions will be uniform in physical space and will
have a single maximum in v-space; we can think of the maximal point as being
centred at a selected direction. Hence, we refer to solutions on the bifurcated
branch as direction-selected solutions. Secondly, due to the O(2) symmetry in
the absence of a stimulus, taking a direction-selected solution, we know that it
will still be a solution under any angular translation in v; i.e. there continuum
(or ring) of solutions representing all possible selected directions.
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Parameter Default value Description
µ 2 Decay rate
T -2 Constant threshold
ν1 3 Diffusion coefficient
ν2 66 Inhibition coefficient
ν3 1.5 Linear threshold
σ1
x 0.5 Width of diffusion in x
σ2
x 0.16 Width of inhibition in x
σ1
v 0.16 Width of diffusion in v
λ Free parameter Nonlinearity stiffness
k Free parameter Input gain

Table 1: Default parameter values used in the numerical studies in Secs. 4.3
and 4.4.

4 Numerical results

In order to progress in the study of our model, we make use of computational
tools. In Sec. 4.1 we take advantage of the analytical results from Sec. 3 in order
to explore properties of the model dependent on parameters and to determine
relevant ranges of the parameters. In Sec. 4.2 we build on the normal form
computation from Sec. 3.3 by computing the bifurcated branch of solutions
using numerical continuation. We compute the relationship between the activity
levels along the bifurcated branch and certain parameters in order to fix their
values. An in depth study of the solution structure of the model varying two
parameters is given in Sec. 4.3. We identify a region of interest in parameters
space, which we study in more detail in Sec. 4.4. In particular we investigate
the temporal dynamics of the model which provides insight into the relation
between the model’s solution structure and different stimulus driven responses.

The default parameter values that we use in Secs. 4.3 and 4.4 are given in
Table 1. We can arbitrarily set the decay parameter to µ = 2 and the diffusion
parameter to ν1 = 3. Equally, these could be set to equal 1, however, the
chosen values lead to all system parameters being of roughly the same order of
magnitude, which facilitates the computations with Trilinos.

The activity levels for steady states of Eq. (2) are bounded by [0, 1
µ ]. In

order to simplify the presentation of the results it is convenient to give activity
levels in terms of either the max-norm pmax or L2-norm |p| as a percentage of
the maximum value 1

µ . For the spatial connectivity, the surround width is set
by σ1

x which is three times that of the centre width region σ2
x (Tadin et al, 2003).

The spatial extent of the stimulus is roughly 1.5 times larger than the surround
width. The width of the excitation in direction space is set by σ1

v to be about 20◦.
This relatively tight tuning allows for the model to produce direction selected
solutions (tuning curves) of widths appropriate for distinguishing between the
main percepts H, V and D; tuning widths are discussed further in 4.2. Finally,
it remains to set values for T , ν2 and ν3, which we do in Secs. 4.1 and 4.2.
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4.1 Parameter tuning

Ultimately, we will operate the model at a value of λ close to the either λc or λf ,
depending on the coefficient b, as discussed in Sec. 3.3. We wish to determine
an appropriate firing rate for the spontaneous activity. We do this by inves-
tigating the value of p̄c, which will be approximately the same as the activity
before the bifurcation. In the experimental study (Sclar et al, 1990) the contrast
response curves of neurons at various stages of visual processing, including MT,
were found. The data were fitted with the standard Naka-Rushton function
characterising low responsiveness at low contrast, followed by a region of high
sensitivity where the firing increases rapidly, which eventually plateaus out at
some maximal firing rate. From this data it appears that at very low contrast
(in the absence of a stimulus), the firing rate is at approximately 5%–20% of the
maximum firing rate. It is therefore appropriate to set model parameters such
that 5% < p̄c < 20%. Figure 4(a) and Fig. 4(b) show the dependence of p̄c and
b on the threshold parameter T , used to set the spontaneous activity level, and
ν2, the inhibition strength; all other parameters are set to the values in Table 1.
Note that for each value of p̄c there is an associated unique value of λc given
by Eq. (19); it is possible vary T and ν2 linearly such that the argument of S
in the first equation is fixed, which explains the affine relationship in Fig. 4(a).
The same property carries through to the Taylor coefficients S2 and S3 and to
the values of b given by Eq. (23).

