R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, vol.169, 1997.
DOI : 10.1007/978-1-4612-0653-8

C. Bouville, Bounding ellipsoids for ray-fractal intersection, in: SIGGRAPH '85: Proceedings of the 12th annual conference on Computer graphics and interactive techniques, pp.45-52, 1985.

Y. K. Choi, J. W. Chang, W. Wang, M. S. Kim, and G. Elber, Continuous Collision Detection for Ellipsoids, IEEE Transactions on Visualization and Computer Graphics, vol.15, issue.2, pp.311-325, 2009.
DOI : 10.1109/TVCG.2008.80

URL : https://hal.archives-ouvertes.fr/hal-00646511

Y. K. Choi, W. Wang, and M. S. Kim, Exact collision detection of two moving ellipsoids under rational motions, 2003.

Y. K. Choi, W. Wang, Y. Liu, and M. S. Kim, Continuous Collision Detection for Two Moving Elliptic Disks, IEEE Transactions on Robotics, vol.22, issue.2, pp.213-224, 2006.
DOI : 10.1109/TRO.2005.862479

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. H. Eberly, 3D Game Engine Design, 2001.

I. Z. Emiris and E. P. Tsigaridas, Real algebraic numbers and polynomial systems of small degree, Theoretical Computer Science, vol.409, issue.2, pp.186-199, 2008.
DOI : 10.1016/j.tcs.2008.09.009

J. Zur-gathen and J. Gerhard, Modern computer algebra, 1999.
DOI : 10.1017/CBO9781139856065

K. Geddes, S. Czapor, and G. Labahn, Algorithms for Computer Algebra, 1992.
DOI : 10.1007/b102438

L. Gonzalez-vega and E. Mainar, Solving the separation problem for two ellipsoids involving only the evaluation of six polynomials (extended abstract, Milestones in Computer Algebra (MICA), 2008.

M. Ju, J. Liu, S. Shiang, Y. Chien, K. Hwang et al., A novel collision detection method based on enclosed ellipsoid, Proceedings of 2001 IEEE Conference on Robotics and Automation, pp.21-26, 2001.

M. Kerber, Division-free computation of subresultants using Bezout matrices, International Journal of Computer Mathematics, vol.2122, issue.12, pp.2186-2200, 2009.
DOI : 10.1016/S0304-3975(02)00639-4

P. Kumar and E. Yildirim, Minimum-Volume Enclosing Ellipsoids and Core Sets, Journal of Optimization Theory and Applications, vol.37, issue.12, pp.1-21, 1996.
DOI : 10.1007/s10957-005-2653-6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Lu, Y. K. Choi, W. Wang, and M. S. Kim, Variational 3D Shape Segmentation for Bounding Volume Computation, Computer Graphics Forum, vol.72, issue.1, pp.329-338, 2007.
DOI : 10.1007/s00371-006-0052-0

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerial Recipes 3rd Edition: The Art of Scientific Computing, 2007.

S. Redon, A. Kheddar, and S. Coquillart, Fast Continuous Collision Detection between Rigid Bodies, Computer Graphics Forum, vol.24, issue.4, pp.279-288, 2002.
DOI : 10.1111/1467-8659.t01-1-00587

URL : https://hal.archives-ouvertes.fr/inria-00390356

E. Rimon and S. Boyd, Obstacle collision detection using best ellipsoid fit, Journal of Intelligent and Robotic Systems, vol.18, issue.2, pp.105-126, 1997.
DOI : 10.1023/A:1007960531949

H. P. Schröker, Uniqueness results for minimal enclosing ellipsoids, Computer Aided Geometric Design, vol.25, issue.9, pp.756-762, 2008.
DOI : 10.1016/j.cagd.2008.07.007

S. Shiang, J. Liu, and Y. Chien, Estimate of minimum distance between convex polyhedra based on enclosed ellipsoids, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113), pp.739-744, 2000.
DOI : 10.1109/IROS.2000.894692

M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi et al., Collision Detection for Deformable Objects, Computer Graphics Forum, vol.20, issue.3, pp.61-81, 2005.
DOI : 10.1111/1467-8659.t01-1-00592

URL : https://hal.archives-ouvertes.fr/inria-00539916

M. J. Todd and E. A. Yildirim, On Khachiyan's algorithm for the computation of minimum-volume enclosing ellipsoids, Discrete Applied Mathematics, vol.155, issue.13, pp.1731-1744, 2007.
DOI : 10.1016/j.dam.2007.02.013

C. Tu, W. Wang, B. Mourrain, and J. Wang, Using signature sequences to classify intersection curves of two quadrics, Computer Aided Geometric Design, vol.26, issue.3, pp.317-335, 2009.
DOI : 10.1016/j.cagd.2008.08.004

W. Wang, Y. K. Choi, B. Chan, M. S. Kim, and J. Wang, Efficient Collision Detection for Moving Ellipsoids Using Separating Planes, Computing, vol.72, issue.1-2, pp.235-246, 2004.
DOI : 10.1007/s00607-003-0060-0

W. Wang, J. Wang, and M. S. Kim, An algebraic condition for the separation of two ellipsoids, Computer Aided Geometric Design, vol.18, issue.6, pp.531-539, 2001.
DOI : 10.1016/S0167-8396(01)00049-8

E. Welzl, Smallest enclosing disks (balls and ellipsoids), Lecture Notes in Computer Science, vol.555, pp.359-370, 1991.
DOI : 10.1007/BFb0038202

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=