For a given value of ν2, Fig. 4(a) provides the necessary range of T for which
we have 5% < p̄c < 20%. Furthermore, for values of (ν2, T ) in this range, we
always have the case b > 0 corresponding to a subcritical pitchfork bifurcation;
this implies that it will be necessary to operate the model close to λf . In order
to set the final values of T , ν2 and ν3, it is necessary to consider the level of
activity and tuning width of the direction selected branch of solutions. In the
next section we use the information presented here, along with the dependence
of these solution properties on ν2 and ν3 to determine the final values of the
parameters used.

4.2 Solution structure in the absence of stimulus

We now look at numerically computed solutions in the absence of stimulus (k =
0). In Sec. 3.3 it was shown that the system’s principal bifurcation is a pitchfork
with O(2)-symmetry; furthermore, it was shown in the previous section that this
pitchfork bifurcation is subcritical for the parameter values specified in Table 1
. We now employ numerical continuation to compute directly the bifurcated
solution branch under the variation of λ. We use the continuation package
LOCA, part of the Trilinos package of numerical tools. We use a discretisation
of 37 points for both the physical space x and direction space v, verifying that the
integrals involved in the solution of the equations satisfy suitable error bounds;
such a discretisation gives rise to a system of 1369 ordinary differential equations
(ODEs), which resulted in manageable computations with Trilinos. Increasing
the discretisation further results in a drastic increase in computation times.

Figure 5(a) shows a bifurcation diagram in the parameter λ in the absence
of a stimulus. As predicted from the analytical results herein and (Veltz and
Faugeras, 2010), the pitchfork bifurcation P1 from the homogeneous (lower)
branch of solutions is subcritical and the bifurcated (upper) branch undergoes
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Figure 4: Tuning the parameters T and ν2. (a) Grey scale map of activity
level p̄c at bifurcation point λc; plotted in both panels are the contours 5%
and 20% (grey) along with the contour 99% (dashed black). (b) Grey scale
map of the normal form coefficient b as given by equation Eq. (23); plotted
in both panels are the contours b = 0 (black); positive values correspond to a
subcritical bifurcation and negative values to a supercritical bifurcation. For |T |
large (white region in bottom left of (a), grey region in bottom left of (b)) the
activity level is saturated at p̄c = 100% and b ≈ 0 because the Taylor coefficients
S∗ ≈ 0.

a fold bifurcation at F1. Here we have λc = 22.1 and λf = 15.4. Therefore,
it will be necessary to operate the model with λ < 15.4 such that direction
selected solutions do not exist in the absence of a stimulus. Due to the O(2)-
symmetry properties of the solutions on the bifurcated branch, the direction
selected solutions are invariant to translations in v (there is a continuum, or
ring, of solutions corresponding to all possible directions). Panels (b) and (c)
show a direction-selected solution from the upper branch centred at an arbitrary
direction; the same solution exists for any translation in v. These direction-
selected solutions are modulated in v, but are still uniform in physical space
x; it is only later, with the introduction of an input, that the model produces
responses that are also modulated in x (see Fig. 8).

In order to set values of the parameters ν2 and ν3 we investigate how certain
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Figure 5: Model solutions in absence of stimulus. (a) A bifurcation diagram
varying λ for k = 0 and the parameter values given in Table 1, where the
solution norm is |p|; branches of steady-state solutions are plotted with stable
sections black and with unstable sections grey. The lower branch of solutions
are spatially uniform in both x and v ; for increasing λ the branch loses stability
in a subcritical pitchfork bifurcation at P1. The bifurcated branch represents
direction-selected solutions (modulated in v but still uniform in x); a change
in stability occurs at the fold bifurcation F1. (b) Activity p plotted over the
(x, v)-plane for the direction selected solution indicated by a diamond marker
on the upper branch in panel (a). (c) Cross section in v at an arbitrary value
of x from panel (b).

properties of the direction-selected solutions change with respect to these pa-
rameters. Firstly, the solutions should have a suitable tuning width in v-space
and, secondly, the activity should not be close to saturation. Given that we will
operate the model at a value of λ close to λf , it is convenient to study these
properties at the fold point F1, as shown in Fig. 5(a), and how they change
under variation of the ν2 and ν3. Note that as we vary either ν2 or ν3, the
value of λ for which the fold bifurcation occurs also changes. Therefore, we per-
form two-parameter continuation in λ and k, varying one parameter to satisfy
the condition that the system be at a steady state and a second parameter to
satisfy the condition that the system also be at a fold bifurcation.

We define w 1
2
to be the tuning width in v of the direction selected solutions

at half-height. Figure 6(a) shows the variation of w 1
2
at the fold point F1 with

respect to ν2, for convenience of presentation we do not show the variation of λ.
As ν2 is increased (greater lateral inhibition) the tuning width decreases. Intro-
ducing the linear threshold term (ν3 = 1.5) does not change this characteristic,
but shifts the curves up. It is necessary to set a value of ν2 such that the tuning
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Figure 6: Tuning of parameters ν2 and ν3. (a) Dependence of velocity tuning
half-width w 1

2
on ν2 at fold point F1; black curve computed for ν3 = 0, grey

curve computed for ν3 = 1.5. (b) Dependence of maximum activity level for
direction-selected solutions pmax on ν3 computed for ν2 = 66.

width is less than 45◦ in order to make the distinction between solutions mov-
ing diagonally or vertically/horizontally as shown in Fig. 1. At ν2 = 66, which
gives w 1

2
∈ (30◦, 40◦), the maximum level of activity for the direction-selected

solution is shown in Fig. 6(b). Imposing the condition that pmax < 50% at F1,
the system should still exhibit suitable sensitivity to changes in the input gain
when the stimulus is introduced. We arrive at a choice of (ν2, ν3) = (66, 1.5),
which gives w 1

2
≈ 40◦ and pmax ≈ 48%.

Overall, in the last two sections, we have explored the relationship between
the three parameters T , ν2 and ν3 and properties of the homogeneous and
direction-selected solutions. This has allowed us to set suitable values of these
parameters such that the solutions produced by the model satisfy important
biological and mathematical constraints; refer back to Table 1 for the parameter
values used in the subsequent sections.

4.3 Introduction of stimulus and two-parameter analysis

From the results presented in the previous section we know that the sigmoidal
slope λ should be set at a value for which the model cannot spontaneously
produce direction-selected solutions. This gives rise to the requirement that
λ < 15.4 so as to be at a λ-value less than the first fold point labelled F1 in
Fig. 5. We now investigate the solutions when a stimulus is introduced to the
model by increasing the stimulus gain parameter k from 0; this is analogous to
increasing the stimulus contrast. Recall that the stimulus described in Sec. 1
has the form shown in Fig. 1(c) when represented in the (x, v)-plane.

Figure 7 shows one-parameter bifurcations diagrams in k initialised at the
values of λ indicated in the panels. In order to see the solution structure clearly
the diagrams are shown with k on a logarithmic scale. In panels (a), (b) and
(c) solutions are plotted in terms of the the norm |p|; note that in panel (c)
this allows the main solution branch at a lower activity level to be distinguished
from the solution branch associated with the percept D. In panel (d) we plot
solutions in terms of the average direction v̄ in order to distinguish between the
solutions associated the percepts H and V .
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Figure 7: Branches of steady-state solutions are plotted for varying bifurcation
parameter k (shown on a logarithmic scale) as computed for different values of
λ; stable sections of solution branches are black and unstable sections are grey.
Changes in stability occur at fold bifurcations (black points) and pitchfork bi-
furcations (black stars). In panels (a), (b) and (c) solutions are plotted in terms
of the L2-norm of the solution vector |p| for λ = {12.5, 13, 14}, respectively. The
inset in panel (c) shows the largest eigenvalue ζmax along the two upper solution
branches from the main panel over the range of k as indicated by vertical dashed
lines. Panel (d) shows the same solution branches as in panel (c), but in terms
of the average direction v̄.
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At λ = 12.5, as shown in panel (a), there is a single branch of stable solutions
on which no bifurcations are encountered. The solutions effectively mimic the
input stimulus along the solution branch and the level of activity increases with
k.

At λ = 13, for increasing k bifurcations are encountered at the fold points
labelled FH1 and FV1 , the subcritical pitchfork P1 and the supercritical pitchfork
P2. With the introduction of the stimulus, the O(2)-symmetry of the pitchfork
for k = 0, as discussed in the previous section, is broken. We now find that
the pitchfork bifurcation at P1 gives rise to a pair of direction-selected-solution
branches, as opposed to a continuum of solutions at all possible directions when
k = 0 as discussed in Sec. 4.2 . The two branches are associated with the
directions H and V and the branches undergo a fold bifurcations FH1 and FV1 ,
respectively. These two fold points coincide when plotted in terms of the solution
norm |p|. The pair of direction-selected branches reconnect at the supercritical
(for k decreasing) pitchfork P2. The main solution branch (that mimics the
input stimulus and has a lower level of activity than the bifurcated branch) is
unstable between P1 and P2; it coexists with the direction-selected solutions.

At λ = 14, as shown in Fig. 7(c), the same bifurcations are encountered as
for λ = 13, but with FH1 , FV1 and P1 at lower values of k, and P2 at a larger
value of k. The significant difference is the introduction of two pairs of fold
bifurcations F2, F3 and F4, F5 on the main unstable branch of solutions. This
series of bifurcations gives rise to an unstable direction-selected solution be-
tween F2 and F5. For values of k between F2 and F5 the inset shows the largest
eigenvalue on the unstable direction-selected branch (grey) and the two sym-
metrical direction-selected branches (black). Close to F2, the largest eigenvalue
is positive but very close to zero implying that the solution is weakly unsta-
ble in this region. Figure 7(d) shows the pair of symmetrical direction-selected
branches with average direction v̄ as the solution measure. The unstable solu-
tion corresponding to D (v̄ = 0◦) is shown in Fig. 8(a) and the stable solutions
corresponding to V (v̄ ≈ 45◦) and H (v̄ ≈ −45◦) are shown in Fig. 8(b) and
Fig. 8(c), respectively. We note that a slightly elevated level activity persists
outside of the aperture (stimulated region), which is a consequence of the un-
derlying solutions encoded by the connectivity as shown in Fig. 5 that have a
single direction selected across the entire physical space. It is suggested that
this (subthresold) activity could facilitate further recruitment of direction selec-
tion beyond the aperture edges. See, for example, (Shimojo et al, 1989) where
experiments were carried out using gratings masked by multiple apertures.

The pitchfork and fold bifurcations encountered in the one-parameter bifur-
cation diagrams presented thus far are codimension-one bifurcations that lie on
curves in the parameter plane and, can therefore, be tracked under variation of
two parameters. Indeed, the necessary routines to achieve this are implemented
in the package Trilinos. Figure 9 shows the locus of pitchfork bifurcation P and
the loci of fold bifurcation FH , FV , FD and FT over the (λ, k)-plane; note that
FH and FV coincide and that FD is associated with the unstable D solution. In
order to illustrate how solutions are organised we consider three one-parameter
slices of the parameter plane. Indicated by vertical dashed lines in Fig. 9, the
slices correspond to the three one-parameter cases shown in Fig. 7. Firstly, for
the trivial case at λ = 12.5 the corresponding slice in Fig. 9 does not intersect
the pitchfork or fold curves. At λ = 13, for increasing k the first (simultane-
ous) intersection is with FH,V (corresponding to FH1 and FV1 ), followed by P
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Figure 8: Three possible direction-selected solutions. Panels (a), (b) and (c)
show, for λ = 14, k = 0.3, three possible direction-selected solutions correspond-
ing to the unstable diagonal (D), stable vertical (V) and stable horizontal (H)
percepts , respectively.

(corresponding to P1), and P again (corresponding to P2); compare Fig. 9 and
Fig. 7(b). Finally, at λ = 14, for increasing k the intersections occur in the fol-
lowing order FH,V , FD, P , FT , FT , FD and P ; these intersections correspond
to the bifurcation points FH,V1 , P1, F2, F3, F4, F5 and P2 in Fig. 7(c). We are
now able to summarise the type of solutions that exist in different regions of the
(λ, k)-plane. Outside of the region bounded by P and below FH,V , there are
no direction selected solutions. One can think of FH,V representing a contrast
threshold in k that changes with respect to λ. For λ too small, the solutions are
purely stimulus driven. In the region between FH,V and P the homogeneous
solution is stable and coexists with the two direction selected solutions. Inside
the area bounded by P , the system’s homogeneous solutions are unstable and
there are always two direction selected solutions corresponding to H and V. For
points in the region bounded by P and also to the right of FD, there exists
stable solutions associated with H and V, and an unstable solution associated
with D. We identify this as a region of interest for which we expect the model
to qualitatively reproduce the behaviour observed in experiment.

4.4 Temporal dynamics

By means of an in-depth, two-parameter bifurcation analysis we have identified
a region of interest in parameter space for which the model produces two sta-
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Figure 9: A two-parameter bifurcation diagram is shown in the (λ, k)-plane
where the locus of pitchfork bifurcation P is a black curve and the loci of fold
bifurcations FH,V , FD and FT are a grey curves. The point where the coinciding
fold curves FH,V terminate at an intersection with the pitchfork curve P is
indicated by black point. One-parameter slices indicated by vertical dashed
lines correspond to the bifurcation diagrams for fixed λ and varying k shown
in Fig. 7; the labels along these slices correspond with the bifurcation points in
Fig. 7.

ble direction-selected solutions corresponding to the horizontal (H) and vertical
(V) percepts, and one unstable direction-selected solution corresponding to the
diagonal (D) percept. We know that in this parameter region the system will
converge to one of the stable percepts; in this section we study how the unsta-
ble solution D plays a role in the temporal dynamics. At the chosen parameter
values in Table 1 with λ = 14, the model produces a low level of homogeneous
activity in the absence of stimulus k = 0. We take this homogeneous state as
an initial condition for simulations with a random perturbation drawn from a
standard uniform distribution in order to introduce a stochastic element. The
equations remain deterministic, but we introduce variability in the initial con-
ditions for each simulation. First, we present an example simulation and define
some quantities that characterise the temporal dynamics; next, we study how
the temporal dynamics change with respect to the strength of the input gain k.
The reader may find it helpful to refer back to the bifurcation diagrams Fig. 7(c)
and (d), which show the solution branches corresponding to H, D and V.

Figure 10 shows an example of the temporal dynamics produced by the
model in the region of parameter space with solutions corresponding to H, D
and V, (see Sec. 4.3). The behaviour can be broken into three phases: 1)
initially no specific direction is selected but there is a slightly higher level of
activity for stimulated directions, 2) the first direction-selected solution to ap-
pear corresponds to D but the system diverges from this unstable solution, 3)
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Figure 10: Example of temporal dynamics for (λ, k) = (14, 0.3) initialised from
random initial conditions. (a) Grey scale map showing the evolution activity
levels p(x, v, t) with time on the vertical axis. The state vector p is indexed
locally by position in physical space x and globally by position in direction
space v and it is, therefore, convenient to show v-position on the horizontal
axis. At the time-point labelled t1 (horizontal white dashed line, star in panels
(b) and (c)) there is a transition to the diagonal direction-selected solution. At
the time-point labelled t2 (horizontal white line, point in panels (b) and (c))
there is a transition to the final steady-state, direction-selected solution. (b)
Time-evolution of |p|; the time-mark t1 is the point of steepest increase for |p|.
(c) Time evolution of the average direction v̄ with horizontal dashed black lines
indicating the two possible final steady-state solutions. The time-mark t2 is
taken as the first point where the v̄ is within 3◦ of the final selected direction.

the final direction-selected solution corresponds to either H or V and the system
will remain at this stable solution after convergence. The point in time of the
transition from phase 1 to phase 2 is denoted t1, phase 2 to phase 3 is denoted
t2 (see panels (b), (c) and accompanying caption for definition of t1 and t2. The
time-mark t1 coincides with the first appearance of a direction-selected solution,
in this case D. The time-mark t2 coincides with the convergence of the solution
to either H or V. These two quantities characterise the temporal dynamics of
the system as transitions are made between the solutions associated with the
different percepts.
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We now investigate the way in which the characteristic quantities t1 and
t2 vary depending on initial conditions; as such we study their distribution
in time based on many simulations initiated with random initial conditions.
Furthermore, we study the dependence of these distributions on the parameter
k. For a range of discrete values of k ∈ {0.2, 0.7}, we run at each k-valueN = 500
simulations. Figure 11 shows a summary of the statistics of the distributions of
t1 and t2 depending on k. The results show that as k increases, the mean value
of t1 decreases (D is perceived sooner) as does the mean value of t2-t1 (the switch
from D to either H or V occurs sooner). Another important property is that for
smaller values of k, there is a large spread for t2 with a long tail extending off to
large values of t. This can be explained from the bifurcation results presented
earlier, specifically, the unstable branch of solutions corresponding to D and the
pair of stable solution branches corresponding to H and V as shown in Fig. 7(c),
(d). The inset of Fig. 7(c) shows the largest eigenvalues along the solution
branches for the parameter values considered here. For the unstable solution
corresponding to D the largest eigenvalue is indeed positive, but still very close
to 0. Therefore, very long transients can be observed resulting in a large time
being spent at the D solution. As k increases the eigenvalue increases and the
transient times decrease resulting in less time being spent near D. Finally, for
large values of k the D solution is barely seen at all, there is convergence directly
to H or V.

We now look more closely at how the unstable solution D affects the dy-
namics at k = 0.2 and k = 0.5, in particular in terms of the distributions of the
average direction v̄ taken at different time snapshots. At k = 0.2 the average
t̄1 = 280 and at k = 0.5 the average t̄1 = 34; these two average times represent
when the rate of change of the system’s activity is greatest. Figure 12 shows his-
tograms of v̄ for time snapshots before t̄1 (first row) at t̄1 (second row) and after
t̄1 (third row). In the first case k = 0.2 there is a tri-modal short-term response
dominated by D (panel (a)), there is a tri-modal medium-term response spread
between H, D and V (panel (c)) and there is a late-term tri-modal response
dominated by H and V (panel (e)). In the second case k = 0.5, we see a shift
from a uni-modal, short-term response (panel (b)), that becomes a bimodal re-
sponse for the medium- and late-term with no peak at v̄ = 0 (panels (d), (f)). In
the second case the unstable solution D does not have an distinguishable effect
on the dynamics, there is a rapid convergence to one of the two stable solutions.

5 Discussion

In this paper we presented a spatialised model of direction selection that was
used to study the dynamical behaviour of multistable responses to the 1 : 1 ratio
barber pole (a diagonally drifting grating viewed through a square aperture).
The aim was to reproduce, at the cortical level, firing rate activity that can
be related to qualitative behaviour observed in psychophysics experiments: the
stimulus exhibits multistability of perception for short presentations where the
dominant percepts are either 1) the diagonal direction of the grating (D) 2) in
agreement with horizontal (H) aperture edge, or 3) in agreement with the verti-
cal (V) aperture edge (Castet et al, 1999; Fisher and Zanker, 2001). The model
reproduced this multistable behaviour, where the percepts H and V correspond
to stable solutions and the percept D to an unstable solution. The temporal dy-
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namics were investigated and it was shown that early responses were dominated
by the diagonal percept, midterm responses were tri-modal between the three
percepts and later responses were dominated by the two stable percepts H and
V. This behaviour is consistent with experimental findings that show an early
response dominated by 1D cues, which is later refined by 2D cues (Barthélemy
et al, 2010; Lorenceau et al, 1993; Pack and Born, 2001). One of the main pre-
dictions to be made from these results is that the percept D is only seen as a
transient behaviour; for long term presentations on the order of seconds either
H or V will be seen or perceived.

One of the main advantages of the model used here is its simplicity; the phi-
losophy was to reproduce interesting behaviour observed in experiments with a
minimalistic set of features to perform motion integration. Given the particu-
lar stimulus studied in this paper and its inherent symmetry properties, it was
important to utilise a framework, such as neural fields, where these symmetry
properties can be preserved. Another positive aspect of working with a rela-
tively simple model is the small set of parameters that must be determined, in
contrast to, for example, the study (Chey et al, 1997) where a huge number of
parameters must be determined heuristically. The strategy employed for set-
ting model parameters took into account a number of important biological and
mathematical constraints. One of the main ideas was to ensure that the model
is operating close to its principal bifurcation where it will be most sensitive
to subtleties of the stimulus input (Veltz, 2011); the bifurcation analysis and
other analytical results helped to ensure the model was operated in the right
parameter regime. For the remaining parameters, we used numerical contin-
uation to study the relationships between a given parameter and biologically
relevant properties of the model’s solutions. We looked at these relationships
over a wide range of parameter values and ensured that appropriate values were
set. The general principles applied to tune parameters are applicable to a broad
class of models that covers the various possible extensions proposed below. In
existing studies of motion integration, behaviour was studied at fixed parame-
ters (Chey et al, 1997; Simoncelli and Heeger, 1998; Bayerl and Neumann, 2004;
Tlapale et al, 2010b); in certain cases the influence of a single term is tested by
setting its weight to zero. Here the two-parameter continuation analysis allow
us to determine an entire region of interest in parameter space. Further, the
extended investigation in this region looked at the dynamical behaviour taking
into account the effect of changing initial conditions. The two-parameter inves-
tigation also tells us that the behaviour produced is robust over entire regions
of parameter space.

An important question in studies of motion perception is identifying exactly
what happens in the first few hundred milliseconds of presentation. The most in-
sightful work so far has come from ocular following experiments (Masson et al,
2000) and physiological recordings from individual neurons (Pack and Born,
2001). In order to support the results in this paper we propose a psychophysics
experiment that investigates the same stimulus described in this paper with
incrementally increasing short presentation time in order to identify the quali-
tative change in percept distributions that were found in our model. We found a
uni-modal distribution in the short-term dynamics and a tri-modal distribution
for the medium-term dynamics. Furthermore, we predict that the D percept
can only be seen as a transient and for long enough presentation times only the
percepts H or V would be seen.
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The model and results presented here not only captures a number of impor-
tant aspects seen in experiment, but also forms a solid basis for further study
of motion integration. One natural extension would be to lift the one dimen-
sional approximation of the physical space. This would first of all allow for the
validity of the original approximation to be tested, further, it would allow for
other stimulus parameters such as the terminator ratio to be tested for further
comparison with the results of (Fisher and Zanker, 2001). More complex aper-
ture arrangements could also be considered such as the cross-shaped stimulus
studied in (Castet and Zanker, 1999). A directional bias that varied from sub-
ject to subject but generally towards the horizontal (Fisher and Zanker, 2001)
is a feature of experimental results that was not captured by our model. The
most straightforward way to investigate this would be to consider an asymme-
try in the model’s input that assumes stronger (or more numerous) inputs at
the preferred direction. The model in (Tlapale et al, 2010b), implemented in
a similar framework to the one studied here, considers a much more detailed
description taking into account filtering stages applied to the input along with
feedforward and feedback interactions between MT and V1. The methods used
in this paper would be applicable to models of much greater complexity though
at the cost of increasing the intricacy of analytical computations and scale of
numerical computations. The focus of this article was multistable perception in
the first few seconds after stimulus onset, a similar model and stimulus could
be used to study perceptual switches that are known to occur for extended pre-
sentations by considering an adaptation dynamic on a slow timescale such as
the one studied in (Curtu and Ermentrout, 2004).
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A Centre manifold

Here, we show that the necessary hypotheses are satisfied in order to apply the
centre manifold theorem as given in (Haragus and Iooss, 2010, Chapter 2). We
introduce some functional spaces in which the problem defined by Eq. (2) is
well-posed. We note F the Hilbert space L2(Ω × V,R), where Ω = R/cZ and
V = R/2πZ , endowed with the usual inner product

〈p1, p2〉F =

∫ c/2

−c/2

∫ π

−π
p1(x, v)p2(x, v)

dx

c

dv

2π
.

We also note G the space L∞(Ω × V,R) ⊂ F . It is then easy to show, using
techniques similar to those in (Faugeras et al, 2008) and (Veltz, 2011, Chapter
4), that for any initial condition p0(x, v) ∈ F there is a unique solution p(x, v, t),

Inria



Motion integration with a multistable stimulus 33

defined for all times t ≥ 0 and continuously differentiable with respect to t for
all t ≥ 0.

Regarding the applicability of the parameter dependent centre manifold the-
orem (Haragus and Iooss, 2010, Theorem 3.3, Chapter 2), we consider the linear
operator Lλ defined in Eq. (22):

Lλ = −µId + λS1J.

We note that J can be written K − ν3Id, where K is a convolution operator
(in effect a linear combination of two convolutions with bounded convolution
kernels). From these remarks it follows that Lλ is in L(G,F), the set of linear
continuous operators from G to F , and that it is a compact operator, hence that
its spectrum is discrete and the eigenvalues have finite multiplicity.

It is also not difficult to prove that ‖(iωId−Lλ)−1‖L(F) ≤ 2
|ω| and ‖(iωId−

Lλ)−1‖L(G) ≤ 2
|ω| for ω large enough.

The next technical step is to do the change of variables p = p̄c+P , λ = λc+η
and to write an equation for P as a function of the parameter η. In detail we
have

∂P

∂t
=
∂p

∂t
= −µ(p̄c + P ) + S((λc + η)[J(p̄c + P ) + T ]).

We subtract from this equation

0 = −µp̄c + S(λc[Jp̄c + T ]),

to obtain

∂P

∂t
= −µP + S((λc + η)[J(p̄c + P ) + T ])− S(λc[Jp̄c + T ]).

We then write

∂P

∂t
= LλcP + S((λc + η)[J(p̄c + P ) + T ])− S(λc[Jp̄c + T ])− λcS1JP.

If we defineG(p, λ) = S(λ[Jp+T ]), it should be clear that λcS1JP = DpG(p̄c, λc)P .
From this follows the fact that

R(P, η) = S((λc + η)[J(p̄c + P ) + T ])− S(λc[Jp̄c + T ])− λcS1JP

= G(p̄c + P, λc + η)−G(p̄c, λc)−DpG(p̄c, λc)P,

is such that (use first order Taylor’s expansion with integral remainder)

R(0, 0) = 0, DpR(0, 0) = 0,

and R is infinitely differentiable, because the sigmoid S is.

Therefore, all hypotheses necessary for applying the parameter dependent
centre manifold theorem (Haragus and Iooss, 2010) are satisfied and the com-
putation of the normal form Eq. (21) is justified.
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B Normal form coefficient

In order to compute b we need to solve:

LλcΨ21 +
λ2
cS2

2
(2JΨ11ζ1χ+ 2JΨ20ζ1χ) +

λ3
cS3

6
3ζ3

1χ
2χ = bχ. (24)

It is first necessary to obtain expressions for Ψ11 and Ψ20 by solving the following
equations:

LλcΨ20 +
λ2
cS2

2
ζ2
1χ

2 = 0, (25)

LλcΨ11 + λ2
cS2ζ

2
1χχ = 0. (26)

In order to solve Eq. (25) we decompose Ψ20 into components on the eigenspace
E1

Ψ
||
20 = α20χ+ α20χ,

for some arbitrary coefficients α20 and α20, and components orthogonal to the
eigenspace

Ψ`20 =
∑
|k|6=1

vke
ikv,

for coefficients vk to be determined. From

LλcΨ20 = −λ
2
cS2

2
ζ2
1χ

2,

we find that vk = 0 for k 6= ±2 and that

v2 = v−2 = − λ2
cS2ζ

2
1

2(−µ+ λcS1ζ2)
.

The ζ2 coefficient comes from the action of J on Ψ. Finally we have a general
expression for Ψ20:

Ψ20 = − λ2
cS2ζ

2
1

2(−µ+ λcS1ζ2)
ei2v + α20χ+ α20χ.

We obtain a similar expression for Ψ11:

Ψ11 = − λ2
cS2ζ

2
1

−µ+ λcS1ζ0
+ α11χ+ α11χ.

The ζ0 coefficient comes from the action of J on Ψ. These expressions are
further simplified by the fact that at the bifurcation point ζ1 = µ

λcS1
, so we

have:

Ψ20 =
λ2
cS2ζ

2
1

2µ(1− ζ2
ζ1

)
ei2v + α20χ+ α20χ, (27)

Ψ11 =
λ2
cS2ζ

2
1

µ(1− ζ0
ζ1

)
+ α11χ+ α11χ. (28)
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Now to solve for b we take the inner product of Eq. (24) with χ which gives

b = 〈LΨ21, χ〉︸ ︷︷ ︸
=0

+λ2
cS2ζ1 (〈JΨ11χ, χ〉+ 〈JΨ20χ, χ〉) +

λ3
cS3

2
ζ3
1 〈χ2χ, χ〉︸ ︷︷ ︸

=1

.

Evaluating the remaining inner products we have

〈JΨ20χ, χ〉 =
ζ2λ

2
cS2ζ

2
1

2µ(1− ζ2
ζ1

)
〈ei2vχ, χ〉︸ ︷︷ ︸

=1

+α20 〈χχ, χ〉︸ ︷︷ ︸
=0

+α20 〈χ2, χ〉︸ ︷︷ ︸
=0

=
ζ2λ

2
cS2ζ

2
1

2µ(1− ζ2
ζ1

)

〈JΨ11χ, χ〉 =
ζ0λ

2
cS2ζ

2
1

µ(1− ζ0
ζ1

)
〈χ, χ〉︸ ︷︷ ︸

=1

+α11 〈χ2, χ〉︸ ︷︷ ︸
=0

+α11 〈χχ, χ〉︸ ︷︷ ︸
=0

=
ζ0λ

2
cS2ζ

2
1

µ(1− ζ0
ζ1

)
.

Finally, we obtain the expression for b given in Eq. (23).
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